ArticlePDF AvailableLiterature Review

Medicinal properties of 'true' cinnamon (Cinnamomum zeylanicum): A systematic review

Article

Medicinal properties of 'true' cinnamon (Cinnamomum zeylanicum): A systematic review

Abstract and Figures

In traditional medicine Cinnamon is considered a remedy for respiratory, digestive and gynaecological ailments. In-vitro and in-vivo studies from different parts of the world have demonstrated numerous beneficial medicinal effects of Cinnamomum zeylanicum (CZ). This paper aims to systematically review the scientific literature and provide a comprehensive summary on the potential medicinal benefits of CZ. A comprehensive systematic review was conducted in the following databases; PubMed, Web of Science, SciVerse Scopus for studies published before 31st December 2012. The following keywords were used: "Cinnamomum zeylanicum", "Ceylon cinnamon", "True cinnamon" and "Sri Lankan cinnamon". To obtain additional data a manual search was performed using the reference lists of included articles. The literature search identified the following number of articles in the respective databases; PubMed=54, Web of Science=76 and SciVerse Scopus=591. Thirteen additional articles were identified by searching reference lists. After removing duplicates the total number of articles included in the present review is 70. The beneficial health effects of CZ identified were; a) anti-microbial and anti-parasitic activity, b) lowering of blood glucose, blood pressure and serum cholesterol, c) anti-oxidant and free-radical scavenging properties, d) inhibition of tau aggregation and filament formation (hallmarks of Alzheimer's disease), e) inhibitory effects on osteoclastogenesis, f) anti-secretagogue and anti-gastric ulcer effects, g) anti-nociceptive and anti-inflammatory activity, h) wound healing properties and i) hepato-protective effects. The studies reported minimal toxic and adverse effects. The available in-vitro and in-vivo evidence suggests that CZ has many beneficial health effects. However, since data on humans are sparse, randomized controlled trials in humans will be necessary to determine whether these effects have public health implications.
Content may be subject to copyright.
R E S E A R C H A R T I C L E Open Access
Medicinal properties of truecinnamon
(Cinnamomum zeylanicum): a systematic review
Priyanga Ranasinghe
1*
, Shehani Pigera
1
, GA Sirimal Premakumara
2
, Priyadarshani Galappaththy
1
,
Godwin R Constantine
3
and Prasad Katulanda
3
Abstract
Background: In traditional medicine Cinnamon is considered a remedy for respiratory, digestive and
gynaecological ailments. In-vitro and in-vivo studies from different parts of the world have demonstrated numerous
beneficial medicinal effects of Cinnamomum zeylanicum (CZ). This paper aims to systematically review the scientific
literature and provide a comprehensive summary on the potential medicinal benefits of CZ.
Methods: A comprehensive systematic review was conducted in the following databases; PubMed, Web of Science,
SciVerse Scopus for studies published before 31st December 2012. The following keywords were used:
Cinnamomum zeylanicum,Ceylon cinnamon,True cinnamonand Sri Lankan cinnamon. To obtain additional
data a manual search was performed using the reference lists of included articles.
Results: The literature search identified the following number of articles in the respective databases; PubMed=54,
Web of Science=76 and SciVerse Scopus=591. Thirteen additional articles were identified by searching reference
lists. After removing duplicates the total number of articles included in the present review is 70. The beneficial
health effects of CZ identified were; a) anti-microbial and anti-parasitic activity, b) lowering of blood glucose, blood
pressure and serum cholesterol, c) anti-oxidant and free-radical scavenging properties, d) inhibition of tau
aggregation and filament formation (hallmarks of Alzheimers disease), e) inhibitory effects on osteoclastogenesis,
f) anti-secretagogue and anti-gastric ulcer effects, g) anti-nociceptive and anti-inflammatory activity, h) wound
healing properties and i) hepato-protective effects. The studies reported minimal toxic and adverse effects.
Conclusions: The available in-vitro and in-vivo evidence suggests that CZ has many beneficial health effects.
However, since data on humans are sparse, randomized controlled trials in humans will be necessary to determine
whether these effects have public health implications.
Keywords: Cinnamomum zeylanicum, True cinnamon, Ceylon cinnamon, Medicinal properties, Health benefits
Background
Cinnamon is a common spice used by different cultures
around the world for several centuries. It is obtained from
the inner bark of trees from the genus Cinnamomum, a
tropical evergreen plant that has two main varieties;
Cinnamomum zeylanicum (CZ) and Cinnamon cassia
(CC) (also known as Cinnamomum aromaticum/Chinese
cinnamon). In addition to its culinary uses, in native Ayur-
vedic medicine Cinnamon is considered a remedy for re-
spiratory, digestive and gynaecological ailments. Almost
every part of the cinnamon tree including the bark, leaves,
flowers, fruits and roots, has some medicinal or culinary
use. The volatile oils obtained from the bark, leaf, and root
barks vary significantly in chemical composition, which
suggests that they might vary in their pharmacological ef-
fects as well [1]. The different parts of the plant possess
the same array of hydrocarbons in varying proportions,
with primary constituents such as; cinnamaldehyde (bark),
eugenol (leaf) and camphor (root) [2]. Thus cinnamon of-
fers an array of different oils with diverse characteristics,
each of which determines itsvalue to the different indus-
tries. For example the root which has camphor as the
main constitute, has minimal commercial value unlike the
leaf and bark [3]. It is this chemical diversity that is likely
* Correspondence: priyanga.ranasinghe@gmail.com
1
Department of Pharmacology, Faculty of Medicine, University of Colombo,
Colombo, Sri Lanka
Full list of author information is available at the end of the article
© 2013 Ranasinghe et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
Ranasinghe et al. BMC Complementary and Alternative Medicine 2013, 13:275
http://www.biomedcentral.com/1472-6882/13/275
to be the reason for the wide-variety of medicinal benefits
observed with cinnamon.
CZ, also known as Ceylon cinnamon (the source of its
Latin name, zeylanicum) or true cinnamonis indigen-
ous to Sri Lanka and southern parts of India [3]. Three
of the main components of the essential oils obtained
from the bark of CZ are trans-cinnamaldehyde, eugenol,
and linalool, which represent 82.5% of the total compos-
ition [4]. Trans-cinnamaldehyde, accounts for approxi-
mately 49.962.8% of the total amount of bark oil [5,6].
Cinnamaldehyde and eugenol are also the major compo-
nents of CZ extracts [7]. A brief comparison of the two
main varieties of cinnamon (CZ and CC) is included as
a Additional file 1.
One important difference between CC and CZ is their
coumarin (1,2-benzopyrone) content [8]. The levels of
coumarins in CC appear to be very high and pose health
risks if consumed regularly in higher quantities. According
to the German Federal Institute for Risk Assessment (BfR),
1 kg of CC (CC) powder contains approximately 2.1-4.4 g
of coumarin, which means 1 teaspoon of CC powder
would contain around 5.8-12.1 mg of coumarin [9]. This is
above the Tolerable Daily Intake (TDI) for coumarin of
0.1mg/kg body weight/day recommended by the European
Food Safety Authority (EFSA) [10]. The BfR in its report
specifically states that CZ contains hardly anycoumarin
[9]. Coumarins are secondary phyto-chemicals with strong
anticoagulant, carcinogenic and hepato-toxic properties
[10]. The underlying mechanisms for the coumarin-related
toxic effects are yet to be completely elucidated [10]. Due
to the high concentrations in CC (compared with other
foods), despite the relatively low amounts of the consump-
tion of spices, studies have shown than coumarin exposure
from food consumption is mainly due to CC [10]. The
EFSA advocates against the regular, long term use of CC
as a supplement due to its coumarin content [11]. In
addition, according to currently available evidence couma-
rin does not seem to play a direct role in the observed bio-
logical effects of CC. Hence, although CC has also shown
many beneficial medicinal properties, itscoumarin con-
tent is likely to be an obstacle against regular use as a
pharmaceutical agent, unlike in the case of CZ.
In-vitro and in-vivo studies in animals and humans
from different parts of the world have demonstrated
numerous beneficial health effects of CZ, such as anti-
inflammatory properties, anti-microbial activity, redu-
cing cardiovascular disease, boosting cognitive function
and reducing risk of colonic cancer [12]. This paper
aims to systematically review the scientific literature
and provide a comprehensive summary on the potential
medicinal benefits of True Cinnamon(Cinnamomum
zeylanicum). We also aim to provide a scientific guide
to researchers on the potential areas for future research
based on the positive findings obtained thus far from
studies conducted by various research teams from around
the world.
Methods
A systematic review of published studies reporting the me-
dicinal effects of CZ was undertaken in accordance with
the PRISMA (Preferred Reporting Items for Systematic re-
views and Meta-Analyses) statement guidelines (Additional
file 2) [13]. A comprehensive search of the literature
was conducted in the following databases; PubMed® (U.S.
National Library of Medicine, USA), Web of Science®
[v.5.3] (Thomson Reuters, USA), SciVerse Scopus®
(Elsevier Properties S.A, USA) for studies published be-
fore 31
st
December 2012. We used the following med-
ical subject headings and keywords: Cinnamomum
zeylanicum,Ceylon cinnamon,True cinnamonand
Sri Lankan cinnamon. Results were limited to studies
in English, while conference proceedings and commen-
taries were excluded.
In the second stage the total hits obtained from
searching the databases using the above search criteria
was pooled together and duplicate articles were re-
moved. The remaining articles were initially screened by
reading the titleand thereafter the abstracts. Studies
not satisfying the inclusion criteria were excluded at
these stages. The remaining articles were screened in the
final stage by reading the full-text and those not meeting
inclusion criteria were excluded. To obtain additional
data a manual search was performed using the reference
lists of included articles. Wherever possible forward cita-
tions of the studies retrieved during the literature search
was traced and screened for possible inclusion. This
search process was conducted independently by two re-
viewers (PR and SP) and the final group of articles to be
included in the review was determined after an iterative
consensus process.
