ArticlePDF Available

A new butterwort species (Pinguicula, Lentibulariaceae) from Northern Apennine (Italy)


Abstract and Figures

A morphometric and taxonomic study of Pinguicula in Northern Apennine was carried out. A new species belonging to sect. Pinguicula, previously referred erroneously to P. vulgaris L. and/or P. leptoceras Rchb., is here described as P. christinae sp. nov. The taxonomic relationship of P. christinae with other octoploid species, such as P. apuana Casper and Ansaldi, P. fiorii Tammaro and Pace, and P. vulgaris s.l. (including also its central Italian endemic subspecies) is discussed.
Content may be subject to copyright.
This article was downloaded by: [Universita Di Pisa]
On: 29 October 2013, At: 06:54
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK
Plant Biosystems - An International Journal Dealing
with all Aspects of Plant Biology: Official Journal of the
Societa Botanica Italiana
Publication details, including instructions for authors and subscription information:
A new butterwort species (Pinguicula,
Lentibulariaceae) from Northern Apennine (Italy)
L. Peruzzia & G. Gestrib
a Dipartimento di Biologia, Unità di Botanica generale e sistematica, Università di Pisa, Italy
b Via Bonfiglioli, 30 59100 Prato, Italy
Accepted author version posted online: 05 Dec 2012.Published online: 10 Jan 2013.
To cite this article: L. Peruzzi & G. Gestri (2013) A new butterwort species (Pinguicula, Lentibulariaceae) from Northern
Apennine (Italy), Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology: Official Journal of the
Societa Botanica Italiana, 147:3, 692-703, DOI: 10.1080/11263504.2012.756073
To link to this article:
Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.
This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
A new butterwort species (Pinguicula, Lentibulariaceae) from Northern
Apennine (Italy)
Dipartimento di Biologia, Unita
`di Botanica generale e sistematica, Universita
`di Pisa, Italy and
Via Bonfiglioli, 30 59100
Prato, Italy
A morphometric and taxonomic study of Pinguicula in Northern Apennine was carried out. A new species belonging to sect.
Pinguicula, previously referred erroneously to P. vulgaris L. and/or P. leptoceras Rchb., is here described as P. christinae sp. nov.
The taxonomic relationship of P. christinae with other octoploid species, such as P. apuana Casper and Ansaldi, P. fiorii
Tammaro and Pace, and P. vulgaris s.l. (including also its central Italian endemic subspecies) is discussed.
Keywords: Emilia-Romagna, endemics, Italy, morphometrics, Pinguicula, Tuscany
In recent years, increasing efforts in the taxonomic
study of Italian vascular flora allowed the description of
several new taxa (e.g. Conti 2010;Ernandes et al.
2010;Troia & Raimondo 2010;Barberis & Nardi
2011;Nardi 2011;Peruzzi 2011;Peruzzi & Carta
2011;Peruzzi et al. 2011;Bacchetta et al. 2012;
Castellano et al. 2012;Cataldo et al. 2012;Marino
et al. 2012;Selvi & Sutory
´2012), including Pinguicula
(Conti & Peruzzi 2006;Ansaldi & Casper 2009).
Pinguicula (butterworts) is the second most diverse
genus of the carnivorous family Lentibulariaceae, with
about 100 currently accepted species (Rodondi et al.
2010). A number of them were only recently
recognized, especially in consequence of taxonomic
studies in Central America (see literature cited in
Cieslak et al. 2005). Also in the Mediterranean area,
12 new taxa were described in the last 25 years
(Tammaro & Pace 1987;Romo et al. 1996;Zamora
et al. 1996;Casper & Steiger 2001;Conti & Peruzzi
2006;Ansaldi & Casper 2009;Yildirim et al. 2012).
The family Lentibulariaceae Richard, order
Lamiales Bromhead, has recently been proved to be
monophyletic (Jobson et al. 2003), as the whole
genus Pinguicula (Cieslak et al. 2005;Degtjareva
et al. 2006;Kondo & Shimai 2006;Shimai & Kondo
2007;Shimai et al. 2007). The latter authors
contributed much to explain also the phylogenetic
relationships within this genus, showing that many of
the infrageneric taxa recognized by Casper (1966)
are poly- or para-phyletic. Recently, Degtjareva et al.
(2004) provided useful new taxonomic information
on seed morpho-anatomy, Rodondi et al. (2010)
studied pollen morphology in detail, while Peruzzi
(2004) and Casper and Stimper (2009) summarized
the karyological knowledge of this genus.
At present, 12 species are listed for Italy (Conti &
Peruzzi 2006;Pascal et al. 2008;Ansaldi & Casper
2009;Compostella et al. 2010). P. alpina L., P. arvetii
Auct. Fl. Ital. (non Genty), P. grandiflora Lam.,
P. leptoceras Rchb. and P. p o l d i n i i Casper and Steiger, are
all limited or endemic (the latter) to the Italian Alps;
P. reichenbachiana Schindler, occurs in central-western
Liguria; P. apuana Casper and Ansaldi and P. m a r i a e
Casper, are both endemic to Apuan Alps (Tuscany),
P. fiorii Tammaro and Pace and P. vallis-regiae F. Conti
and Peruzzi, are both endemic to Abruzzo, P. hirtiflora
Ten., occurs onlyin Campania and Calabria (Southern
Italy). The latter species is also the only one
overwintering as a rosette (tropical growth-type) in
Italy (Peruzzi et al. 2004). Besides them, the species
with the widest distribution range in Italy is P. vulgaris
L., occurring in Alps throughout the peninsula up to
Central Italy (see Conti & Peruzzi 2006 for further
information on endemic subspecies at its Italian
southern limit of distribution). In this picture, a still
unsolved problem is represented by the identity of the
q2013 Societa
`Botanica Italiana
Correspondence: L. Peruzzi, Dipartimento di Biologia, Unita
`di Botanica, Universita
`di Pisa, via Luca Ghini 5, 56126 Pisa, Italy. Tel: þ39 (0)502211339.
Fax: þ39 (0)502211309. Email:
Plant Biosystems, 2013
Vol. 147, No. 3, 692–703,
Downloaded by [Universita Di Pisa] at 06:54 29 October 2013
butterworts from Northern Apennine (see also Peruzzi
2005,2007a): they were reported as P. leptoceras by
Casper (1966) and Pignatti (1982),asP. vulgaris by
Alessandrini et al. (2003) and Conti et al. (2005) and
finally as P. cfr. vulgaris by Casper and Stimper (2006,
2009). While P. l e p t o c e r a s Rchb. is always tetraploid
with 2n¼32 chromosomes (Casper 1966;Casper &
Stimper 2009), P. vulgaris L. is octoploid with 2n¼64
(Casper 1966;Caparelli et al. 2008;Casper & Stimper
2009). Northern Apennine plants resulted 8x(rarely
also 16x;Casper & Stimper 2006), but at first sight
looked somehow different from the typical P. vulgaris
and its known subspecies.
For this reason, we carried out a taxonomical
study of Northern Apennine butterworts, by means
of macro- and micromorphology, aiming (a) to verify
the identity of the plants and (b) to investigate their
taxonomic relationships.
Materials and methods
Plant general morphology
General observations (tens of individuals for each
studied population) were carried out on (a) growth
type, (b) rosette type, and (c) colouring patterns of
the corolla and indicative opening angles between
upper and lower lip. Moreover, we studied on 15–20
individuals for each studied APPEN population
(Table I): (a) shape, length and width of leaves;
(b) scape size; and (c) shape and length of capsule.
Floral morphometr y
Floral morphometry was studied by measuring in the
field 10 quantitative continuous floral characters on
1520 individuals from each considered population
(Ta b l e I ): (a) corolla length; (b) spur length;
(c) upper lobes length; (d) upper lobes width; (e)
lower lip central lobe length; (f) lower lip central lobe
width; (g) lower lip lateral lobes length; (h) lower lip
lateral lobes width; (i) calyx upper lip length; and (j)
calyx lower lip length. Floral morphometric data
about Northern Apennine Pinguicula were compared
with those of other apparently close octoploid taxa
(P. apuana,P. fiorii,P. vulgaris s.l.; see Ansaldi &
Casper 2009;Casper & Stimper 2009). The data
about P. fiorii and P. vulgaris s.l. (a total of 8– 64
individuals, respectively) were derived from Conti
and Peruzzi (2006), while those about P. apuana
(32 individuals) are original. The sampling of
Table I. Sampled populations of Pinguicula from Northern Apennine (APPEN) and other octoploid similar taxa.
