ArticlePDF Available

Input Impedance, VSWR and Return Loss of a Conformal Microstrip Printed Antenna for TM10 mode Using Polymers as a Substrate Materials

Authors:

Abstract and Figures

Curvature has a great effect on fringing field of a microstrip antenna and consequently fringing field affects effective dielectric constant and then all antenna parameters. A new mathematical model for input impedance, return loss and voltage standing wave ratio is introduced in this paper. These parameters are given for TM 10 mode and using two dif-ferent substrate materials K-6098 Teflon/Glass and Epsilam-10 Ceramic-Filled Teflon materials. Keywords Fringing field, Curvature, effective dielectric constant and Return loss (S11), Voltage Standing Wave Ratio (VSWR), Transverse Magnetic TM 10 mode.
Content may be subject to copyright.
A preview of the PDF is not available
... The calculated power is described in decibels (dB) with negative value, more the negative value, less the return loss. Let the transmitted power be 'Pt', the reflected power be 'Pr' then the return loss (RL) is computed using equation (1) [7,10]. ...
...  VSWR: The ratio of the minimum to the maximum antenna voltage is defined as the VSWR (Voltage Standing Wave Ratio) [7,10]. The VSWR can be computed from reflection coefficient as described by equation (4). ...
Article
Full-text available
A temperature is one of the parameters that have a great effect on the performance of microstrip antennas for TM 10 mode at 2.4 GHz frequency range. The effect of temperature on a resonance frequency, input impedance, voltage standing wave ratio, and return loss on the performance of a cylindrical microstrip printed antenna is studied in this paper. The effect of temperature on electric and magnetic fields are also studied. Three different substrate materials RT/duroid-5880 PTFE, K-6098 Teflon/Glass, and Epsilam-10 ceramic-filled Teflon are used for verifying the new model. KEYWORDS Temperature, Voltage Standing Wave Ratio VSWR, Return loss S11, effective dielectric constant, Transverse Magnetic TM 10 model.
Article
Full-text available
A temperature is one of the parameters that have a great effect on the performance of microstrip antennas for TM01 mode. The effect of temperature on a resonance frequency, input impedance, voltage standing wave ratio, and return loss on the performance of a cylindrical microstrip printed antenna is studied in this paper. The effect of temperature on electric and magnetic fields are also studied. Three different substrate materials RT/duroid-5880 PTFE, K-6098 Teflon/Glass, and Epsilam-10 ceramic-filled Teflon are used for verifying the new model for a microstrip antenna for its flexibility on cylindrical bodies
Article
Full-text available
Due to unprinted growth in wireless applications and increasing demand of low cost solutions for RF and microwave communication systems, the microstrip flat antenna, has undergone tremendous growth recently. Though the models to analyze microstrip structures have been widely accepted, effect of curvature on dielectric constant and antenna performance has not been studied in detail. Low profile, low weight, low cost and its ability of conforming to curve surfaces [1], conformal microstrip structures have also witnessed enormous growth in the past few years. Applications of microstrip structures include Unmanned Aerial Vehicle (UAV), planes, rocket, radars and communication industry [2]. Some advantages of conformal
Article
Full-text available
The fringing field has an important effect on the accurate theoretical modeling and performance analysis of microstrip patch antennas. Though, fringing fields effects on the performance of antenna and its resonant frequency have been presented before, effects of curvature on fringing field have not been reported before. The effective dielectric constant is calculated using a conformal mapping technique for a conformal substrate printed on a cylindrical body. Furthermore, the effect of effective dielectric constant on the resonance frequency of the conformal microstrip antenna is also studied. Experimental results are compared to the analytical results for RT/duroid-5880 PTFE substrate material. Three different substrate materials RT/duroid-5880 PTFE, K-6098 Teflon/Glass, and Epsilam-10 ceramic-filled Teflon are used for verifying the new model. KEYWORDS Fringing field, microstrip antenna, effective dielectric constant and Resonance frequency.
Chapter
IntroductionThe ProblemElectrically Small SurfacesElectrically Large SurfacesTwo ExamplesA Comparison of Analysis Methods Appendix 4A—Interpretation of the ray theoryReferences
Chapter
In this chapter we describe the characteristics of cylindrical microstrip antennas excited by a coax feed or through a coupling slot fed by a microstrip feed line. Typical types of rectangular, triangular, circular, and annular-ring microstrip antennas are analyzed. Characterization of curvature effects on the input impedance and radiation characteristics is of major concern. Calculated solutions obtained from various theoretical techniques, such as the full-wave approach, cavity-model analysis, and the generalized transmission-line model (GTLM) theory, are shown and discussed. Some experimental results are also presented for comparison.
Book
This publication is the first comprehensive treatment of conformal antenna arrays from an engineering perspective. There are journal and conference papers that treat the field of conformal antenna arrays, but they are typically theoretical in nature. While providing a thorough foundation in theory, the authors of this publication provide readers with a wealth of hands-on instruction for practical analysis and design of conformal antenna arrays. Thus, readers gain the knowledge they need, alongside the practical know-how to design antennas that are integrated into structures such as an aircraft or a skyscraper. Compared to planar arrays, conformal antennas, which are designed to mold to curved and irregularly shaped surfaces, introduce a new set of problems and challenges. To meet these challenges, the authors provide readers with a thorough understanding of the nature of these antennas and their properties. Then, they set forth the different methods that must be mastered to effectively handle conformal antennas. This publication goes well beyond some of the common issues dealt with in conformal antenna array design into areas that include: Mutual coupling among radiating elements and its effect on the conformal antenna array characteristics Doubly curved surfaces and dielectric covered surfaces that are handled with a high frequency method Explicit formulas for geodesics on surfaces that are more general than the canonical circular cylinder and sphere With specific examples of conformal antenna designs, accompanied by detailed illustrations and photographs, this is a must-have reference for engineers involved in the design and development of conformal antenna arrays. The publication also serves as a text for graduate courses in advanced antennas and antenna systems.
Conference Paper
The work presents a design of a cylindrical conformal phased microstrip antenna array. Based on the HFM and the parallel feed network, a conformal microstrip 2 times 8 array on a cylinder surface is designed by the isotropic transformation theory (IT). Simulation results show that the conformal array works at 35GHz and the gain is 19.6dB at the center frequency. The phase-scanned patterns of the conformal 2 times 8 array are analyzed by the CST using phase control method. From the comparison of the scanning results at different phase division, it can be found that the scan angle, the angular width and the side lobe level varies following the trends of the phase division, at the same time, the gain of the conformal array changes markedly opposite the trends of the phase division. Therefore, this is a shortcoming of the conformal phased array. This kind of conformal phased sub-array can be easily expanded into a large-scale conformal array and be suitable for active integration with other microwave circuits and communication systems if this disadvantage was eliminated after further discussion in future.
Conference Paper
The conformal FDTD algorithm is employed to analyze the characteristics of the probe-fed conically conformal microstrip patch antenna. The non-uniform meshing technique in Cartesian coordinate system is used. The numerical results show that the conformal algorithm is efficient and accurate enough, besides its better adaptability in dealing with arbitrary antenna structures and shapes.
Conference Paper
In this article, design and implement of anti-impact and over-loading projectile conform al antennas for GPS is introduced. First step, material and thickness of base for antennas should be chosen, then width and length of antennas is calculated, next step to polarize antennas and give location of feed points. The designed antenna is emulated and analyzed by IE3D software, and certain parameter is modulated. At last anti-impact and over loading experiment s is carried to prove designed antenna could be applied in execrable condition, and location experiments is carried to show actual effect of designed antenna.