Results
Literature search
The literature search using the above search criteria
identified the following number of articles in the re-
spective databases; PubMed® (n = 54), Web of Science®
(n = 76) and SciVerse Scopus® (n = 591). Thirteen add-
itional articles were identified by manually searching the
reference lists and forward citations of included papers.
After removing duplicates the total number of articles
included in the present review is 70. The search strategy
is summarized in Figure 1.
In-vitro and in-vivo anti-microbial properties
There were 30 different studies evaluating the in-vitro
anti-microbial properties of CZ. Table 1 summarizes the
findings of these studies. Accordingly CZ has shown po-
tential anti-microbial action against a wide variety of
Ranasinghe et al. BMC Complementary and Alternative Medicine 2013, 13:275 Page 2 of 10
http://www.biomedcentral.com/1472-6882/13/275
bacteria (Acinetobacter baumannii, Acinetobacter lwoffii,
Bacillus cereus, Bacillus coaguiaris, Bacillus subtilis,
Brucella melitensis, Clostridium difficile, Clostridium
perfringens, Enterobacter aerogenes, Enterobacter cloacae,
Enterococcus faecalis, Enterococcus faecium, Escherichia
coli, Haemophilus Influenza, Helicobacter pylori, Klebsiella
pneumonia, Listeria ivanovii, Listeria monocytogenes,
Mycobacterium smegmatis, Mycobacterium tuberculosis,
Proteus mirabilis, Pseudomonas aeruginosa, Saccharomy-
ces cerevisiae, Salmonella typhi, Salmonella typhimurium,
Staphylococcus albus, Staphylococcus aureus, Streptococcus
agalactiae, Streptococcus pneumoniae, Streptococcus
pyogenes and Yersinia enterocolitica). In addition there
seems to be activity against numerous fungi (Aspergillus
fiavus, Aspergillus fumigatus.
Aspergillus nididans, Aspergillus niger, Aspergillus
ochraceus, Aspergillus parasiticus, Aspergillus terreus,
Candida albicans, Candida glabrata, Candida krusei,
Candida parapsilosis, Candida tropicalis, Crytococcus
neoformans, Epidermophyton floccosum, Hisioplasma
capsulatum, Malassezia furfur, Microsporum audouini,
Microsporum canis Microsporum gypseum, Trichophyton
mentagraphytes, Trichophyton rubrum and Trichophyton
tonsurans). CZ has also demonstrated activity against
the human rota-virus (Table 1).
There were 5 studies evaluating in-vivo anti-microbial
properties in animals. Abu, et al. [44] investigated the ef-
fect of administration CZ oil on the development and
progression of the experimental cryptosporidiosis in
mice, and they showed that administration of CZ oil
was beneficial in protecting susceptible hosts against op-
portunistic zoonotic parasites such as Cryptosporidium
parvum. Rosti, et al. [45,46] reported two cases of in-
fants who were chronic carriers of Salmonella enteritidis
who received short term (10 days) administration of
grounded CZ bark which led to consistently negative
stool cultures and no clinical or microbiological relapses.
Activity of CZ against fluconazole resistant and suscep-
tible candida were studied in HIV infected patients hav-
ing pseudo-membranous Candida, where 3 patients out
of 5 showed improvements in their oral candidiasis [47].
The effects of sugared chewing gum containing cinnamic
aldehyde and natural flavours from CZ on the short-term
germ-killing effect on total and H
2
S-producing salivary
anaerobes was investigated by Zhu, et al. [48]. Significant
reductions in total salivary anaerobes and H
2
S-producing
salivary anaerobes were observed 20 minutes after subjects
chewed the gum.
In-vitro and in-vivo anti-parasitic effects
Samarasekera, et al. [49] investigated the mosquito control
properties of essential oils of leaf and bark of CZ against
Culex quinquefasciatus, Anopheles tessellatus and Aedes
aegypti. CZ bark oil showed good knock-down and
mortality against A. tessellatus (LD
50
0.33 μg/mL) and C.
quinquefasciatus (LD
50
0.66 μg/mL) than leaf oil (LD
50
Figure 1 Summarized search strategy.
Ranasinghe et al. BMC Complementary and Alternative Medicine 2013, 13:275 Page 3 of 10
http://www.biomedcentral.com/1472-6882/13/275
Table 1 Anti-microbial properties of Cinnamomum zeylanicum
Author [ref] Organism(s) tested Main outcomes
Country(s)
Agasthya AS, et al. [14]Escherichia coli, Salmonella typhi, Salmonella paratyphi A/B,
Brucella abortus and Brucella melitensis
CZ extract were active only against Brucella melitensis
India
Barattha MT, et al. [15]Clostridium perfringens, E. coli, Klebsiella pneumonia,
Pseudomonas aeruginosa, S. aureus, Streptococcus faecalis
and Yersinia enterocolitica
Volatile oils from CZ had significant activity against the
growth of food poisoning organisms, food spoilage
organisms and organisms of faecal origin
UK, Italy, Portugal
Bayoub K, et al. [16]Listeria monocytogenes, S. aurus, E. coli, Enterococcus faecalis,
Klebsiella pneumoniae, Enterobacter cloacae, Acinetobacter
baumannii
CZ extracts demonstrated significant inhibitory effects
on S. aureus,Enterobacter cloacae, Acinetobacter baumannii
and Listeria monocytogenes (MIC 0.4 mg/ml)
Morocco
Bhatia M, et al. [17]Candida albicans Among all spices tested CZ inhibited C. albicans most
effectively (MIC 7.81 μl/ml)
India
Carmo ES, et al. [18] Aspergillus species (A. fumigatus, A. niger, A. flavus,
A. parasiticus, A. terreus and A. ochraceus)
CZ essential oil possesses strong anti-aspergillus activity
inhibiting the growth, spore germination and causing
deleterious cellular morphological changes
Brazil
Dubey RC, et al. [19]Salmonella typhi, Staphylococcus aureus, Escherichia coli,
Klebsiella pneumoniae and Bacillus subtilis
CZ essential oils inhibited growth of all organisms.
Gram-negative organisms were more susceptible than
gram-positive ones.
India
Elumalai S, et al. [20]Bacillus subtilis, Klebsiella pneumonia, Pseudomonas
aeruginosa, Staphylococcus aureus and Escherichia coli
Percentage inhibition with CZ was; B. Subtilis (40.0%),
Klebsiella pneumonia (42.2%), Pseudomonas aeruginosa
(45.0%), Staphylococcus aureus (37.8%) and Escherichia coli
(40.0%). Inhibition activity of C. Cassia greater than CZ.
India
Fabio A, et al. [21]S. pyogenes, S. agalactiae, S. pneumonia, Klebsiella
pneumoniae, H. Influenza and S. aureus
Of the 13 essential oils evaluated CZ and thyme showed
the highest activity inhibiting all the strains studied
Italy
Ferhout H, et al. [22]Malassezia furfur and Candida albicans Of the 3 oils studied CZ oil exhibited the strongest activity
towards the two yeasts. M. furfur showed a greater
sensitivity to CZ
France
Gonçalves JLS, et al. [23] Human rota-virus CZ leaves and bark was able to inhibit the propagation
of human rotavirus 32.4% and 33.9% respectively.
Brazil
Guerra FQS, et al. [24] Acinetobacter spp. CZ essential oils suppresses the growth of Acinetobacter spp.
and a synergistic effect was observed when combined
with antibiotics
Brazil
Hosseininejad Z, et al. [25]Helicobacter pylori CZ exhibited the most inhibitory effect on H. pylori and
essential oils of CZ with IC
50
=0.3 μl/ml completely inhibited
the growth of H. pylori.
Iran
Jantan IB, et al. [26]Trichophyton mentagrophytes, T. tonsurans, T. rubrum,
Microsporum canis, M. gypseum, M. audouini, Aspergillus
fumigates, Candida albicans, C. glabrata, C. parapsilosis,
C. tropicalis and Crytococcus neoformans
Among all the essential oils, the leaf and bark oils of CZ
showed the highest activity against all the fungi with
MIC values of 0.04 to 0.63 μgμL1
Malaysia
Jirovetz L, et al. [27]Pseudomonas fluorescens,Escherichia coli and
Staphylococcus aureus
CZ essential oils were active against E. coli and S. aureus.
However P. fluorescens was resistant.
Austria, Cameroon
Khan R, et al. [28] Multi drug resistant (MDR) strains of Escherichia coli,
Klebsiella pneumoniae and Candida albicans.
The MDR strains were sensitive to the antimicrobial
activity of CZ.
India
Lima EO, et al. [29]Trichophyton rubrum, T. mentagraphytes, Microsporum canis
and Epidermophyton floccosum
CZ inhibited 80% of the dermatophyte strains tested and
produced inhibition zones more than 10 mm in diameter
Brazil
Maidment C, et al. [30]Escherichia coli B, staphylococcus albus and
Saccharomyces cerevisiae
CZ demonstrated microbial inhibitory effect; alcoholic
extracts had greater activity than aqueous extracts.
Essential oils had greater activity than the spices. MICs
were smaller with the oils than with the spices.
UK
Mandal S, et al. [31] Methicillin resistant Staphylococcus aureus CZ and C. aromaticum showed the strongest in vitro
antibacterial activity against Methicillin Resistant S. aureus
India
Mastura M, et al. [32]Trichophyton mentagrophytes, T. rubrum, Microsporum canis,
Candida albicans and C. glabrata
CZ was a moderate inhibitor of all the fungi tested
(MIC values 1.26 2.51 μg/μl)
Malaysia
Ranasinghe et al. BMC Complementary and Alternative Medicine 2013, 13:275 Page 4 of 10
http://www.biomedcentral.com/1472-6882/13/275
1.03 and 2.1 μg/mL). Yang, et al. [50] showed that CZ
bark essential oil was slightly less effective than either d-
phenothrin or pyrethrum against eggs and adult females of
human head louse, Pediculus humanus capitis,usingdirect
contact and vapour phase toxicity bioassays.