Locality Habitat Substrate Elevation Coordinates (m a.s.l.)
Northern Apennine:
Val di Luce stream siliceous 1510 448070N108370E
Val di Luce bog siliceous 1620 448070N108380E
Foce di Campolino bog siliceous 1600 448070N108390E
Verginetta (Abetone) stream siliceous 1500–1700 448090N108400E
Lama Rossa bog siliceous 1460 448130N108220E
P. apuana (APU)
Apuan Alps:
Carcaraia meadow limestone 1710 448060N108160E
Pania della Croce/Omo Morto meadow limestone 1450 1500 448020N108190E
Acquasparta meadow limestone 1100 448060N108060E
Lago Trombacco lake limestone 310 448020N108230E
Lago di Vagli lake limestone 550 448070N108140E
Foce di Pianza meadow limestone 1350 448070N108080E
Forno cliffs limestone 190 448040N108100E
Tre Fiumi cliffs limestone 800 448030N108160E
P. fiorii (FIO)
Scrimacavallo cliffs limestone 2010–2040 428080N148070E
P. vulgaris (VULG)
Central Apennine:
[subsp. anzalonei ]
Piscicarello di Jenne cliffs limestone 495 418530N138080E
[subsp. ernica ]
Zompo Lo Schioppo cliffs limestone 730 418500N138240E
[suvsp. vestina]
Valle del Rio Arno bog limestone 1140 428300N138320E
Vado di Corno/Valle dell’Inferno cliffs limestone 1730 428270N138350E
[subsp. vulgaris ]
Fosso dell’Acero stream siliceous 1643 428350N138240E
A new species of Pinguicula 693
Downloaded by [Universita Di Pisa] at 06:54 29 October 2013
P. vulgaris – a Circumboreal element – is certainly
limited in representativeness of the species, but
includes a central Italian population referred to
typical P. vulgaris and also populations from all the
three subspecies endemic to central Italy (Conti &
Peruzzi 2006)(Table I). Moreover, the obtained
morphological data are fully congruent with the
general description of the species provided by Casper
The variables were processed singularly by means
of Kruskal Wallis test comparing the same variable
among the four-considered species (N¼187, df
¼3) and t-test for independent samples comparing
the same variable among pairs of species (APPEN vs.
APU; APPEN vs. FIO; APPEN vs. VULG). Scatter
plots for selected pairs of variables and boxplots
expressing the variability of each character were
made. For morphometric multivariate analysis, we
considered simultaneously the 10 characters, and the
resulting data matrix (187 cases £10 characters) was
subjected to principal coordinate analysis (PCoA) by
using Euclidean distance as coefficient with no
standardization of data (data standardization by
range of variables or by standard deviation of variables
gave results identical to those here presented).
Seed morphology and anatomy
Seed general morphology was studied with binocular
lens on 10 seeds from each APPEN sample (Table I).
The following characters were considered: (a) total
length; (b) maximum width; (c) length of mycropilar
appendage; (d) ratio micropylar seed appendage/
seed length; and (e) presence/absence of chalazal end
Cross and longitudinal sections were made by
hand razor and mounted in glycerine. The following
characters were considered: cotyledon features
(number, symmetry, type of aestivation).
Besides, four seeds from each sample were
studied with SEM. For SEM studies, the material
was coated by a gold thin layer, then observed and
photographed at 10 kV. The following further
characters were considered: exotesta cells features
(number, shape, size).
Plant general morphology
All the investigated plants from the five APPEN
populations represent the same biological unit and
clearly belong to Pinguicula sect. Pinguicula, sharing
several features such as temperate growth type
(overwintering as hibernaculum), homophyllous
rosettes (spring and summer leaves similar in shape
and dimensions), five to nine ovate to obovate-
oblong-triangular leaves, scapes and capsules of
comparable shape and size. For what concerns corolla
features, Northern Apennine plants are marked by a
peculiar combination of colouring patterns and
opening angles (Figure 1): blue-violet corolla with
irregular central white spot with white hairs near the
throat, often well open (opening angle (45)608
1208), lower lip with lobes not overlapping and the
median one often distinctly bending downwards in
the front part.
Floral morphometr y
Plant from Northern Apennine (APPEN) showed
relatively large corollas, whose length resulted
intermediate among those of P. apuana (APU)/P.
fiorii (FIO) and P. vulgaris (VULG) (Figure 2A).
These differences resulted statistically significant
(Kruskal Wallis ¼46.893, p,0.001). Concerning
the spur length, APPEN plants are very variable, but
with values generally higher than VULG (Figure 2B).
Also the differences in spur length resulted statisti-
cally significant among all the units (Kruskal– Wallis
¼51.080, p,0.001). Calyx dimensions are the
smallest in APPEN, compared with others (Figures
2CD; KruskalWallis ¼41.160, p,0.001 for
Figure 1. Pinguicula christinae sp. nov. Front view of flower (A); lateral view of flower (B); front view of calyx (C) and capsule (D).
L. Peruzzi and G. Gestri694
Downloaded by [Universita Di Pisa] at 06:54 29 October 2013
upper lobe; 82.173, p,0.001 for lower lobe). The
dimensions of the upper corolla lobes are more
similar, but statistically different, among APPEN,
APU and FIO (Figures 3A B;Kruskal
Wallis ¼121.976, p,0.001 for length; 79.212,
p,0.001 for width). Lateral corolla lobes are the
smallest in APPEN compared with others (Figures
3CD; KruskalWallis ¼114.409, p,0.001 for
length; 116.781, p,0.001 for width), while median
corolla lobe dimensions are similar among APPEN
and VULG, but still statistically different (Figures
3EF; KruskalWallis ¼80.596, p,0.001 for
length; 92.402, p,0.001 for width).
All these floral features taken together allow a
clear morphological discrimination of Apennine
plants from other considered species, as can be
seen by PCoA analysis (Figure 4).
Concerning the t-test comparison of characters
for pairs of systematic units, APPEN is distinct from
APU in having smaller calyces and corollas, with
smaller central and lateral lobes (Table II). APPEN is
also distinct from FIO in having again smaller
calyces, central and lateral corolla lobes and shorter
upper lobe of corolla (Table III). Finally, APPEN is
distinct from VULG in having larger corollas and
spur but with narrower corolla central lobe and
smaller corolla lateral lobes and calyces (Table IV).
The separation of APPEN respect with other
systematic units is further confirmed by plotting just
pairs of the most relevant characters against each other
(Figure 5). Indeed, APPEN has no overlap with others
when the following characters are considered: corolla
lower lip median lobe length against corolla median
lobe width (for comparison with APU; Figure 5A);
corolla lower lip lateral lobes width against corolla
lower lip lateral lobes length (for comparison with FIO;
Figure 5B); and corolla upper lip lobes length against
corolla lower lip lateral lobes length are considered (for
comparison with VULG; Figure 5C).
Seed morphology, anatomy and morphometry
Seed general morphology resulted the same for all
the studied APPEN populations, albeit no significant
morphological variation was noticed either at within-
population or within-individual level (data not
shown). Seeds are minute, like sawdust, with
reticulate surface, elliptic; their length ranges
Figure 2. Boxplots illustrating the variability, in the studied units, of corolla length (A), spur length (B), calyx upper lobes length (C) and
calyx lower lobes length (D). Values are expressed in mm. The outlined central box depicts the middle 50% of the data extending from upper
to lower quartile; the horizontal bar is at the median. The ends of the vertical lines (or “whiskers”) indicate the minimum and maximum data
values, unless outliers are present in which case the whiskers extend to a maximum of 1.5 times the inter-quartile range. Superimposed grey
areas indicate confidence interval bounds around its median (median ^1.58 times the inter-quartile range). Circles indicate outliers, unless
extreme outliers are present in which case the circles extend to a maximum of three times the inter-quartile range and the extreme outliers are
indicated as asterisks.
A new species of Pinguicula 695
Downloaded by [Universita Di Pisa] at 06:54 29 October 2013
between 658 and 804 mm and their width between
202 and 342 mm. The ratio micropylar seed
appendage/seed length ranges between 0.11 and
0.15. The number of exotesta cells is 200 260, and
they resulted 55 – 90 mm long and 27–57 mm wide;
the depth of anticlinal walls of exotesta cells is 5
10 mm. SEM analysis of seeds also shows that all
populations share rounded-polygonal exotesta cells,
divided more or less evidently by a furrow (Figure 6).
No chalazal end appendage was evidenced. All the
investigated populations have only one plicate
cotyledon, slightly asymmetric in section.