In-vitro and in-vivo effects on blood pressure, glycaemic
control and lipids
A recent meta-analysis by Ranasinghe, et al. and a system-
atic review by Bandara et al., on the effects of CZ extracts
on diabetes demonstrates numerous beneficial effects both
in-vitro and in-vivo [51,52]. In-vitro CZ has demonstrated
a potential for; a) reducing post-prandial intestinal glucose
absorption by inhibiting the activity of enzymes involved
in carbohydrate metabolism (pancreatic αamylase and
αglucosidase), b) stimulating cellular glucose uptake by
membrane translocation of GLUT-4, c) stimulating glu-
cose metabolism and glycogen synthesis, d) inhibiting
gluconeogenesis by effects on key regulatory enzymes and
f) stimulating insulin release and potentiating insulin
receptor activity [51]. Cinnamtannin B1 was identified
as the potential active compound responsible for these
effects [51]. The beneficial effects of CZ In-vivo includes;
a) attenuation of weight loss associated with diabetes,
b) reduction of Fasting Blood Glucose, c) reducing LDL
and increasing HDL cholesterol, d) reducing HbA1c and
e) increasing circulating insulin levels [51]. In addition CZ
also showed beneficial effects against diabetic neuropathy
and nephropathy [51].
Hasan et al. [53], also confirmed these effects and dem-
onstrated that CZ reduced total cholesterol, LDL choles-
terol and triglycerides while increasing HDL-cholesterol
in diabetic rats. Similar results have also been observed
in hyper-lipidaemic albino rabbits [54]. However, feeding
CZ to animals at levels corresponding to the average hu-
man dietary intake has not shown to reduce lipid levels
significantly [55]. Nyadjeu et al. [56] examined the effects
of CZ extracts (CZA) on mean arterial blood pressure
(BP) of normotensive (NR) rats, salt-loaded hypertensive
rats (SLHR), L-NAME hypertensive rats (LNHR) and
Table 1 Anti-microbial properties of Cinnamomum zeylanicum (Continued)
Meades J, Jr et al. [33]Escherichia coli (acetyl-CoA carboxylase inhibition) CZ inhibited the carboxyl-transferase component of
E. coli acetyl-CoA carboxylase enzyme.
USA, UK, South Africa
Mishra AK, et al. [34]E. coli, Klebsiella pneumonia, Proteus vulgaris, Pseudomonas
spp., S. aureus and S. pneumonia
Of the 3 essential oils evaluated CZ oil showed the strongest
inhibitory activity against all micro-organisms tested.
India
Negi PS, et al. [35]Bacillus cereus, B. coaguiaris, B. subtilis, S. aureus, E. coli and
Pseudomonas aeruginosa
All crude extracts of CZ fruits showed antibacterial activity.
Ethyl acetate and benzene extracts showed higher activity
than methanol and water extract.
India, USA
Noudeh GD, et al. [36]S. aureus, Bacillus subtilis, E. coli and Pseudomonas aeruginosa CZ inhibited the growth of all tested Gram- positive and
Gram-negative strains.
Iran, UK
Rana IS, et al. [37]Pseudomonas aeruginosa, S. aureus, Salmonella typhimurium
and Bacillus subtilis
Ofthe19essentialoilsevaluated the highest antibacterial
activity was depicted by CZ against all bacteria
India
Senhaji O, et al. [38]E. coli O157:H7 In the presence of 0.05% of the oil, most of cells were
killed after 30 min, suggesting a bactericidal action against
E. coli. The MIC was around 625 ppm.
Morocco
Shahverdi AR, et al. [39]Clostridium difficile The essential oil of CZ bark enhanced the bactericidal
activity of clindamycin and decreased the MIC of
clindamycin for C. difficile.
Iran
Singh HB, et al. [40]Aspergillus niger. A. fumigatus. A. nididans, A. fiavus, Candida
albicans, C, tropicalis, C, pseudotropicalis and Hisioplasma
capsulatum
Vapours of CZ bark oil and cinnamic aldehyde are effectively
toxicatverylowdosesandathigh inoculum density against
the test fungi causing respiratory tract mycoses
India
Sivakumar A, et al. [41]Mycobacterium tuberculosis Water (MIC-100 μg/ml) and ethanolic (MIC-200 μg/ml)
extracts of CZ was observed to have activity against
M. tuberculosis.
India
Tekwu E, et al. [42]Mycobacterium tuberculosis strains H37Rv and H37Ra The MIC for H37Ra and H37Rv strains were 1024μg/ml
and 512μg/ml respectively and MBC was >2048 μg/ml
for both strains.
Cameroon, Turkey
Unlu, M et al. [43]S. aureus, Streptococcus pyogenes, S. pneumonia, Enterococcus
faecalis, Enterococcus faecium, Bacillus cereus, Acinetobacter
lwoffii, Enterobacter aerogenes, E. coli, Klebsiella pneumoniae,
Proteus mirabilis, Pseudomonas aeruginosa, Salmonella
typhimurium, Clostridium perfringens, Listeria monocytogenes,
Listeria ivanovii, Mycobacterium smegmatis, Candida albicans,
Candida parapsilosis and Candida krusei
The essential oil of CZ showed strong antimicrobial activity
against all microorganisms tested,
Turkey
Ranasinghe et al. BMC Complementary and Alternative Medicine 2013, 13:275 Page 5 of 10
http://www.biomedcentral.com/1472-6882/13/275
spontaneously hypertensive rats (SHR). Immediately after
intravenous administration a significant drop of BP was
shown in NTR, SLHR and LNHR in a dose dependent
manner, the drop in BP was not dose dependent in SHR
[56]. Wansi, et al. demonstrated similar effects in NTR
and SLHR, they also showed that CZ has a vaso-relaxant
effect on the rat thoracic aortic ring segments, suggesting
that, CZ might be inhibiting extracellular Ca
2+
through
L-type voltage-sensitive channels [57]. Markey, et al. [58]
tested the hypothesis that supplementing a single high
fructose breakfast with 3g of cinnamon would delay gas-
tric emptying of a high-fat solid meal utilizing the
13
C
octanoic acid breath test, and consequently reduce post-
prandial blood glucose and lipid concentrations. There
concluded that cinnamon did not change gastric emptying
parameters, postprandial triacylglycerol or glucose con-
centrations after a single administration [58]. It is import-
ant to note that all in-vivo studies except the above study
were conducted in animals.
In-vitro and in-vivo anti-oxidant properties
The essential oils obtained from the bark of CZ and
eugenol has shown very powerful activities, decreasing
3-nitrotyrosine formation and inhibiting the peroxynitrite-
induced lipid peroxidation in in-vitro assays [59]. The
volatile oils of CZ has shown 55.9% and 66.9% antioxidant
activity at 100 and 200 ppm concentration, respectively
[60]. The dried fruit extracts of CZ with ethyl acetate,
acetone, methanol and water exhibited antioxidant activity
in the order of water > methanol > acetone > ethyl acetate
[61]. The etheric (0.69 mg), methanolic (0.88 mg) and
aqueous (0.44 mg) cinnamon extracts, inhibited the oxida-
tive process in 68%, 95.5% and 87.5% respectively [62]. A.
Kitazuru, et al. [63] studied the effects of ionizing radiation
on natural CZ antioxidants and showed that irradiation in
the dose range applied did not have any effect on the anti-
oxidant potential of the cinnamon compounds.
CZ bark extracts were found to be potent in free rad-
ical scavenging activity especially against DPPH radicals
and ABTS radical cations, while the hydroxyl and super-
oxide radicals were also scavenged by the tested com-
pounds [64]. Similar findings were noted by Prakash,
et al. who showed that CZ has 65.3% of anti-oxidant ac-
tivity and strong free radical scavenging activity [65].
Ranjbar, et al. [66] treated 18 operating room personnel
with CZ (100 mg/300 mL tea) daily for 10 days and
blood samples were analyzed for biomarkers of oxidative
stress biomarkers including Lipid Peroxidation Level
(LPO), Total Antioxidant Power (TAP) and Total Thiol
Molecules (TTM). Treatment of subjects with cinnamon
induced a significant reduction in plasma LPO, however
no statistically significant alteration was found for plasma
TAP and TTM after 10 days treatment with CZ [66].
Treatment of 54 healthy volunteers with CZ 100 mg/30ml
of tea daily were significantly effective in the reduction of
lipid peroxidation and increasing TAP and TTM in com-
parison with controls [67]. The extent of increase in
plasma TBARS and TAP for the CZ group was significantly
higher than in those give regular tea only [67].
Other in-vitro effects
An aqueous extract of CZ is known to inhibit tau aggre-
gation and filament formation, which are hallmarks of
Alzheimers disease [68]. The extract also promotes
complete disassembly of recombinant tau filaments and
cause substantial alteration of the morphology of paired-
helical filaments isolated from brains of those with
Alzheimers disease, however it was not deleterious to the
normal cellular function of tau. An A-linked proantho-
cyanidin trimer molecule isolated from the CZ extract has
shown to contain a significant proportion of this inhibitory
activity [68]. Takasao, et al. [69] demonstrated that CZ
extracts facilitates collagen biosynthesis in human dermal
fibroblasts. CZ extract up-regulated both mRNA and
protein expression levels of type I collagen without cyto-
toxicity, cinnamaldehyde was the major active compo-
nent promoting the expression of collagen by HPLC and
NMR analysis. This suggests that CZ extracts might be
useful in anti-aging treatment of skin [69]. CZ extracts
have also exhibited the strong inhibitory effects on
osteoclastogenesis [70]. CZ dose-dependently inhibited
osteoclast-like cell formation at concentrations of 12.5-
50 μg/ml without affecting cell viability. This finding raises
prospects for the development of a novel approach in the
treatment of osteopenic diseases [70].
Other in-vivo effects in animals
CZ is known to have anti-secretagogue and anti-gastric
ulcer effects as shown by a study conducted by Alqasoumi
[71]. CZ suspension pre-treatment decreased the basal
gastric acid secretion volume in pylorus ligated rats and it
effectively inhibited gastric hemorrhagic lesions induced
by 80% ethanol, 0.2M NaOH, and 25% NaCl. It also
showed antiulcer activity against indomethacin. CZ treat-
ment replenished the ethanol-induced decreased levels of
gastric wall mucus [71]. Rao and Lakshmi induced diar-
rhoea in mice using the magnesium sulphate-induced
diarrhoea test and showed that CZ extracts at 100 and 200
mg/kg doses significantly reduced the extent of the diar-
rhoea (71.7% and 80.4%) in test animals [72].
In a study using two animal models for the investigation
of the anti-nociceptive and anti-inflammatory effects of
CZ and selected plants, CZ induced a dose-dependent an-
algesic protective effect against both thermal stimuli and
the writhing syndrome, furthermore, CZ showed an anti-
inflammatory effect against chronic inflammation induced
by cotton pellet granuloma indicating anti-proliferative ef-
fect [73]. These effects have been verified by other authors
Ranasinghe et al. BMC Complementary and Alternative Medicine 2013, 13:275 Page 6 of 10
http://www.biomedcentral.com/1472-6882/13/275
[74]. CZ is also known to have wound healing properties
in rats, in a study using thirty-two rats where experimental
excision wounds were induced and treated with topical
CZ containing ointments. The CZ extracts served to ac-
celerate the wound healing process and specifically in-
creased epithelialisation [75]. In Wister rats CZ given
orally increased the wound breaking strength significantly
in incision wounds model and in dead space wounds the
granulation tissue breaking strength and hydroxyproline
content were significantly increased [76].
CZ has also been shown to have hepato-protective ef-
fects in a study where liver injury was induced in rats by
CCl
4
[77]. Administration of CZ extracts (0.01, 0.05 and
0.1 g/kg) for 28 days significantly reduced the impact of
CCl
4
toxicity on the serum markers of liver damage
(AST, ALT and ALP). In addition, treatment with CZ
markedly increased the levels of superoxide dismutase
and catalase enzymes in rats [77]. Water-based extract
from CZ was a potent inhibitor of VEGFR2 kinase
(Vascular Endothelial Growth Factor Receptor) activity
which is involved in angiogenesis [78]. As a result, CZ
inhibited VEGF-induced endothelial cell proliferation, mi-
gration and tube formation in-vitro,sproutformation
from aortic ring ex-vivo and tumor-induced blood vessel
formation in-vivo [78].
Toxic effects
In-vivo studies in animals have also highlighted lack of sig-
nificant toxic effects on liver and kidney, with a signifi-
cantly high therapeutic window [51]. Domaracký et al., [79]
administered CZ for two weeks to female mice and evalu-
ated the effects on the viability of embryos of mice, number
of nuclei and the distribution of embryos according to nu-
cleus number. Cinnamon significantly decreased the num-
ber of nuclei and the distribution of embryos according to
nucleus number was significantly altered and these changes
were attributed to the anti-proliferative effects of cinna-
maldehyde [79]. However these findings have been con-
tradicted by others who have demonstrated that CZ does
not have significant abortive or embryo toxic effects in ani-
mals [80]. Furthermore, Shah et al, showed that CZ in-
duced a significant increase in reproductive organ weights,
sperm motility, sperm count and demonstrated no sper-
matotoxiceffectsinmice[81].
Chulasiri et al., demonstrated that petroleum ether
and chloroform extracts from CZ showed cytotoxic ef-
fects on KB (human mouth carcinoma cell line) and
L1210 cells (mouse lymphoid leukaemia cell line) [82].
The average ED
50
from the first and second tests of the
petroleum ether extract on these tumour cells were 60
and 24 pg/ml respectively and of the chloroform extract
were 58 and 20 pg/ml respectively. Singh, et al. [83] investi-
gated the cytotoxic effects of aqueous cinnamon extract
from the bark of CZ on human and mouse cell lines. The
aqueous cinnamon extract proved to be more cytotoxic to
cancerous cells at concentrations just above 0.16 mg/mL.
At a critical concentration of 1.28 mg/mL, CZ treatment
resulted in 35-85% growth inhibition of the majority of the
cancerous cells.
Discussion
The available in-vitro and in-vivo evidence suggests that
CZ has anti-microbial, anti-parasitic, anti-oxidant and
free radical scavenging properties. In addition CZ seems
to lower blood glucose, serum cholesterol and blood
pressure, suggesting beneficial cardiovascular effects.
The different parts of the CZ plant possess the same
array of hydrocarbons in varying proportions. This chem-
ical diversity is likely to be the reason for the wide-variety
of medicinal benefits observed. It would also be interesting
to identify probable mechanisms that are responsible for
such a wide array of medicinal benefits. The mechanism
of action by which CZ reduces blood glucose has been
well studied in-vitro and in-vivo, it seems that CZ; a) re-
duces intestinal glucose absorption by inhibiting enzymes,
b) stimulates cellular glucose uptake, glycogen synthesis,
insulin release and potentiates insulin receptor activity
and c) inhibits gluconeogenesis by effects on key regula-
tory enzymes.
The mechanism for the lipid lowering effects is not
clearly described in literature. The high dietary fibre con-
tent of CZ could result in reduced intestinal lipid absorp-
tion, and the high vitamin/anti-oxidant is likely to result in
increased lipid metabolism. Insulin plays a key role in lipid
metabolism and it is possible that increased serum Insulin
levels following CZ administration also contributes to-
wards reducing lipid levels. The exact blood pressure-
lowering mechanism of cinnamon is still unknown and
new studies are needed to clarify this issue. The results of
studies in animals have indicated that cinnamon regulates
blood pressure levels through peripheral vasodilatation
[84]. This vasodilatation might be partially through Ca
2+
channels blocking properties [57].
The phenolic constituents of CZ are likely to be respon-
sible for the anti-oxidant and free radical scavenging activ-
ity observed. Cinnamon extracts are known to increase
Tristetraprolin mRNA and protein levels, Tristetraprolins
have anti-inflammatory effects due to destabilizing of pro-
inflammatory mRNA [85]. This could be the reason for the
anti-inflammatory actions observed. The anti-microbial
action is considered to arise mainly from the potential of
hydrophobic essential oils to disrupt the bacterial cell
membrane and its structures which leads to ion leakage
[37]. Antibacterial assays of the column chromatography
fractions clearly indicated that cinnamaldehyde is the pri-
mary compound responsible for major antibacterial activity
[37]. Trans-cinnamaldehyde is also known to inhibits bac-
terial acetyl-CoA carboxylase [33].
Ranasinghe et al. BMC Complementary and Alternative Medicine 2013, 13:275 Page 7 of 10
http://www.biomedcentral.com/1472-6882/13/275
We acknowledge several limitation to the extent to
which conclusions can be drawn from the present sys-
tematic review. The CZ specimen was either not authen-
ticated or authentication details were not mentioned in
majority of the studies, however considering that a ma-
jority of the studies were conducted in countries where
CZ is cultivated, it is likely that the species used were
Truecinnamon. There were minimal studies evaluating
the effects of CZ in humans and majority of the studies
were in-vitro or in-vivo in animals, hence care needs
to be drawn when generalizing the conclusions to the
human population. In order to have public health impli-
cations these effects need to be reproducible in humans.
Lack of well-designed human trials has compromised
our knowledge on common side-effects, drug inter-
actions and efficacy in humans. Further randomized
double-blinded placebo-controlled clinical trials are re-
quired to establish therapeutic safety and efficacy of CZ
as a pharmaceutical agent.
Conclusions
The available in-vitro and in-vivo evidence suggests that
CZ has anti-microbial, anti-parasitic, anti-oxidant and free
radical scavenging properties. In addition CZ seems to
lower blood glucose, serum cholesterol and blood pres-
sure, suggesting beneficial cardiovascular effects. However,
randomized controlled human trials will be necessary
to determine whether these effects have public health
implications.
Additional files
Additional file 1: A brief comparison of the two main varieties of
cinnamon (Cinnamomum zeylanicum and Cinnamomum cassia).
Additional file 2: PRISMA (Preferred Reporting Items for Systematic
reviews and Meta-Analyses) Checklist.
Competing interest
The authors declare that they have no competing interests.
Authorscontributions
PR, GASP, PG, GRC and PK made substantial contribution to conception and
study design. PR and SP were involved in data collection. PR, SP, GASP and
GRC were involved in refining the study design, statistical analysis and
drafting the manuscript. PR, PG and PK critically revised the manuscript.
All authors read and approved the final manuscript.
Acknowledgement
The authors would like to thank the staff members of Department of
Pharmacology, Faculty of Medicine, University of Colombo for their support.
Author details
1
Department of Pharmacology, Faculty of Medicine, University of Colombo,
Colombo, Sri Lanka.
2
Industrial Technology Institute, Colombo, Sri Lanka.
3
Department of Clinical Medicine, Faculty of Medicine, University of
Colombo, Colombo, Sri Lanka.
Received: 26 May 2013 Accepted: 17 October 2013
Published: 22 October 2013
References
1. Shen Q, Chen F, Luo J: Comparison studies on chemical constituents of
essential oil from ramulus cinnamomi and cortex cinnamomi by GC-MS.
Zhong Yao Cai 2002, 25:257258.
2. Gruenwald J, Freder J, Armbruester N: Cinnamon and health. Crit Rev Food
Sci Nutr 2010, 50:822834.