According to our results, APPEN has a peculiar
combination of characters, which allow a clear
circumscription of this unit respect with P. apuana
(APU), P. fiorii (FIO) and P. vulgaris (VULG), even
considering biometric floral features only. In par-
ticular, a smaller lower lip of corolla marks a clear-cut
distinction with P. apuana and P. fiorii (the latter
shows also a shorter upper lip of corolla). APPEN is
also clearly distinct from P. vulgaris s.l. (including the
endemic central Italian subspecies) for the longer
and wider upper lip of corolla, which has also shorter
and narrower lateral lobes in the lower lip, together
with a tendency to have longer spurs. Also the
generally well open flowers are a distinctive feature
respect with P. v u l g a r i s with the exception of
P. vulgaris subsp. anzalonei Peruzzi and F. Conti
(endemic to Latium), which however shows bio-
metric floral features falling completely within the
variability of P. vulgaris s.l. (Conti & Peruzzi 2006). It
Figure 3. Boxplots illustrating the variability, in the studied units, of corolla upper lobes length (A) and width (B); corolla lateral lobes length
(C) and width (D); corolla median lobe length (E) and width (F). Values are expressed in mm (see Figure 2 for more explications).
L. Peruzzi and G. Gestri696
Downloaded by [Universita Di Pisa] at 06:54 29 October 2013
must be noticed that some extreme individual in
APPEN populations may occasionally show, at first
sight, a P. vulgaris-like appearance (i.e. less open
corolla), but when the flower parts are measured a
safe attribution to APPEN is always possible.
The seed features obtained for APPEN are those
typical of other octoploid taxa of Pinguicula sect.
Pinguicula (Conti & Peruzzi 2006;Ansaldi & Casper
2009), and are therefore not useful as taxonomic
markers in this case.
Other species of sect. Pinguicula, which show
some resemblance with APPEN, are the Alpine
endemic P. leptoceras and the Balkan endemic
P. balcanica Casper. However, both species are
tetraploid (2n¼32) and easily distinct from
APPEN by some morphological features: corolla
lower lip with overlapping lobes and larger capsules,
the former (Casper 1966), corolla upper lip with
overlapping lobes, larger lateral lobes of corolla lower
lip, the latter (Casper 1966;Peruzzi 2007b).
The systematic unit from Northern Apennines
(APPEN), as circumscribed in our study, certainly
deserves taxonomic recognition and – at the present
state of knowledge the specific status seems the
most appropriate, by considering the allopatric
occurrence of all the studied units and the peculiar
Table II. Mean differences between APPEN and APU popu-
lations, according to t-test. Those characters with df ¼113 were
assumed with equal variances (after Levene statistics); the others
were not assumed with equal variances. Significant differences are
evidenced in bold.
tdf p
Corolla length 23.669 113 0.000 22.806
Spur length 0.190 113 0.850 0.406
Upper lobes length 0.868 113 0.387 0.208
Upper lobes width 20.832 113 0.407 20.139
Central lobe length 28.157 33.158 0.000 23.945
Central lobe width 211.159 35.279 0.000 23.241
Lateral lobes length 213.864 45.970 0.000 22.447
Lateral lobes width 210.822 37.844 0.000 22.128
Calyx upper lip length 25.848 40.018 0.000 21.491
Calyx lower lip length 26.525 34.866 0.000 21.532
Table III. Mean differences between APPEN and FIO popu-
lations, according to t-test. Those characters with df ¼89 were
assumed with equal variances (after Levene statistics); the others
were not assumed with equal variances. Significant differences are
evidenced in bold.
tDf p
Corolla length 21.446 89 0.152 21.906
Spur length 1.473 89 0.144 1.108
Upper lobes length 5.810 89 0.000 2.174
Upper lobes width 0.438 89 0.662 1.293
Central lobe length 26.370 89 0.000 21.857
Central lobe width 25.538 89 0.000 21.342
Lateral lobes length 217.245 89 0.000 24.663
Lateral lobes width 29.681 7.413 0.000 23.525
Calyx upper lip length 23.598 89 0.001 21.070
Calyx lower lip length 25.801 89 0.000 21.094
Figure 4. Scatter plot of first two principal coordinate axes, expressing the 65.5% of the variability, based on PCoA of all the 10 quantitative
morphological characters considered for the flowers. Coloured areas unit individuals belonging to the same species/unit.
A new species of Pinguicula 697
Downloaded by [Universita Di Pisa] at 06:54 29 October 2013
and unique morphological features of APPEN.
Therefore, it is described as a species new to science.
However, a molecular phylogeny of all the involved
taxa would be desirable to clarify the origin of
APPEN in relation with related units (especially
P. vulgaris and its subspecies). Moreover, a hybrid
(either homoploid or allopolyploid) origin for
APPEN cannot be ruled out. This could
have involved P. vulgaris and a further octoploid
species (i.e. homoploid hybrid speciation) or a pair of
tetraploid taxa (i.e. allopolyploid hybrid speciation).
Hence, Italy is doubtlessly a European diversity
hotspot for butterworts, hosting at present a total of
16 taxa, 9 of them endemic. The larger Iberian and
Balkan peninsulae host only 9 taxa, 5 of them
endemic (Blanca et al. 1999;Blanca 2001) and
3 taxa, 2 of them endemic (Casper 1966;Shuka et al.
2007), respectively.
Interestingly, there are other species narrow
endemic to Northern Apennine (Peruzzi et al.
2012): Festuca riccerii Foggi and Rossi (Poaceae;
Foggi & Rossi 1996), Hieracium boreoapenninum
Gottschlich, H. faucis-jovis Gottschlich, H.
lanudae Gottschlich, H. umbrosoides Gottschlich
(Asteraceae; Gottschlich 2009), Primula apennina
Widmer (Primulaceae; Crema et al. 2009;Fisogni
et al. 2011), Taraxacum aemilianum Foggi and Ricceri
(Asteraceae; Foggi & Ricceri 1991)andMurbeckiella
zanonii (Ball) Rothm. (Brassicaceae), albeit the latter
Table IV. Mean differences between APPEN and VULG
populations, according to t-test. Those characters with df ¼145
were assumed with equal variances (after Levene statistics); the
others were not assumed with equal variances. Significant
differences are evidenced in bold.
tdf p
Corolla length 3.772 122.587 0.000 1.726
Spur length 7.054 104.139 0.000 1.741
Upper lobes length 16.021 145 0.000 2.602
Upper lobes width 10.136 143.785 0.000 1.281
Central lobe length 2.038 108.055 0.044 0.342
Central lobe width 24.733 145 0.000 20.519
Lateral lobes length 210.535 102.436 0.000 21.621
Lateral lobes width 210.800 102.547 0.000 21.331
Calyx upper lip length 24.428 142.708 0.000 20.559
Calyx lower lip length 28.367 119.073 0.000 20.816
0.00 2.00 4.00 6.00
Corolla bottom lip median lobe length (mm)
Corolla lower lip lateral lobes width (mm)
8.00 10.00 12.00 14.00 16.00 18.00
0.00 1.00 2.00 3.00
Corolla bottom lip lateral lobes width (mm)
Corolla lower lip lateral lobes length (mm)
4.00 5.00 6.00 7.00 8.00 9.00
0.00 2.00
Corolla upper lip lobes len
th (mm)
Corolla lower lip lateral lobes length (mm)
4.00 6.00 8.00 10.00 12.00
Figure 5. Scatter plots of measured individuals, against selected pairs of variables. A: APPEN (N¼83) and APU (N¼32), corolla lower lip
median lobe length (mm) (xaxis) plotted against corolla median lobe width (mm) (yaxis). B: APPEN (N¼83) and FIO (N¼8), corolla
lower lip lateral lobes width (mm) (xaxis) plotted against corolla lower lip lateral lobes length (mm) (yaxis). C: APPEN (N¼83) and VULG
(N¼64), corolla upper lip lobes length (mm) (xaxis) plotted against corolla lower lip lateral lobes length (mm) (yaxis).
L. Peruzzi and G. Gestri698
Downloaded by [Universita Di Pisa] at 06:54 29 October 2013
species was also recently recorded from France (J.-
M. Tison in litt.). A number of other taxa are
endemic of Northern Apennine and neighbouring
Apuan Alps: Armeria marginata (Levier) Bianchini
(Plumbaginaceae), Cirsium bertolonii Spreng. (Aster-
aceae; Zanotti & Cristofolini 1985), Festuca violacea
Schleich. ex Gaudin. subsp. puccinellii Foggi, Rossi
and Signorini (Poaceae; Foggi et al. 1999), Globu-
laria incanescens Viv. (Plantaginaceae), Leontodon
anomalus Ball (Asteraceae), Moltkia suffruticosa (L.)
Brand subsp. bigazziana Peruzzi and Soldano
(Boraginaceae), Pinguicula mariae Casper (Lentibu-
lariaceae), Polygala carueliana (Benn.) Burnat (Poly-
galaceae), Rhamnus glaucophylla Sommier
(Rhamnaceae; Bedini et al. 2011), Rhinanthus
apuanus Soldano (Orobanchaceae), Thesium som-
mieri Hendrych (Thesiaceae) and Viola ferrarinii
Moraldo and Ricceri (Violaceae; Moraldo et al.
2011). This accounts for a great biogeographic and
evolutionary relevance of this area.
Description of the new species
P. christinae Peruzzi and Gestri sp. nov. (Figure 1).
Planta (29)64150(200) mm alta. Rosula homo-
phylla; folia (16)2050(75) mm longa. Corolla saepe
ampliata, (45)6081208angulo aperturae, violaceo-
caerulea, centro saepe albo, (15)19 25.9(31) mm
longa; lobis labii inferi oblongis, inter se non tegentis;
lobis lateralis labii inferioris (2)2.1 3.9(4) mm latis
et 35(6) mm longis, lobis labii superioris (3)4 6(7)
mm latis et (4)57(10) mm longis, calcar (3)59.9
(13) mm longum; labium superior calycis triparti-
tum; lobis labii superi elliptico-triangularibus; Cap-
sula ovoidea.
Foce di Campolino (province of Pistoia), bog on
siliceous substrate, 1600 m a.s.l., 4 July 2011,
L. Peruzzi et G. Gestri (PI).
Val di Luce (province of Pistoia), along a stream on
siliceous substrate, 1510 m a.s.l., 13 June 2010,
G. Gestri (PI); Val di Luce (province of Pistoia),
along a stream on siliceous substrate, 1620 m a.s.l.,
13 June 2010, G. Gestri (PI); Lama Rossa (province
of Lucca), bog on siliceous substrate, 1460 m a.s.l., 2
June 2011, G. Gestri (PI); Verginetta (Abetone),
province of Pistoia, along a stream on siliceous
substrate, 1500 m a.s.l., 5 June 2011, G. Gestri (PI);
Verginetta (Abetone), province of Pistoia, along a
stream on siliceous substrate, 1550 –1700 m a.s.l., 17
July 2011, G. Gestri (PI).
Herb perennial, small, rosette forming, scapose,
succulent. Stem short, with ascending, not branch-
ing rhizome and numerous adventitious fibrous
roots. Rosettes with few, 57(9) leaves lying more
or less flat on the ground, homophyllous. Over-
wintering as buds (hibernacula). Leaves in outline
obovate-oblong-triangular, (16)20–50(75) mm
long, (10)11 20(30) mm broad. The margin entire,
Figure 6. P. christinae sp. nov., examples of variability in seed shape and structure, by means of SEM microphotographs of seeds (general view
and particular of exotesta cells): Foce di Campolino population (A B); Lama Rossa population (C–D).
A new species of Pinguicula 699
Downloaded by [Universita Di Pisa] at 06:54 29 October 2013
slightly incurved; brittle; the upper surface densely
covered with mucilaginous sessile and stalked glands.
Scapes 13, erect, (29)64150(200) mm tall, terete,
1-flowered, directly beneath the flower densely
covered with stipitate glands, to the base sparsely
glandular. Flowers relatively large, (15)19 25.9(31)
mm long (spur included). Calyx distinctly bilabiate,
densely covered on both surfaces and the margins
Figure 7. Pinguicula christinae sp. nov. Map, with 10 £10 Km UTM grid, showing the geographic distribution of the new species.
L. Peruzzi and G. Gestri700
Downloaded by [Universita Di Pisa] at 06:54 29 October 2013
with stipitate glands, 2.5 – 7.5 mm in total diameter,
upper lip divided nearly to 1/2 2/3 into 3 lobes
elliptic triangular, the central one sometimes bifid;
lower lip divided to 1/2 into 2 short lobes, sometimes
irregular. Throat relatively densely covered with
white clavate hairs. Spur slightly curved downwards,
thin, (3)5 9.9(13) mm long. Corolla distinctly
bilabiate, blue-violet, white at the centre, at the
throat white, spur blue-violet; upper lip with two
nearly identical lobes not overlapping, (4)5 7(10)
mm long and (3)4 6(7) mm broad, erect to patent,
apex subtruncate-rounded to slightly emarginate;
lower lip much larger than the upper lip, with three
lobes not overlapping, the middle lobe distinctly
longer and broader than the lateral lobes, apex
rounded to slightly truncate, front part of the median
lobe often distinctly bending downwards: the whole
corolla appears often well open [opening angle (45)
6081208]. Capsule ovoid-conical, (3)46(7) mm
long, 2 4(4.5) mm in diameter, 1-loculate. Seeds
minute, like sawdust, with reticulate surface, elliptic,
658 –804 mm long, 202 –342 mm wide. Ratio micro-
pylar seed appendage/seed length: 0.11 0.15. Num-
ber of exotesta cells 200260, exotesta cells 55
90 mm long, 27 –57 mm wide; depth of anticlinal
walls of exotesta cells 5 – 10 mm. Cotyledon 1, plicate,
asymmetric. Pollen spheroidal, 4 6 colporate, 25
33 mm. Flowering VVI; fruiting VII VIII.
The name of this delicate species is dedicated to
Cristina Gavazzi, wife of one of the authors (GG)
and native from Northern Apennines, too.
Marshes, bogs and humid grasslands, from 1000 to
1800 m a.s.l., on siliceous substrates.
The populations from Lama Rossa and Verginetta
(also studied morphologically here) were checked
concerning chromosome number by Casper and
Stimper (2006; see also the website “”,
Bedini et al. 2012). They resulted as 8xwith 2n¼64
and 16xwith 2n¼128 chromosomes, respectively.
The new species is presently known only for Northern
Apennine (Figure 7), in both Tuscany (provinces of
Lucca and Pistoia) and Emilia-Romagna (provinces of
Parma, Reggio Emilia, Modena and Bologna). As far as
we are aware, this is the only butterwort species
occurring at high altitudes in Northern Apennine. On
the contrary, at lower altitude, on limestone cliffs
(Orrido di Botri gorges, Tuscany, province of Lucca),
also the morphologically and karyologically distant P.
mariae Casper occurs. The populations from Ligurian
Apennines (about 80km far from the known range of P.
christinae) will need further studies to clarify their
identity, and could pertain to the new species.
Presently, P. v u l g a r i s (subsp. vulgaris) is recorded with
reasonable certainty only for Alps and Central
Identification key for Italian octoploid species of
Pinguicula sect. Pinguicula.*See Conti and Peruzzi
(2006) for further criteria aimed for identifying the
subspecies of P. vulgaris.
1. Corolla opening angle 308–808....................... 2.
1. Corolla opening angle $908........................... 3.
2. Corolla upper lip $5 mm in length, with lateral
lobes #6 mm in length. .......................P. christinae
2. Corolla upper lip ,5 mm in length or, if above
5 mm, with lateral lobes .6 mm in length .......... 4.
3. Corolla uniformly blue-violet, generally with no
white spots (just showing whitish throat), lateral
lobes generally .7 mm in length ................. P. fiorii
3. Corolla with coloration pattern not as above, with
lateral lobes #7 mm in length ............................ 5.
4. Ratio of corolla lateral/upper lip length .1...
P. vulgaris s.l.*
4. Ratio of corolla lateral/upper lip
length #1......................... P. c h r i s t i n a e
5. Corolla with a white V-shaped dot, surrounded of
deeper blue-violet on median lower lip, with
upper lip #4 mm in length . ......... P. vulgaris
(subsp. anzalonei)
5. Corolla with coloration pattern not as above, with
upper lip $4.5 mm ........... ................................. 6.
6. Corolla with lower lip lateral lobes $4 mm wide; if
4 mm, median lobe .6mm.......... P. apuana
6. Corolla with lower lip lateral lobes #4 mm wide; if
4 mm, median lobe #6mm.........P. christinae
The authors wish to thank Maria Ansaldi (University
of Pisa) for collecting the data about P. apuana,
Andrea Vitali for logistic facilities and three
anonymous referees for the significant improvement
of an earlier version of the manuscript. Financial
funding (EX60%) from the University of Pisa is
gratefully acknowledged.