3. Paranagama PA, Wimalasena S, Jayatilake GS, Jayawardena AL, Senanayake
UM, Mubarak AM: A comparison of essential oil constituents of bark, leaf
root and fruit of cinnamon (cinnamomum zeylanicum Blum), grown in
Sri Lanka. J Natl Sci Found Sri 2010, 29:147153.
4. Chericoni S, Prieto JM, Iacopini P, Cioni P, Morelli I: In vitro activity of the
essential oil of cinnamomum zeylanicum and eugenol in peroxynitrite-
induced oxidative processes. Journal Agric Food Chem 2005, 53:47624765.
5. Singh G, Maurya S, DeLampasona MP, Catalan CA: A comparison of
chemical, antioxidant and antimicrobial studies of cinnamon leaf and
bark volatile oils, oleoresins and their constituents. Food Chem Toxicol
2007, 45:16501661.
6. Simic A, Sokovic MD, Ristic M, Grujic-Jovanovic S, Vukojevic J, Marin PD:
The chemical composition of some lauraceae essential oils and their
antifungal activities. Phytother Res 2004, 18:713717.
7. Usta J, Kreydiyyeh S, Barnabe P, Bou-Moughlabay Y, Nakkash-Chmaisse H:
Comparative study on the effect of cinnamon and clove extracts and
their main components on different types of ATPases. Hum Exp Toxicol
2003, 22:355362.
8. Archer A: Determination of cinnamaldehyde, coumarin and cinnamyl
alcohol in cinnamon and cassia by high-performance liquid
chromatography. J Chromatogr 1988, 447:272276.
9. Bundesinstitut für Risikobewertung: High daily intakes of cinnamon: health
risk cannot be ruled out, Book high daily intakes of cinnamon: health risk
cannot be ruled out. Germany: Bundesinstitut für Risikobewertung; 2006.
10. Abraham K, Wöhrlin F, Lindtner O, Heinemeyer G, Lampen A: Toxicology
and risk assessment of coumarin: focus on human data. Mol Nutr Food
Res 2010, 54:22839.
11. European Food Safety Association: Coumarin in flavourings and other
food ingredients with flavouring properties. EFSA J 2008, 793:115.
12. Jayaprakasha GK, Rao LJ: Chemistry, biogenesis, and biological activities
of cinnamomum zeylanicum. Crit Rev Food Sci Nutr 2011, 51:547562.
13. Moher D, Liberati A, Tetzlaff J, Altman DG: Preferred reporting items for
systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009,
339:b2535.
14. Agasthya AS, Jayapal N, Naveenkumar E, Goud NR, Vijayanand J, Hemapriya
J: In vitro study of antimicrobial activity of the South Indian spices
against enteric pathogens. Asian J Microbiol, Biotechnol Environ Sci 2009,
11:173180.
15. Baratta MT, Dorman HJD, Deans SG, Figueiredo AC, Barroso JG, Ruberto G:
Antimicrobial and antioxidant properties of some commercial essential
oils. Flavour Fragr J 1998, 13:235244.
16. Bayoub K, Baibai T, Mountassif D, Retmane A, Soukri A: Antibacterial
activities of the crude ethanol extracts of medicinal plants against
listeria monocytogenes and some other pathogenic strains.
Afr J Biotechnol 2010, 9:42514258.
17. Bhatia M, Sharma A: Inactivation of candidia albicans in culture media by
eight spices native to Indian subcontinent. Intl J Pharm Sci Rev Res 2012,
16:125129.
18. Carmo ES, Lima EDO, De Souza EL, De Sousa FB: Effect of cinnamomum
zeylanicum blume essential oil on the growth and morphogenesis of
some potentially pathogenic aspergillus species. Braz J of Microbiol 2008,
39:9197.
19. Dubey RC, Rana A, Shukla RK: Antibacterial activity of essential oils of
some medicinal plants against certain human pathogens. Indian Drugs
2005, 42:443446.
20. Elumalai S, Kesavan R, Ramganesh S, Prakasam V, Murugasen R:
Comparative study on anti-microbial activities of bark oil extract from
cinnamomum cassia and cinnamomum zeylanicum. Biosci Biotechnol Res
Asia 2010, 7:251258.
21. Fabio A, Cermelli C, Fabio G, Nicoletti P, Quaglio P: Screening of the
antibacterial effects of a variety of essential oils on microorganisms
responsible for respiratory infections. Phytother Res 2007, 21:374377.
22. Ferhout H, Bohatier J, Guillot J, Chalchat JC: Antifungal activity of selected
essential oils, cinnamaldehyde and carvacrol against malassezia furfur
and candida albicans. J Essent Oil Res 1999, 11:119129.
Ranasinghe et al. BMC Complementary and Alternative Medicine 2013, 13:275 Page 8 of 10
http://www.biomedcentral.com/1472-6882/13/275
23. Gonçalves JLS, Lopes RC, Oliveira DB, Costa SS, Miranda MMFS, Romanos
MTV, Santos NSO, Wigg MD: In vitro anti-rotavirus activity of some
medicinal plants used in Brazil against diarrhea. J Ethnopharmacol 2005,
99:403407.
24. Guerra FQS, Mendes JM, de Sousa JP, Morais-Braga MFB, Santos BHC,
Coutinho HDM, Lima EDO: Increasing antibiotic activity against a
multidrug-resistant acinetobacter spp by essential oils of citrus limon
and cinnamomum zeylanicum. Nat Prod Res 2012, 26:22352238.
25. Hosseininejad Z, Moghadam SD, Ebrahimi F, Abdollahi M, Zahedi MJ,
Nazari M, Hayatbakhsh M, Adeli S, Sharififar F: In vitro screening of
selected Iranian medicinal plants against helicobacter pylori. Int J
Green Pharm 2011, 5:282285.
26. Jantan IB, Karim Moharam BA, Santhanam J, Jamal JA: Correlation between
chemical composition and antifungal activity of the essential oils of
eight cinnamomum species. Pharm Biol 2008, 46:406412.
27. Jirovetz L, Buchbauer G, Ngassoum MB, Essia-Ngang JJ, Tatsadjieu LN,
Adjoudji O: Chemical composition and antibacterial activities of the
essential oils of plectranthus glandulosus and cinnamomum zeylanicum
from cameroon. Sci Pharm 2002, 70:9399.
28. Khan R, Islam B, Akram M, Shakil S, Ahmad A, Ali SM, Siddiqui M, Khan AU:
Antimicrobial activity of five herbal extracts against multi drug resistant
(MDR) strains of bacteria and fungus of clinical origin. Molecules 2009,
14:586597.
29. Lima EO, Gompertz OF, Giesbrecht AM, Paulo MQ: In-vitro antifungal
activity of essential oils obtained from officinal plants against
dermatophytes. Mycoses 1993, 36:333336.
30. Maidment C, Dyson A, Haysom I: A study into the antimicrobial effects of
cloves (syzgium aromaticum) and cinnamon (cinnamomum zeylanicum)
using disc-diffusion assay. Nutr Food Sci 2006, 36:225230.
31. Mandal S, Deb Mandal M, Saha K, Pal NK: In vitro antibacterial activity of
three Indian spices against methicillin- resistant staphylococcus aureus.
Oman Med J 2011, 26:319323.
32. Mastura M, Nor Azah MA, Khozirah S, Mawardi R, Manaf AA: Anticandidal
and antidermatophytic activity of cinnamomum species essential oils.
Cytobios 1999, 98:1723.
33. Meades G Jr, Henken RL, Waldrop GL, Rahman MM, Gilman SD, Kamatou GP,
Viljoen AM, Gibbons S: Constituents of cinnamon inhibit bacterial acetyl CoA
carboxylase. Planta Med 2010, 76:15701575.
34. Mishra AK, Mishra A, Bhargava A, Pandey AK: Antimicrobial activity of
essential oils from the leaves of cinnamomum spp. Natl Acad Sci Lett
2008, 31:341345.
35. Negi PS, Jayaprakasha GK, Rao LJ: Antibacterial activity of cinnamomum
zeylanicum fruit extracts. Sci Aliments 2007, 27:245250.
36. Noudeh GD, Sharififar F, Noodeh AD, Moshafi MH, Afzadi MA, Behravan E,
Aref M, Sakhtianchi R: Antitumor and antibacterial activity of four
fractions from heracleum persicum desf. And cinnamomum zeylanicum
blume. J Med Plants Res 2010, 4:21762180.
37. Rana IS, Singh A, Gwal R: In vitro study of antibacterial activity of
aromatic and medicinal plants essential oils with special reference to
cinnamon oil. Int J Pharm Pharm Sci 2011, 3:376380.
38. Senhaji O, Faid M, Kalalou I: Inactivation of escherichia coli O157:H7 by
essential oil from cinnamomum zeylanicum. Braz J Infect Dis 2007, 11:234236.
39. Shahverdi AR, Monsef-Esfahani HR, Tavasoli F, Zaheri A, Mirjani R: Trans-
cinnamaldehyde from cinnamomum zeylanicum bark essential oil
reduces the clindamycin resistance of clostridium difficile in vitro.
J Food Sci 2007, 72:S055058.
40. Singh HB, Srivastava M, Singh AB, Srivastava AK: Cinnamon bark oil, a
potent fungitoxicant against fungi causing respiratory tract mycoses.
Allergyy 1995, 50:995999.
41. Sivakumar A, Jayaraman G: Anti-tuberculosis activity of commonly used
medicinal plants of south India. J Med Plants Res 2011, 5:68816884.
42. Tekwu EM, Askun T, Kuete V, Nkengfack AE, Nyasse B, Etoa FX, Beng VP:
Antibacterial activity of selected cameroonian dietary spices ethno-
medically used against strains of mycobacterium tuberculosis.
J Ethnopharmacol 2012, 142:374382.
43. Unlu M, Ergene E, Unlu GV, Zeytinoglu HS, Vural N: Composition, antimicrobial
activity and in vitro cytotoxicity of essential oil from cinnamomum
zeylanicum blume (lauraceae). Food Chem Toxicol 2010, 48:32743280.