Alessandrini A, Foggi B, Rossi G. 2003. La flora d’altitudine
dell’Appennino tosco-emiliano. Regione Emilia-Romagna.
A new species of Pinguicula 701
Downloaded by [Universita Di Pisa] at 06:54 29 October 2013
Ansaldi M, Casper SJ. 2009. Pinguicula mariae Casper nova spec.
and Pinguicula apuana Casper et Ansaldi nova spec.- A
contribution to the occurrence of the genus Pinguicula L.
(Lentibulariaceae) in the Apuan Alps (Italy). Wulfenia 16:
Bacchetta G, Brullo S, Congiu A, Fenu G, Garrido JL, Mattana E.
2012. A new species of Aquilegia (Ranunculaceae) from
Sardinia (Italy). Phytotaxa 56: 59–64.
Barberis G, Nardi E. 2011. De Aquilegiae L. specie nova in
Appennino Ligustico crescente. Webbia 66(2): 233 234.
Bedini G, Carta A, Zecca G, Grassi F, Casazza G, Minuto L.
2011. Genetic structure of Rhamnus glaucophylla Sommier
endemic to Tuscany. Pl Syst Evol 294(3– 4): 273 –280.
Bedini G, Garbari F, Peruzzi L. 2012. Karyological knowledge of
the Italian vascular flora as inferred by the analysis of
“”. Pl Biosystems 146: 889–899.
Blanca G, Ruı
´z-Rejon M, Zamora R. 1999. Taxonomic revision of
the genus Pinguicula L. in the Iberian peninsula. Folia Geobot
34: 337– 361.
Blanca G, et al. 2001. Pinguicula L. In: Paiva J, Sales F, Hedge IC,
Aedo C, Aldasoro JJ, Castroviejo S, editors. Flora Iberica. Real
´n Botanico. 14. Madrid: CSIC. pp. 81–96.
Caparelli KF, Conti F, Peruzzi L. 2008. Reports. In: Kamari G,
´C, Garbari F, editors. Mediterranean chromosome
number reports 18. Flora Medit 18: 594 –595.
Casper SJ. 1966. Monographie der Gattung Pinguicula L. Biblioth
Bot 127/128: 1–209.
Casper SJ, Steiger J. 2001. A new Pinguicula (Lentibulariaceae)
from the pre-alpine region of Northern Italy (Friuli-Venezia
Giulia): Pinguicula poldinii Steiger et Casper spec. nov.
Wulfenia 8: 27– 37.
Casper SJ, Stimper R. 2006. New and revised chromosome
numbers in Pinguicula (Lentibulariaceae). Haussknechtia 11:
Casper SJ, Stimper R. 2009. Chromosome numbers in Pinguicula
(Lentibulariaceae): survey, atlas, and taxonomic conclusions.
Pl Syst Evol 277: 21–60.
Castellano G, Marino P, Raimondo FM, Spadaro V. 2012. Sorbus
busambarensis (Rosaceae), a new endemic species from Sicily.
Pl Biosystems 146: 338–344.
Cataldo D, Giardina SA, Moraldo B, Raimondo FM. 2012. Stipa
valdemonensis (Poaceae), a new species from Sicily. Pl
Biosystems 146: 658–663.
Cieslak T, Polepall JS, White A, Mu
¨ller K, Borsch T, Barthlott W,
et al. 2005. Phylogenetic analysis of Pinguicula (Lentibular-
iaceae): Chloroplast DNA sequences and morphology support
several geographically distinct radiations. Amer J Bot 92(10):
1723– 1736.
Compostella C, Beretta M, Caccianiga M. 2010. Pinguicula
grandiflora Lam. (Lentibulariaceae), specie nuova per la flora
italiana. Inform Bot Ital 42(1): 63 –66.
Conti F. 2010. A new species of Lathyrus L. (Fabaceae) from
Central Apennine (Italy). Pl Biosystems 144(4): 814 –818.
Conti F, Peruzzi L. 2006. Pinguicula (Lentibulariaceae) in central
Italy: Taxonomic study. Ann Bot Fennici 43: 321– 337.
Conti F, Abbate G, Alessandrini A, Blasi C, editors. 2005. An
annotated checklist of the Italian vascular flora. Roma: Palombi
Crema S, Cristofolini G, Rossi M, Conte L. 2009. High genetic
diversity detected in the endemic Primula apennina
Widmer (Primulaceae) using ISSR fingerprinting. Pl Syst
Evol 280(1– 2): 29 –36.
Degtjareva GV, Casper SJ, Hellwig F, Sokoloff D. 2004. Seed
morphology in the genus Pinguicula (Lentibulariaceae) and its
relation to taxonomy and phylogeny. Bot Jahrb Syst 125:
431– 452.
Degtjareva GV, Casper SJ, Hellwig F, Schmidt AR, Steiger J,
Sokoloff DD. 2006. Morphology and nrITS phylogeny of the
genus Pinguicula L. (Lentibulariaceae), with special attention
to embryo evolution. Plant Biol 8: 778 790.
Ernandes P, Beccarisi L, Zuccarello V. 2010. A new species of
¨tes (Isoe¨taceae,_Pteridophyta) for the Mediterranean. Pl
Biosystems 144(4): 819–827.
Fisogni A, Cristofolini G, Podda L, Galloni M. 2011.
Reproductive ecology in the endemic Primula apennina
Widmer (Primulaceae). Pl Biosystems 145: 353–361.
Foggi B, Ricceri C. 1991. Una nuova specie di Taraxacum Weber
(Asteraceae) nell’Appennino Tosco-Emiliano. Webbia 46(1):
Foggi B, Rossi G. 1996. A survey of the genus Festuca L. (Poaceae)
in Italy. I. The species of the summit flora in the Tuscan-
Aemilian Apennines and Apuan Alps. Willdenowia 26(1 –2):
183– 215.
Foggi B, Rossi G, Signorini MA. 1999. The Festuca violacea
aggregate (Poaceae) in the Alps and Apennines (central-
southern Europe). Can J Bot 77: 989 1013.
Gottschlich G. 2009. New species of the genus Hieracium L.
(Compositae) from the Northern Apennine (Italy). Webbia 64
(2): 175–186.
Kondo K, Shimai H. 2006. Phylogenetic analysis of the Northern
Pinguicula (Lentibulariaceae) based on internal transcribed
spacer (ITS) sequence. Acta Phytotax Geobot 57: 155–164.
Jobson RW, Playford J, Cameron KM, Albert VA. 2003. Molecular
phylogenetics of Lentibulariaceae inferred from plastid rps16
intron and trn L-F DNA sequences: Implications for character
evolution and biogeography. Syst Bot 28: 157– 171.
Marino P, Castellano G, Raimondo FM, Spadaro V. 2012. Pyrus
ciancioi (Rosaceae), a new species from Sicily. Pl Biosystems
146(3): 654– 657.
Moraldo B, Ricceri C, Fiorini G, Demaria G. 2011. Viola ferrar inii
(Violaceae), a new species from the northern Apennines (Italy).
Webbia 66(1): 45 55.
Nardi E. 2011. Diagnoses aquilegiarum novarum in Europa
crescentium. Webbia 66(2): 231 232.
Pascal R, Garraud L, Varese P, Selvaggi A, Albis O. 2008.
Pinguicula arvetii Genty (Lentibulariaceae). In: Selvaggi A,
Soldano A, Pascale M, Pascal R, editors. Note floristiche
piemontesi n. 92–175. Riv Piem St Nat 29: 467 468.
Peruzzi L. 2004. Contribution to the cytotaxonomical knowledge
of the genus Pinguicula L. (Lentibulariaceae): A synthesis of
karyological data. Carniv Pl Newslett 33(4): 103 110.
Peruzzi L. 2005. Il genere Pinguicula L. (Lentibulariaceae) in
Italia: lo stato dell’arte. AIPC Magazine VIII(4): 4 15.
Peruzzi L. 2007a. Il genere Pinguicula L. (Lentibulariaceae) in
Italia, II. Recenti acquisizioni e problemi ancora aperti. AIPC
Magazine 6(2): 4–10.
Peruzzi L. 2007b. Some observations on Pinguicula balcanica
Casper and P. hirtiflora Ten. (Lentibulariaceae) from Balkans.
Carniv Pl Newslett 36(4): 100 –103.
Peruzzi L. 2011. A new species of Linum perenne group (Linaceae)
from Calabria (S Italy). Pl Biosystems 145: 938–944.
Peruzzi L, Bedini G, Andreucci A. 2011. Homoploid hybrid
speciation in Doronicum L. (Asteraceae)? Morphological,
karyological and molecular evidences. Pl Biosystems 146(4):
867– 877.
Peruzzi L, Carta A. 2011. Crocus ilvensis sp. nov. (sect. Crocus,
Iridaceae), endemic to Elba Island (Tuscan Archipelago, Italy).
Nord J Bot 29: 6–13.
Peruzzi L, Carta A, Bedini G. 2012. La flora vascolare endemica di
Toscana ed aree contermini: stato delle conoscenze floristiche,
biosistematiche, ecologiche e conservazionistiche. Codice
Armonico 2012: 138–147 (ETS, Pisa).
Peruzzi L, Passalacqua NG, Cesca G. 2004. Pinguicula crystallina
Sibth. et Smith subsp. hirtiflora (Ten.) Strid (Lentibulariaceae)
in Calabria (Southern Italy). Cytotaxonomical study and ex
L. Peruzzi and G. Gestri702
Downloaded by [Universita Di Pisa] at 06:54 29 October 2013
situ conservation in the Botanic Garden of Calabria University.
Carniv Pl Newslett 33(3): 68 –74.
Pignatti S. 1982. Flora d’Italia 2. Bologna: Edagricole.
Rodondi G, Beretta M, Andreis C. 2010. Pollen morphology of
alpine butterworts (Pinguicula L. Lentibulariaceae). Rev
Palaeobot Palynol 162(1): 1– 10.
Romo A, Peris JB, Stu
¨bing G. 1996. The genus Pinguicula
(Lentibulariaceae) in Morocco. Ann Bot Fennici 33: 29– 32.
Selvi F, Sutory
´K. 2012. A synopsis of the genus Cynoglossum
(Boraginaceae-Cynoglosseae) in Italy. Pl Biosystems 146(2):
461– 479.
Shimai H, Kondo K. 2007. Phylogenetic analysis of Central
American Pinguicula (Lentibulariaceae) based on internal
transcribed spacer (ITS) region. Chromosome Botany 2:
Shimai H, Masuda Y, Panfet Valde
´s CM, Kondo K. 2007.
Phylogenetic analysis of Cuban Pinguicula (Lentibulariaceae)
based on internal transcribed spacer (ITS) region. Chromo-
some Botany 2: 151– 158.
Shuka L, Xhulaj M, Kashta L, Casper SJ. 2007. The genus
Pinguicula L. (Lentibulariaceae) in Albania - a critical review.
Wulfenia 14: 15– 65.
Tammaro F, Pace L. 1987. Il genere Pinguicula L. (Lentibular-
iaceae) in Italia Centrale ed istituzione di una nuova specie P.
fiorii Tamm. et Pace. Inform Bot Ital 19: 429 436.
Troia A, Raimondo F. 2010. Isoe
¨tes todaroana (Isoe¨ taceae,
Lycopodiophyta), a new species from Sicily (Italy). Amer
Fern J 99(4): 238–243.
Yildirim H, Senol S, Pirhan AF. 2012. Pinguicula habilii
(Lentibulariaceae), a new carnivorous species from South-
West Anatolia, Turkey. Phytotaxa 64: 46 58.
Zamora R, Jamilena M, Ruı
´z-Rejon M, Blanca G. 1996. Two new
species of the carnivorous genus Pinguicula (Lentibulariaceae)
from Mediterranean habitats. Pl Syst Evol 200: 41– 60.
Zanotti AL, Cristofolini G. 1985. Studio sistematico e tipificazione
di Cirsium bertolonii Sprengel (Asteraceae). Giorn Bot Ital 119
(1–2): 27 36.
A new species of Pinguicula 703
Downloaded by [Universita Di Pisa] at 06:54 29 October 2013
... P. apuana, P. christinae P7 and P9, and P. fiorii P15-P17), clearly pointing out to a common origin. However, given the clear qualitative and quantitative combination of character-states that has been used to distinguish these taxa, coupled with allopatry [20,21,22], we deem reasonable to maintain them at species level. As a matter of fact, the discriminating resolution of ITS may not be enough within such level of variability. ...
... Both P. christinae and P. fiorii, show a certain morphological affinity with P. balcanica (endemic to Balkan Peninsula) (see [22,18], respectively). According to our results, such relationships can be excluded, given the position of P. balcanica in a completely different clade (E4, Fig 3), as sister to the heterophyllous (i.e. ...
... While P. longifolia subsp. reichenbachiana, endemic to few locations on the Maritime Alps in France and Italy, was already considered as a distinct species by several authors [1,20,21,22], this is not the case for P. longifolia subsp. caussensis. ...
Full-text available
The genus Pinguicula (Lentibulariaceae) consists of about 100 carnivorous species, also known as butterworts. Eleven taxa are endemic to Italy, which represents a biodiversity hotspot for butterworts in Europe. The aim of our study was to provide a phylogenetic framework for the Italian endemics, in order to: a) investigate the relationships between species in this group; b) evaluate their actual taxonomic value. To achieve this, we analysed all the taxa endemic to Italy, along with several other species, by means of ITS nrDNA analysis. Our results clarify the relationships between Italian endemics and other Pinguicula taxa identifying a basal polytomy defined by five clades. All of the Italian endemics (with the exception of P. lavalvae) fall within a single large clade, which includes P. vulgaris and allied species. Among them, P. poldinii represents the most isolated lineage. Other taxa show strong molecular similarities and form a single subclade, although their taxonomic ranks can be retained. Pinguicula lattanziae sp. nov., seemingly endemic to Liguria (NW Italy), is also described.
... Molte di queste ricerche riguardano il territorio toscano, in particolare aree di notevole biodiversità quali le Alpi Apuane, aree di rilevante significato fitogeografico come le zone umide, e territori poco indagati che possono rivelare una spiccata diversità floristica ( Amadei et al., 2013a). Ne sono esempio recente le raccolte condotte nella zona del Montalbano, tra le province di Firenze, Pistoia e Prato ( Gestri & Peruzzi, 2013). I campioni depositati nell'Erbario pisano, interessanti testimonianze di biodiversità, saranno disponibili per ulteriori studi e verifiche future da parte di qualunque studioso. ...
... Sci. Nat., Mem., Serie B, 116(2009) Peruzzi, 2004Peruzzi, , 2007Peruzzi & Carta, 2011;Melai et al., 2012;Peruzzi & Gestri, 2013 Sci., 4(1-2): 119-129. AMADEI L., BEDINI G., COCCHI L., MACCIONI S., PERUZZI L., VANGELISTI R., 2013a. ...
Full-text available
The Botanic Garden and Museum of the University of Pisa are research laboratories for some groups of researchers belonging to some Departments of the University. In this work, some of the latest surveys supported by the two Museums are reported
... Nevertheless, both contributions deserve to be updated because several new species, which had surprisingly remained undiscovered in many world places including Europe, were meanwhile described. In particular, several of these new entries in the genus were reported from Italy (Tammaro & Pace 1987, Casper & Steiger 2001, Conti & Peruzzi 2006, Ansaldi & Casper 2009, Peruzzi & Gestri 2013, Innangi & Izzo 2014, Bacchetta et al. 2014. Moreover, the list of species of Pinguicula occurring on the Italian mountains was recently enriched by Pinguicula arvetii Genty, which was not taken into account by Casper (1966Casper ( , 1972 and which was previously reported only from the French Alps by Aeschimann et al. (2004) and Legendre et al. (2014). ...
... Such unexpected results of the recent efforts in the taxonomic studies of the Italian members of Pinguicula can be explained considering that the new species are in most cases separated only by small differences in flower morphology from the closest species already known (see Conti & Peruzzi 2006, Peruzzi & Gestri 2013. It is enough for understanding why they remained so long undiscovered and, consequently, their habitat preferences, ecology and population dynamics are practically unknown. ...
Background and aims – The habitat conditions and population characteristics of the Italian members of the genus Pinguicula are presently still scarcely known. In this study we carried out a comparative research on two butterwort species occurring in the same mountain area, but very different in their distribution, the endemic of the western Alps Pinguicula arvetii and the circumboreal P. vulgaris. Methods – We sampled 36 stands of P. arvetii and 29 stands of P. vulgaris with squared plots of 0.25 m2. In each plot we collected data on geology, topography, hydrochemistry and soil, made a complete inventory of plant species, used for calculating the Ellenberg indicator values, and assessed population density and proportion of flowering individuals. Moreover, we calculated indices of size of vegetative and reproductive structures. We compared the environmental characteristics of sites occupied by the two target species and performed ordinations to assess differences in habitat conditions and to analyse the relationships between characteristics of the two butterworts along environmental gradients. Key results – The two butterworts showed significant differences in site elevation and in most of the ecological indicator values. Consistently, the analyses of species composition of stands revealed that the endemic P. arvetii occurred more commonly at higher-elevation habitats, characterized by a greater incidence of species typical of snowbeds, screes and sandy and skeletal poor grasslands. Individual and population characteristics differed in their position along the ordination axes, with a negative relationship between population density and proportion of flowering individual in both the Pinguicula species. Conclusions – The main environmental variable discriminating sites occupied by the two butterworts was the elevation. Growth and reproductive performances of the two Pinguicula species were influenced by site conditions, but environmental gradients differently affected individual and population characteristics of the two target species. © 2016 Botanic Garden Meise and Royal Botanical Society of Belgium.