44. Abu El Ezz NMT, Khalil FAM, Shaapan RM: Therapeutic effect of onion (allium
cepa) and cinnamon (cinnamomum zeylanicum) oils on cryptosporidiosis
in experimentally infected mice. Global Vet 2011, 7:179183.
45. Rosti L, Gastaldi G: Chronic salmonellosis and cinnamon. Pediatrics 2005,
116:1057.
46. Rosti L, Gastaldi G, Frigiola A: Cinnamon and bacterial enteric infections.
Ind J Ped 2008, 75:529530.
47. Quale JM, Landman D, Zaman MM, Burney S, Sathe SS: In vitro activity of
cinnamomum zeylanicum against azole resistant and sensitive candida
species and a pilot study of cinnamon for oral candidiasis. Am J Chin
Med 1996, 24:103109.
48. Zhu M, Carvalho R, Scher A, Wu CD: Short-term germ-killing effect of
sugar-sweetened cinnamon chewing gum on salivary anaerobes
associated with halitosis. J Clin Dent 2011, 22:2326.
49. Samarasekera R, Kalhari KS, Weerasinghe IS: Mosquitocidal activity of leaf
and bark essential oils of ceylon cinnamomum zeylanicum. J Essent Oil
Res 2005, 17:301303.
50. Yang YC, Lee HS, Lee SH, Clark JM, Ahn YJ: Ovicidal and adulticidal
activities of cinnamomum zeylanicum bark essential oil compounds and
related compounds against pediculus humanus capitis (anoplura:
pediculicidae). Int J Parasitol 2005, 35:15951600.
51. Ranasinghe P, Jayawardana R, Galappaththy P, Constantine GR, de Vas
Gunawardana N, Katulanda P: Efficacy and safety of truecinnamon
(cinnamomum zeylanicum) as a pharmaceutical agent in diabetes:
a systematic review and meta-analysis. Diab Med 2012, 29:14801492.
52. Bandara T, Uluwaduge I, Jansz ER: Bioactivity of cinnamon with special
emphasis on diabetes mellitus: a review. Int J Food Sci Nutr 2012, 63:380386.
53. Hassan SA, Barthwal R, Nair MS, Haque SS: Aqueous bark extract of
cinnamomum zeylanicum: a potential therapeutic agent for
streptozotocin- induced type 1 diabetes mellitus (T1DM) rats.
Trop J Pharm Res 2012, 11:429435.
54. Javed I, Faisal I, Zia Ur R, Khan MZ, Muhammad F, Aslam B, Ahmad M,
Shahzadi A: Lipid lowering effect of cinnamomum zeylanicum in
hyperlipidaemic albino rabbits. Pak J Pharm Sci 2012, 25:141147.
55. Sambaiah K, Srinivasan K: Effect of cumin, cinnamon, ginger, mustard and
tamarind in induced hypercholesterolemic rats. Nahrung 1991, 35:4751.
56. Nyadjeu P, Dongmo A, Nguelefack TB, Kamanyi A: Antihypertensive and
vasorelaxant effects of cinnamomum zeylanicum stem bark aqueous extract in
rats. Integr Med: J Complement; 2011:8.
57. Wansi SL, Nyadjeu P, Ngamga D, Mbuyo EPN, Nguelefack TB, Kamanyi A:
Blood pressure lowering effect of the ethanol extract from the stembark
of cinnamomum zeylanicum (lauraceae) in rats. Pharmacol online 2007,
3:166176.
58. Markey O, McClean CM, Medlow P, Davison GW, Trinick TR, Duly E, Shafat A:
Effect of cinnamon on gastric emptying, arterial stiffness, postprandial
lipemia, glycemia, and appetite responses to high-fat breakfast.
Cardiovasc Diabetol 2011, 10:78.
59. Chericoni S, Prieto JA, Iacopini P, Cioni P, Morelli I: In vitro activity of the
essential oil of cinnamomum zeylanicum and eugenol in peroxynitrite-
induced oxidative processes. J Agric Food Chem 2005, 53:47624765.
60. Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK: Volatile constituents
from cinnamomum zeylanicum fruit stalks and their antioxidant
activities. J Agric Food Chem 2003, 51:43444348.
61. Jayaprakasha GK, Negi PS, Jena BS, Rao LJM: Antioxidant and
antimutagenic activities of cinnamomum zeylanicum fruit extracts.
J Food Compost Anal 2007, 20:330336.
62. Mancini-Filho J, Van-Koiij A, Mancini DA, Cozzolino FF, Torres RP:
Antioxidant activity of cinnamon (cinnamomum zeylanicum, breyne)
extracts. Boll Chimico Farm 1998, 137:443447.
63. Kitazuru ER, Moreira AVB, Mancini-Filho J, Delincee H, Villavicencio ALCH:
Effects of irradiation on natural antioxidants of cinnamon (cinnamomum
zeylanicum N.). Radiat Phys Chem 2004, 71:3941.
64. Mathew S, Abraham TE: Studies on the antioxidant activities of cinnamon
(cinnamomum verum) bark extracts, through various in vitro models.
Food Chem 2004, 94:520528.
65. Prakash D, Suri S, Upadhyay G, Singh BN: Total phenol, antioxidant and
free radical scavenging activities of some medicinal plants. Int J Food Sci
Nutr 2007, 58:1828.
66. Ranjbar A, Ghasmeinezhad S, Zamani H, Malekirad AA, Baiaty A,
Mohammadirad A, Abdollahi M: Antioxidative stress potential of
cinnamomum zeylanicum in humans: a comparative cross-sectional
clinical study. Therapy 2006, 3:113117.
67. Ranjbar A, Ghaseminejhad S, Takalu H, Baiaty A, Rahimi F, Abdollahi M: Anti
oxidative stress potential of cinnamon (cinnamomum zeylanicum) in
Ranasinghe et al. BMC Complementary and Alternative Medicine 2013, 13:275 Page 9 of 10
http://www.biomedcentral.com/1472-6882/13/275
operating room personnel; a before/after cross sectional clinical trial.
Int J Pharmacol 2007, 3:482486.
68. Peterson DW, George RC, Scaramozzino F, Lapointe NE, Anderson RA,
Graves DJ, Lew J: Cinnamon extract inhibits tau aggregation associated
with alzheimers disease in vitro. J Alzheimers Dis 2009, 17:585597.
69. Takasao N, Tsuji-Naito K, Ishikura S, Tamura A, Akagawa M: Cinnamon
extract promotes type i collagen biosynthesis via activation of IGF-I
signaling in human dermal fibroblasts. J Agric Food Chem 2012,
60:11931200.
70. Tsuji-Naito K: Aldehydic components of cinnamon bark extract
suppresses RANKL-induced osteoclastogenesis through NFATc1
downregulation. Bioorg Med Chem 2008, 16:91769183.
71. Alqasoumi S: Anti-secretagogue and antiulcer effects of cinnamon
cinnamomum zeylanicum in rats. J Pharmacog Phytother 2012, 4:5361.
72. Rao HJ, Lakshmi: Anti-diarrhoeal activity of the aqueous extract of the
bark of cinnamomum zeylanicum linn in mice. J Clin Diagn Res 2012,
6:215219.
73. Atta AH, Alkofahi A: Anti-nociceptive and anti-inflammatory effects of
some Jordanian medicinal plant extracts. J Ethnopharmacol 1998,
60:117124.
74. Ganapaty S, Beknal AK: Anti-inflammatory and analgesic activity of
cinnamomum zeylanicum leaf oil. Indian Drugs 2005, 42:824825.
75. Farahpour MR, Habibi M: Evaluation of the wound healing activity of an
ethanolic extract of ceylon cinnamon in mice. Vet Med 2012, 57:5357.
76. Kamath JV, Rana AC, Chowdhury AR: Pro-healing effect of cinnamomum
zeylanicum bark. Phytother Res 2003, 17:970972.
77. Eidi A, Mortazavi P, Bazargan M, Zaringhalam J: Hepatoprotective activity
of cinnamon ethanolic extract against CCL 4-induced liver injury in rats.
EXCLI J 2012, 11:495507.
78. Lu J, Zhang K, Nam S, Anderson RA, Jove R, Wen W: Novel angiogenesis
inhibitory activity in cinnamon extract blocks VEGFR2 kinase and
downstream signaling. Carcinogenesis 2010, 31:481488.
79. Domaracký M, Rehák P, Juhás Š, Koppel J: Effects of selected plant
essential oils on the growth and development of mouse
preimplantation embryos in vivo. Physiol Res 2007, 56:97104.
80. Pellegatti Lemonica I, Borro Macedo AMR: Abortive and/or
embryofetotoxic effect of cinnamomum zeylanicum leaf extracts in
pregnant rats. Fitoterapia 1994, 65:431434.
81. Shah AH, Al-Shareef AH, Ageel AM, Qureshi S: Toxicity studies in mice of
common spices, cinnamomum zeylanicum bark and piper longum fruits.
Plant Foods Hum Nutr 1998, 52:231239.
82. Chulasiri MU, Picha P, Rienkijkan M, Preechanukool K: The cytotoxic effect
of petroleum ether and chloroform extracts from ceylon cinnamon
(cinnamomum zeylanicum nees) barks on tumor cells in vitro. Int J Crude
Drug Res 1984, 22:177180.
83. Singh R, Koppikar SJ, Paul P, Gilda S, Paradkar AR, Kaul-Ghanekar R:
Comparative analysis of cytotoxic effect of aqueous cinnamon extract
from cinnamomum zeylanicum bark with commercial cinnamaldehyde
on various cell lines. Pharm Biol 2009, 47:11741179.
84. Preuss HG, Echard B, Polansky MM, Anderson R: Whole cinnamon and
aqueous extracts ameliorate sucrose-induced blood pressure elevations
in spontaneously hypertensive rats. J Am Coll Nutr 2006, 25:144150.
85. Cao H, Urban JF Jr, Anderson RA: Cinnamon polyphenol extract affects
immune responses by regulating anti- and proinflammatory and glucose
transporter gene expression in mouse macrophages. J Nutr 2008,
138:833840.
doi:10.1186/1472-6882-13-275
Cite this article as: Ranasinghe et al.:Medicinal properties of true
cinnamon (Cinnamomum zeylanicum): a systematic review. BMC
Complementary and Alternative Medicine 2013 13:275.
Submit your next manuscript to BioMed Central
and take full advantage of:
Convenient online submission
Thorough peer review
No space constraints or color figure charges
Immediate publication on acceptance
Inclusion in PubMed, CAS, Scopus and Google Scholar
Research which is freely available for redistribution
Submit your manuscript at
www.biomedcentral.com/submit
Ranasinghe et al. BMC Complementary and Alternative Medicine 2013, 13:275 Page 10 of 10
http://www.biomedcentral.com/1472-6882/13/275
... The mechanisms of action may be attributed to the delay of gastric emptying (Hlebowicz et al. 2007 However, data obtained in clinical trials from an analysis of type 2 diabetes mellitus studies are sparse; half of clinical trials used cinnamon, blood glucose response has shown slight improvement to blood glucose and significant inconsistencies (Singletary 2019). Accordingly, randomized controlled trials are important to determine these effective doses and to further advise public health (Ranasinghe et al. 2013). ...
Article
Full-text available
Based on a common belief, spices and herbs are commonly used by patients who seek conventional health care. Some spices and herbs have been extensively studied, but others are poorly understood. Spices and herbs with the least possible adverse outcomes should be centred on cancer care. Compelling evidence suggests that oxidative stress plays a predominant role in the development of chronic diseases including cancer. Oxidation damage depends on the acquired or inherited defects in enzymes mediated by their ox signalling pathway. Spices and herbs are rich in bioactive compounds and exert antioxidant activity, which is predominantly due to their red ox properties and their ability to inhibit the reactive oxygen species (ROS). In this review, we discussed the underlying molecular mechanisms of herbs and spices and its compounds in the modulation of cancer. The antibacterial, anti-diabetic, and antihypertensive activities of spices and herbs as well as their derived compounds were also discussed in this review. Collectively, a better understanding of the potential benefits of spices and herbs would provide a useful approach in the overall maintenance of health and prevention of cancer.
... Allopathic medicine may causes various disorder Herbal formulations means a dosage form consisting of one or more herbs or processed herbs in specified quantities to provide specific nutritional, cosmetic benefits meant for use to diagnose, treat, mitigate. [1][2][3][4][5] Herbal formulations contain an active substance or herbal substance or herbal preparation or herbal substance in combination with one or more herbal preparations. This Cocoa and chocolate products have been used as medicine in many cultures for centuries for their health benefits. ...
Article
Full-text available
The objective of this study is to design and fabricate chocolate. It is also called as chocolate drug delivery. The essential target of this study was to formulate and evaluate natural nutritious chocolate and nutritional supplement containing women hormonal imbalance that will have the additional work in infertility, ovulation, menopause, and pcos. Present study was to make to get ready chocolate plan of Vitex agnus-castus, cinnamon and holy basil which enhance the ovulation, hormonal function and also used in stress and insulin management. Chocolate is a range of products derived from cocoa (cacao), mixed with fat and finely powdered coconut sugar to produce a solid confectionery The medicated chocolate formulation is widely used for hormonal imbalance and increases patient compliance. The prepared chocolate formulations were evaluated for general appearance, Ph and stability and blooming tests and also shows good drug release properties.
... glabra L.) [36] , Harsingar (Nyctanthes arbortristis L.) [37] , Satavar (A. racemosus Willd) [38] , Cinnamon (C. zeylanicum Blume) [39] , Aloe (A. barbadensis Mill), Almond (P. amygdalus) [40,41] and Broccoli (B. ...
Article
Full-text available
The whole world is standing on the verse of COVID-19 (SARS-CoV-2) pandemic scenario, which revealed the endurance of our current health care system. Moreover, to overcome the global menace and dwindle the infection; there is an exigency for social distancing and quarantines. Health is the greatest wealth for human mankind. So, there has been a great requirement in ways to boost our immune system and to build a strong defence mechanism against the deadly virus and diseases. Since ancient times, the use of medicinal plants, herbs and spices has been well known for their medicinal and healing properties. Therefore, the use of medicinal plants and herbs will play a critical role in boosting our immunity during the COVID-19 pandemic, despite any side effects. It is also very important to consume supplements in the form of immune nutrients such as vitamin A, C, D, E, B-complex, Zinc and Copper that will support your body to fight against pathogens. We have been using different types of herbs which are traditionally being used by tribal and rural people of India as well as China and other developing countries in the form of ayurvedic formulations. This paper presents an analysis of popular immune-boosting medicinal plants and herbs and their effectiveness in the treatment of various ailments.
Article
Full-text available
Migraine headaches are highly prevalent, affecting 15% of the population. However, despite many studies to determine this disease's mechanism and efficient management, its pathophysiology has not been fully elucidated. There are suggested hypotheses about the possible mediating role of mast cells, immunoglobulin E, histamine, and cytokines in this disease. A higher incidence of this disease in allergic and asthma patients, reported by several studies, indicates the possible role of brain mast cells located around the brain vessels in this disease. The mast cells are more specifically within the dura and can affect the trigeminal nerve and cervical or sphenopalatine ganglion, triggering the secretion of substances that cause migraine. Neuropeptides such as calcitonin gene-related peptide (CGRP), neurokinin-A, neurotensin (NT), pituitary adenylate-cyclase-activating peptide (PACAP), and substance P (SP) trigger mast cells, and in response, they secrete pro-inflammatory and vasodilatory molecules such as interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) as a selective result of corticotropin-releasing hormone (CRH) secretion. This stress hormone contributes to migraine or intensifies it. Blocking these pathways using immunologic agents such as CGRP antibody, anti-CGRP receptor antibody, and interleukin-1 beta (IL-1β)/interleukin 1 receptor type 1 (IL-1R1) axis-related agents may be promising as potential prophylactic migraine treatments. This review is going to summarize the immunological aspects of migraine.
Chapter
In this chapter, the traditional use, the phytochemical composition, and the pharmacological activities of African medicinal plants displaying antibacterial effects were reported. We have pooled together the plants and phytochemicals active in pathogens of the family Enterobacteriaceae, as well as Pseudomonas aeruginosa, Gram-positive bacteria, and Mycobacteria. We also identified potent antibacterial medicinal plants of Africa having other pharmacological activities such as anti-inflammatory, anticancer, anti-diabetic, central nervous system, cardiovascular, anti-parasitic, hepatoprotective, immunomodulatory, nephroprotective, reproduction and digestive systems, antiviral, and wound healing activities. The documented plants can be further investigated globally by scientists to develop new herbal drugs to combat various types of bacterial infections.
Article
Aflatoxins are toxic secondary metabolites produced by Aspergillus fungi. The most toxic among them is Aflatoxin B1 (AFB1) which is known to have genotoxic, immunotoxic, teratogenic, carcinogenic, and mutagenic toxic effects (amongst others). The mechanisms responsible for its toxicity include the induction of oxidative stress, cytotoxicity, and DNAdamage. Studies have found that natural anti-oxidants can reduce the damage that AFB1 inflicts on the body by alleviating oxidative stress and inhibiting the biotransformation of AFB1. Therefore, this review outlines the latest progress in research on the use of natural anti-oxidants as antidotes to aflatoxin poisoning and their detoxification mechanisms. It also considers the problems that may possibly arise from their use and their application prospects. Our aim is to provide a useful reference for the prevention and treatment of AFB1 poisoning.
Chapter
In this chapter, a literature survey was performed to identify the best African plants and their derived phytochemicals with anti-Helicobacter pylori activity. Based on the established cut-off points for the classification of antibacterial activity of natural products, the most active African botanicals against Helicobacter pylori were identified as Lippia javanica, Eucalyptus grandis, Eryngium foetidum, Scleria striatinux, Lycopodium cernua, Ageratum conyzoides, Terminalia spinose, Eucalyptus camaldulensis, Eucalytus torelliana, Erythrina speciosa, Bidens pilosa, Galinsoga ciliata, Bryophyllum pinnatum, Spathodea campanulata, Peltophorum africanum, Eucalyptus globulus, and Harrisonia abyssinica. The phytochemicals exhibiting outstanding and excellent activities were identified as terpinen-4-ol (1), vokensiflavone (2), gingerol (3), fraxetin (4), 2-methoxy-1,4-naphthoquinone (5), 2-methoxy-6-acetyl-7-methyljuglone (6), 2-ethoxy-6-acetyl-7-methyljuglone (7), 2-methoxy-7-acetonyljuglone (8), 3-acetyl-7-methoxy-2-methyljuglone (9), juglone (10), polydatin (11), fuscaxanthones A (13), G (17) and I (12), cowanin (14), cowaxanthone (15), cowanol (16), fukugiside (18), berberine (19), pyrrolidine heterocyclic (20), 1-methyl-2- [(Z)-8-tridecenyl]-4-(1H)-quinolone (21), 1-methyl-2-[(Z)-7- tridecenyl]-4-(1H)-quinolone (22), ent-kaurenoic acid, emodin, α and β-mangostins, isojacareubin aned 1,3,5,6-tetrahydroxyxanthone. The identified plants and phytochemicals are potential sources of drugs and should be further explored to develop herbal medicine and pharmaceuticals to combat Helicobacter pylori infections involving both sensitive and resistant phenotypes.