... Furthermore, many taxa have been recently described for Italy as new to science (e.g. Bacchetta et al. 2012aBacchetta et al. , 2012bMelai et al. 2012;Peruzzi and Gestri 2013;Troìa and Azzella 2013;Peccenini and Polatschek 2014;Domina and Soldano 2015;Brullo et al. 2015b;Peccenini and Polatschek 2016;Conti and Bartolucci 2017). Therefore, there is a need of a new checklist to summarize the current state of the floristic and taxonomic knowledge of the Italian vascular flora. ...
An updated inventory of the vascular flora alien to Italy, providing details on the occurrence at regional level, is presented. The checklist includes 1,597 species, subspecies, and hybrids, distributed in 725 genera and 152 families; 2 taxa are lycophytes, 11 ferns and fern allies, 33 gymnosperms, and 1,551 angiosperms. 157 taxa are archaeophytes and 1,440 neophytes. The alien taxa currently established in Italy are 791 (570 naturalized and 221 invasive), while 705 taxa are casual aliens, 4 are not assessed, 7 are of unknown regional distribution, 47 have not been confirmed in recent times, 3 are considered extinct or possibly extinct in the country, and 40 are doubtfully occurring in Italy. This checklist allows to establish an up-to-date number (9,792) of taxa constituting the whole (native and alien) Italian flora.
... Furthermore, many taxa have been recently described for Italy as new to science (e.g. Bacchetta et al. 2012aBacchetta et al. , 2012bMelai et al. 2012;Peruzzi and Gestri 2013;Troìa and Azzella 2013;Peccenini and Polatschek 2014;Domina and Soldano 2015;Brullo et al. 2015b;Peccenini and Polatschek 2016;Conti and Bartolucci 2017). Therefore, there is a need of a new checklist to summarize the current state of the floristic and taxonomic knowledge of the Italian vascular flora. ...
Full-text available
An updated inventory of the native vascular flora of Italy, providing details on the occurrence at regional level, is presented. The checklist includes 8195 taxa (6417 species and 1778 subspecies), distributed in 1092 genera and 152 families; 23 taxa are lycophytes, 108 ferns and fern allies, 30 gymnosperms and 8034 angiosperms. The taxa currently occurring in Italy are 7483, while 568 taxa have not been confirmed in recent times, 99 are doubtfully occurring in the country and 19 are data deficient. Out of the 568 not confirmed taxa, 26 are considered extinct or possibly extinct.
... Floral morphometry was studied by measuring in the field ten quantitative continuous floral characters on 19 individuals from the studied population (P10, see Table 1 christinae and P. vulgaris s.l.). The data about the latter two species were derived from Peruzzi and Gestri [1]. ...
Full-text available
Work for the present thesis was focused on three main levels: 1. Collaboration in the implementation and updating of the database of the Flora of Italy, with the preparation of two checklists (native and alien vascular plants) which have been published in the first months of 2018 in two separate articles, of which I am co-author. Multivariate analysis of the data deriving from the two checklists, with special emphasis on the floristic differences among regions. 2. Collaboration in the creation of an online Portal to the Flora of Italy, which integrates the data of the two checklists and connects them with additional multimedia resources deriving from several databases of the Dryades Project (University of Trieste), and Acta Plantarum. 3. Analysis of data deriving from 3 interconnected databases: 1) The database of the Flora of Italy; 2) The database of the Flora of Friuli Venezia Giulia by L. Poldini; 3) The database of morphological traits of vascular plants of Project Dryades. The two national checklists include a total of 9792 infrageneric taxa (8195 native and 1597 alien), a number which is much higher than those of previous checklists and floras, with data on nomenclature, taxonomy, synonymy, and regional distribution (presence / absence, doubtful presence, presence not confirmed in recent times, no longer present / extinct, adventitious, naturalized, invasive, etc.). The multivariate analysis of the data related to autochthonous and alien plants at regional level was carried out separately for the two groups taxa, highlighting significant floristic differences among the different regions of Italy, which are correlated to different characteristics of the respective territories (surface area, environmental heterogeneity, altitudinal range, types and number of protected areas, climatic variables, land use, etc.). The Portal of the Flora of Italy allows to carry out queries on the flora of Italy and of the individual Italian regions. For each infrageneric taxon, a "taxon page" is provided, including all the resources deriving from the national checklists, and those deriving from different databases of the Dryades Project: scientific binomial, systematic position (following APG IV) and relative cladograms, regional distribution (with auto-generating maps) and current status, Italian vernacular names and digital images (often showing distinctive characters for identification), plus links to resources from ActaPlantarum. The third and last part of this thesis was devoted to the exploration of the potentialities offered by the achieved interoperability between the database of the Flora of Italy, the resources of Project Dryades, and those of the Database of the Flora of Friuli-Venezia Giulia by Poldini. We show different examples of datasets which is now possible to rapidly obtain from three main databases, including the ecological characterization of vegetation releves by ecological indices, the definition of “virtual habitats” defines by lists of species with a similar ecology, the analysis of complex matrices of ecological data and morphological traits. Such tests will be useful to enrich the future versions of the Portal to the flora of Italy with further data and further functionalities. The creation of the Portal of the Flora of Italy and its interoperability with the resources of the Dryades Project and those of Acta Plantarum are not only a point of arrival, but above all a starting point for future interesting developments. The data made public on the Portal of the Flora of Italy are only a small part of those that can be made searchable in future versions. Some of them are already present in the Flora of Italy Database for more than 80% of the species (biological forms, Ellenberg ecological indexes, flowering periods, altitudinal distribution), others may derive from local databases that can be integrated into the system (e.g. regional floristic databases, the Wikiplantbase Project, etc.), while a wealth of data concerning the morphological features of the species can already be found in the Dryades Project database. With this thesis I have contributed to laying the foundations for a future distributed database on the flora and vegetation of Italy, where data from the Portal to the Flora of Italy can act as a nucleus of crystallization for the aggregation of several other databases that at the moment are not public and/or are not able to communicate with each other.