Article
Cinnamon from the bark of Cinnamomum species is one of the most important spices used worldwide in food and as a traditional medicine for centuries. It has substantial benefits for human health including its protective role on cardiovascular diseases. This review provides an overview of the cardiovascular protective effects of cinnamon and its major bioactive constituents. Reviewed literature showed sufficient evidence that cinnamon can reduce the risk of cardiovascular diseases, including cardiac ischemia, cardiac hypertrophy, and myocardial infarction. Furthermore, cinnamon exhibited beneficial effects on cardiovascular-related comorbidities like diabetes, and other metabolic disorders, and showed antioxidant and anti-inflammatory effects. Cinnamon contains several bioactive compounds such as phenolics and volatile compounds. Cinnamaldehyde and cinnamic acid are among the main cinnamon compounds with protective effects on cardiovascular diseases through different molecular mechanisms. Although the protective effects of cinnamon and its main compounds have been extensively reported, more preclinical and clinical studies are still required before its use as a biopharmaceutical agent.
Article
Rheumatoid arthritis (RA) is considered to be an inflammatory disorder whereas OA is not an overtly inflammatory disorder as RA but certain inflammatory cytokines and periodic inflammation are observed to be involved in its progression. The pathophysiology of arthritis involves a cascade of processes taking place; therefore, arthritis necessitates a multidimensional approach for its management. Numerous conventional anti-arthritic drugs have been employed to relieve arthritis conditions but their efficacy and tolerability can be overshadowed by the reported deleterious effects on human health. Therefore, the pressing priority is to explore the complementary and alternative treatment options i.e., traditional medicine, medicinal plants and their phytochemicals, which exhibit significant anti-inflammatory activities with less deleterious effects on human health. The present review summarizes such potential medicinal plants and natural bio-active compounds against arthritis on the basis of their potent anti-inflammatory activities demonstrated in various in vitro, in vivo studies, other preclinical and clinical studies in order to facilitate researchers to develop phytomedicines against arthritis.
Article
Full-text available
Two aromatic plants have been selected for chemical investigation on account of their antibacterial activities, Plectranthus glandulosus (fresh leaves) and Cinnamomum zeylunicum (dried leaves). P. glandulosus is used as a medicinal plant, while Cinnamomum zeylunicum is used as a common spice in many recipes in Cameroon. The essential oils of the plants have been obtained by hydrodistillation using a Clevenger type apparatus, the yields of oils are about 0.3% and 2.0% respectively.The essential oil of P. glandulosus contains mainly β-thujone (about 31%), p-cymen-8-01 (about 25%) and neral (about 10%) and the essential oil of C. zcylcinicum is characterised by a high percentage of eugenol (85%).These essential oils have been tested against three strains of bacteria, namely Pseudornonas fluorescens. Escherichiu coli and Staphylococcus aureus; qualitative tests (diffusion through solid medium) and quantitative tests (dilution method) have been carried out. P. fluorescens shows a higher resistance to the two oils (MIC values not less than 5000 ppm). E. coli is more sensitive to these oils, while against S uureus the essential oil of C. zcylcinicum still shows a high activity (3500 ppm).The antibacterial activities of the essential oils could be attributed to the components eugenol as the active component of C. zcylcinicum and β-thujone and p-cymen-4-01 of the essential oil of P. glandulosus.
Article
Full-text available
Purpose: The plant, Cinnamomum zeylanicum (Laureceae), is a small, ever green plant which is native to southern India and it has been reported to possess a number of medicinal properties. The purpose of the present study was to evaluate the anti-diarrhoeal activity of the aqueous extract of the bark of Cinnamomum zeylanicum which is used traditionally as folk medicine, by using a castor oil and MgSO4 (Magnesium Sulphate) induced diarrhoea model. Methods: The aqueous extract of the bark of this plant at graded doses (100mg/kg, 200mg/kg body weight) was investigated for its anti-diarrhoeal activity in terms of the reduction in the rate of defaecation and the consistency of faeces in castor oil, Mgso4 induced diarrhoea. To understand the mechanism of its antidiarrhoeal activity, its effect was further evaluated on the gastrointestinal transit time with charcoal meal. Results: The bark extract showed significant (p
Article
Full-text available
The bark and the leaves of Cinnamomum species are commonly used as spices and their distilled essential oils are used as flavouring agent. The extract or essential oil of Cinnamomum zeylanicum stem bark is composed of a number of compounds (Cinnamaldehyde, cinnamic acid, cinnamyl acetate, Benzyl benzoate, a-Terpineol) and not all of them appear to have antimicrobial activities. The two (C. zeylanicum and C. cassia) barks oil extracts were prepared by hydro distillation method. Streptomycin (10μg/disc) and Chloramphenicol (30μg/disc) were used as standard drug, compared with C. zeylanicum and C. cassia crude oil extract. They were used 10μl for each experiment five pathogenic bacteria Bacillus subtilis (ATCC-6633), Klebsiella pneumonia (ATCC-13883), Pseudomonas aeruginosa (ATCC-10145), Staphylococcus aureus (ATCC-126000) and Escherichia coli (ATCC-6633) were used in this study. Among all these experiments the highest percentage of growth inhibition recorded in B. subtilis (53.3%) and S.aureus (53.3%) and the lowest growth inhibition recorded in E. Coli (44.4%), K. Pneumoniae (44.4%) with C. cassia oil extracts. The highest growth inhibition recorded in E. Coli (40%) with C. zeylanicum and lowest growth inhibition recorded in S. aureus (37.8%) with C. zeylanicum. The comparative analysis of bark oil extracts of C. zeylanicum and C. cassia with all these pathogenic bacteria were studied and recorded. C. cassia showed highest growth inhibition range than the C. zeylanicum.
Article
Anti-inflammatory and analgesic activity of the essential oil of Cinnamomum zeylanicum were studied and the results are discussed. It is found that the oil has significant anti-inflammatory and analgesic activity. The GC-MS data of the oil showed the presence of eugenol, β-caryophyllene, eugenyl acetate as major components along with nine minor components.
Article
Female Wistar rats received by gavage 70 mg/kg of aqueous and chloroform extracts of C. zeylanicum during pregnancy. The results showed that the females treated with both the extracts presented an increased number of resorptions, which explains their use as an abortive infusion by Brazilian people. A non significant number of abnormalities was observed in live fetuses, the same occurring with fetal weight and number of dead fetuses.
Article
This work was carried out from June to September 2007. The present study was designed to evaluate the antimicrobial activity of the extract taken from the South Indian spices namely Cardamom (Elettaria cardamomum), Cinnamon (Cinnamomum zeylanicum), Cloves (Syzygium aromaticum), Ginger (Zingiber officinale), Turmeric (Curcuma domestica), Cumin (Cuminum cyminum), Garlic (Allium sativum), Onion (Allium cepa), Coriander seeds (Coriandrum sativum) and Black pepper (Pepper nigrum) against six Gram negative enteric bacteria which are the potent food borne pathogens, i.e., Escherichia coli, Salmonella typhi, Salmonella paratyphi A, Salmonella paratyphi B, Brucella abortus and Brucella melitensis. In the later phase the inhibitory effect of these spices in combination was subjected for the antibacterial activity against the same pathogenic bacteria. In addition to this, the inhibitory effect was compared with that of five antibiotics (Ciprofloxacin, Chloramphenicol, Tetracycline, Streptomycin and Nalidixic acid). The study revealed that garlic extract (E7) was active against all the food pathogens. Cardamom extract (E1) showed excellent antibacterial activity against Brucella abortus, Brucella melitensis and Escherichia coli. The extract from cinnamon (E2)) was active against Brucella melitensis. Turmeric extract (E6) and pepper (E3) were active against Brucella abortus and Escherichia coli. Clove extract (E5) was active against all pathogens except Salmonella typhi. Extracts from Coriander (E9), Onion (E4), Cumin (E8) and Ginger (E10)) had no antibacterial activity.
Article
Cinamomum zeylanicum (Lauraceae) bark is generally used in Cameroon ethnomedicine for the treatment of cardiovascular diseases. Intravenous (i.v) injection of the ethanol extract resulted in a biphasic dose-related hypotensivc activity. In normotensive rats (NTR), C. zeylanicum at the doses of 5, 10 and 20 mg/kg decreased systolic blood pressure (SBP) an hour after administration by 10.51%, 17.55 % and 19.06 %, respectively. In salt-loaded hypertensive rats (SLHR), the decrease in systolic blood pressure was 13.10 %, 20.87 %, and 30.54 % at the above doses, respectively. This late hypotensive effects might be due to the reduction of peripheral resistance. In order to verify this hypothesis, the extract was assayed for its vasorelaxant activity. The results showed a vasorelaxant effect of C. zeylanicum on the rat thoracic aortic ring segments with (+E) or without (-E) endothelium precontracted with KC1 (60 mM), suggesting that, C. zeylanicum might be inhibiting extracellular Ca2+ through L-type voltage-sensitive channels. These findings suggest that C. zeylanicum exhibited it first hypotensive effect probably by reducing cardiac activity and secondly through vasodilation.
Article
Plant parts of eight spices namely Allium sativum, Brassica nigra, Cinnamomum cassia, Cinnamomum zeylanicum, Cuminum cyminum, Curcuma longa, Trigonella foenum-graecum and Zingiber officinale were screened for their anticandidal activities towards Candida albicans (NCIM 227), in culture media. Aqueous extracts, essential oils and powdered forms of reference spices constituted the test materials for present study. Spice agar method was followed for investigating anticandidal activities of powdered spice samples, while impregnated paper disc method and broth dilution technique were opted for screening inhibitory potentials of aqueous extracts and essential oils. Results revealed that essential oils most effectively inhibited the test microbe followed by powdered forms and aqueous extracts. Among all the powdered spice samples tested, C. zeylanicum inhibited C. albicans most effectively, and among essential oils, B. nigra produced widest growth inhibitory zone against test yeast strain. Minimum inhibitory concentrations of different spice forms were also determined.