Technical Report
Full-text available
Le concept de biodiversité, apparu à la fin des années 1980 (Wilson 1988), se définit comme la diversité biologique à différents niveaux d’organisation, des écosystèmes aux gènes. En raison des impacts anthropiques croissants, cette biodiversité décline de plus en plus rapidement. Aussi la conservation de la biodiversité et des services écosystémiques qu’elle engendre représente un enjeu majeur et une priorité à l’échelle planétaire, puisque l’on considère que la Terre est entrée dans l’ère de l’anthropocène (Steffen et al. 2011). Les moyens financiers et humains étant limités pour préserver la biodiversité, il est nécessaire de proposer des priorités de conservation bien hiérarchisées, aussi bien à l’échelle globale que régionale. À l’échelle globale, l’approche hotspot, probablement critiquable par certains aspects, demeure la plus utilisée. Actuellement, sur la base de la richesse en espèces et particulièrement en endémiques et des menaces anthropiques importantes, 35 hotspots de biodiversité terrestre mondiale ont été définis, dont celui du bassin méditerranéen (Médail & Myers 2004). Ce dernier a fait l’objet d’une analyse plus précise qui a permis de distinguer 10 hotspots régionaux (Médail & Quézel 1997 ; Véla & Benhouhou 2007). Parmi ceux-ci, les Alpes maritimes et ligures forment l'un des plus importants centres d’endémismes de l’arc alpin et du bassin méditerranéen (Médail & Verlaque 1997 ; Aeschimann et al. 2011 ; Noble & Diadema 2011a). Il est à noter que ce hotspot constitue également un refuge glaciaire majeur de l’arc alpin (Schönswetter et al. 2005) et l’un des 52 "refuges phylogéographiques" du bassin méditerranéen (Médail & Diadema 2009). Ces particularités biogéographiques expliquent les forts enjeux écologiques et les priorités de conservation que représentent bon nombre d'espèces endémiques des Alpes maritimes et ligures. Au-delà de son originalité, le département des Alpes-Maritimes présente une forte diversité, en hébergeant 60 % des plantes vasculaires françaises (Tison et al. 2014). Cependant, l'originalité et diversité de la flore vasculaire est fortement menacée par les impacts humains croissants qui affectent cette région très hautement peuplée (Médail & Diadema 2006 ; Diadema 2011). De même qu’il est nécessaire de hiérarchiser les zones principales de conservation, il faut hiérarchiser les priorités de conservation des espèces à une échelle régionale. Les critères principaux à prendre en compte sont la distribution mondiale, le nombre de populations et les menaces, en particulier l'urbanisation et la fragilité de l'habitat (Gauthier et al. 2010). Cette approche permet d’identifier les espèces les plus rares et les plus menacées. C’est le cas de certaines espèces endémiques qui occupent des aires géographiques très réduites et des habitats à plus fortes contraintes et moins productifs que ceux des espèces communes (Médail & Verlaque 1997 ; Lavergne et al. 2005). Celles-ci vont être souvent moins compétitives que des espèces communes et seront particulièrement sensibles aux modifications de leur environnement, même s’il est à noter que les espèces endémiques méditerranéennes ont souvent une plus forte probabilité de persistance locale dans des habitats primaires à fortes contraintes environnementales comme les rochers ou falaises (Verlaque et al. 2001 ; Lavergne et al. 2004). Pour protéger une espèce, il faut tout d’abord protéger et éventuellement gérer son habitat. Cette approche peut permettre aussi de favoriser la conservation d’autres espèces même si la notion d’espèce « parapluie » reste délicate à appliquer précisément chez les végétaux. Par exemple, en sauvegardant une espèce végétale de falaise humide, toutes les autres espèces qui y sont inféodées pourront théoriquement en bénéficier. En protégeant des espèces menacées et leurs habitats, ce sont des écosystèmes entiers et des services écosystémiques que nous pourrons préserver. Pour préserver des espèces et des habitats, il existe différents outils et démarches réglementaires. Il est primordial de choisir l’outil adéquat en fonction de critères comme la taille de la zone à protéger, les menaces pesant sur l’espèce ou sur l’habitat, la rareté de l’espèce… En France, il existe des plans nationaux d’actions (PNA) et des plans régionaux d’actions (PRA), outils créés par le Ministère de l'écologie, du développement durable et de l’énergie, qui ont pour but de faire un état des connaissances sur l'espèce, d’identifier clairement les menaces, de définir les besoins et les enjeux à long terme et de décider de la stratégie à mettre en place pour conserver la ou les espèces considérées (Valentin et al. 2010 ; Cambecèdes 2011 ; Piazza 2011). Les PNA sont des outils globaux destinés majoritairement à des espèces à distribution assez vaste, Typha minima Funck ou Liparis loeselii (L.) Rich. par exemple, plus rarement des espèces endémiques restreintes (Centranthus trinervis (Viv.) Bég. ; Biscutella rotgesii Foucaud). Les plans régionaux d’actions semblent plus adaptés à des espèces ayant une distribution limitée, et à une échelle locale (Pires & Diadema 2015). Pinguicula reichenbachiana Schindler, est une plante vasculaire endémique des Alpes maritimes et ligures, protégée en France, et très rare puisque seulement 11 stations sont connues dans le monde dont quatre en France. Elle vit dans un biotope très spécifique que sont les falaises suintantes de tuf en moyenne montagne. Un premier diagnistic suggère que cette espèce paraît très menacée par la dynamique d’invasion récente de l'espèce exotique Pinguicula hirtiflora Tenor sur un des sites de la vallée de la Roya. Cette espèce introduite se développe dans les mêmes biotopes et son cycle de vie perdure toute l'année. La distribution géographique limitée, la spécificité de l’habitat, et les menaces qui pèsent expliquent que les priorités de conservation de P. reichenbachiana sont très fortes . Le Conservatoire botanique national méditerranéen de Porquerolles (CBNMed) et l’Institut méditerranéen de biodiversité et d’écologie (IMBE) ont été missionnés par la Région PACA et la DREAL PACA pour la réalisation d’un bilan stationnel de Pinguicula reichenbachiana sur l’ensemble des populations de l’aire de répartition de l’espèce, préalablement à la réalisation du plan régional d’actions (Pires 2012, Pires et al. 2012). Ce plan régional d’actions répond à deux questions : (i) Quels sont les mesures à mettre en œuvre pour assurer la conservation durable de P. reichenbachiana ? (ii) Quelles sont les conséquences de la présence de P. hirtiflora, espèce exotique, sur la pérennité de certaines populations de P. reichenbachiana, endémique restreinte ? Dans ce contexte, un plan régional d’actions, d’une durée de dix ans, a été mis en place sur l’ensemble de l’aire de répartition de l’espèce (France et Italie), en partenariat avec le Parc national du Mercantour (PNM) et l’université de Gênes. Il vise à faire le bilan des connaissances de l’espèce et ainsi servir de base pour évaluer les enjeux de conservation de l’espèce. Dans l’optique d’une meilleure prise en compte de cette espèce dans des projets de conservation et de gestion, le plan régional d’actions a pour but de : (i) de préciser les connaissances sur l’espèce, (ii) d’effectuer un bilan des populations, (iii) d’évaluer les techniques de conservation de l’espèce, (iv) de réaliser un diagnostic des menaces, (v) d’évaluer les enjeux du territoire pour la conservation de l’espèce , (vi) de développer une stratégie de conservation et un programme d’actions à court et à moyen termes pour la préservation de l’espèce, (vii) d’établir une stratégie, sur le long terme, de préservation de l’espèce, (viii) d’alimenter les documents d’aménagements et de gestion afin de prendre en compte la préservation de l’espèce.
Full-text available
During field trips in June 2006 through Greece to Bulgaria, while going to the IV IBBC (International Balkan Botanical Congress) held in Sofia, I visited three Balkan butterwort localities, two with Pinguicula balcanicaCasper and one with P. hirtifloraTen.I give here a brief account ofthese findings.
Full-text available
Foggi, B. & Rossi, G.: A survey of the genus Festuca L. (Poaceae) in Italy. I. The species of the summit flora in the Tuscan-Emilian Apennines and Apuan Alps. — Willdenowia 26: 183–215. 1996. — ISSN 0511-9618. Based on own extensive collections and field studies as well as on the material preserved in the relevant herbaria, the genus Festuca in the summit areas of two of the three districts of the N Apennines is revised. 16 species with three subspecies are recognized: of these, one species, F. riccerii, is described as new to science: F. halleri subsp. yvesii and F. billyi are reported for the first time from Italy, F. trichophylla subsp. asperifolia, F. cinerea, and F. gracilior for the first time from the N Apennines. A key to all taxa is provided; for each taxon a description and data on its distribution as well as ecology including phytosociology are given.
This paper aims to summarize and briefly analyse the actual karyological knowledge of the genus Pinguicula L. The checklist presented shows all the species of this genus, which have been karylogically studied, in alphabetical order. There are 129 records referring to 35 taxa (30 species and 5 infraspecific taxa). The total of different chromosome counts (considering two or more cytotypes for some units) is 47. The basic numbers are x = 6, 8, 9, 11.
We present a description of two new Pinguicula species endemic to the Apuan Alps (Italy). P. mariae Casper (P. reichenbachiana auct. p.p.) is more or less related to P. poldinii Steiger et Casper from Friuli-Venezia Giulia and to P. reichenbachiana J. Schindl, from the Maritime Alps; the three taxa are tetraploid (2n= 32), the two first belonging to ser. Prealpicae Casper. P. apuana Casper et Ansaldi is related to P. vulgaris L. s.l. from which it is distinguished mostly by quantitative and geoecological features and it belongs to a group of allopatric 'Kleinarten' (distributed as a chain of vicarious taxa) on octoploid chromosome level (2n = 64) throughout the Apennine mountain range from the Ligurian Alps to the Abruzzo mountains. A comparison of the new species with similar (related) taxa is drawn.
Aquilegiae L. (Ranunculacearum) species nova ex Appennino Ligustico, A. ophiolithica nominata, rite describitur. Aquilegia ophiolithica (Ranunculaceae), a new species from the Ligurian Apennine (NW-Italy) is described.
Six new species of Hieracium are described from the Northern Apennine (Italy). Vengono descritte sei nuove specie di Hieracium dell'Appennino Settentrionale (Italia) per ciascuna delle quali viene discussa la posizione tassonomica.