ArticlePDF Available

The Enterprise AID Methodology: Application

Authors:

Abstract and Figures

Enterprise AID - assessment, improvement, and design - is a methodology for the design and deployment of performance measurement systems (PMSs) able to address specific problems of specific enterprises pursuing any or all of enterprise assessment, improvement, or design. It features two successive phases respectively invoking its design and deployment capabilities, and it represents designers’ inductively generated response to what they perceive as a gap between capabilities needed to support contemporary enterprises and those offered by contemporary PMSs. This paper describes a prototype application of the methodology centered on a university research center and presents generalized lessons learned from that effort, including the importance of consensus on problem statement definition, recognition of the need to realistically limit the number of measures within a PMS, and others.
Content may be subject to copyright.
A preview of the PDF is not available
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
(This partially reprinted article originally appeared in Psychological Review, 1956, Vol 63, 81–97. The following abstract of the original article appeared in PA, Vol 31:2914.) A variety of researches are examined from the standpoint of information theory. It is shown that the unaided observer is severely limited in terms of the amount of information he can receive, process, and remember. However, it is shown that by the use of various techniques, e.g., use of several stimulus dimensions, recoding, and various mnemonic devices, this informational bottleneck can be broken. 20 references. (PsycINFO Database Record (c) 2012 APA, all rights reserved)
Article
Full-text available
A variety of researches are examined from the standpoint of information theory. It is shown that the unaided observer is severely limited in terms of the amount of information he can receive, process, and remember. However, it is shown that by the use of various techniques, e.g., use of several stimulus dimensions, recoding, and various mnemonic devices, this informational bottleneck can be broken. 20 references. (PsycINFO Database Record (c) 2006 APA, all rights reserved).
Article
The approach described in this paper represents a substantive departure from the conventional quantitative techniques of system analysis. It has three main distinguishing features: 1) use of so-called ``linguistic'' variables in place of or in addition to numerical variables; 2) characterization of simple relations between variables by fuzzy conditional statements; and 3) characterization of complex relations by fuzzy algorithms. A linguistic variable is defined as a variable whose values are sentences in a natural or artificial language. Thus, if tall, not tall, very tall, very very tall, etc. are values of height, then height is a linguistic variable. Fuzzy conditional statements are expressions of the form IF A THEN B, where A and B have fuzzy meaning, e.g., IF x is small THEN y is large, where small and large are viewed as labels of fuzzy sets. A fuzzy algorithm is an ordered sequence of instructions which may contain fuzzy assignment and conditional statements, e.g., x = very small, IF x is small THEN Y is large. The execution of such instructions is governed by the compositional rule of inference and the rule of the preponderant alternative. By relying on the use of linguistic variables and fuzzy algorithms, the approach provides an approximate and yet effective means of describing the behavior of systems which are too complex or too ill-defined to admit of precise mathematical analysis.
Article
By a linguistic variable we mean a variable whose values are words or sentences in a natural or artificial language. For example, Age is a linguistic variable if its values are linguistic rather than numerical, i.e.,young, not young, very young, quite young, old, not very old and not very young, etc., rather than 20, 21,22, 23, In more specific terms, a linguistic variable is characterized by a quintuple (L>, T(L), U,G,M) in which L is the name of the variable; T(L) is the term-set of L, that is, the collection of its linguistic values; U is a universe of discourse; G is a syntactic rule which generates the terms in T(L); and M is a semantic rule which associates with each linguistic value X its meaning, M(X), where M(X) denotes a fuzzy subset of U. The meaning of a linguistic value X is characterized by a compatibility function, c: U → [0,1], which associates with each u in U its compatibility with X. Thus, the compatibility of age 27 with young might be 0.7, while that of 35 might be 0.2. The function of the semantic rule is to relate the compatibilities of the so-called primary terms in a composite linguistic value-e.g., young and old in not very young and not very old-to the compatibility of the composite value. To this end, the hedges such as very, quite, extremely, etc., as well as the connectives and and or are treated as nonlinear operators which modify the meaning of their operands in a specified fashion. The concept of a linguistic variable provides a means of approximate characterization of phenomena which are too complex or too ill-defined to be amenable to description in conventional quantitative terms. In particular, treating Truth as a linguistic variable with values such as true, very true, completely true, not very true, untrue, etc., leads to what is called fuzzy logic. By providing a basis for approximate reasoning, that is, a mode of reasoning which is not exact nor very inexact, such logic may offer a more realistic framework for human reasoning than the traditional two-valued logic. It is shown that probabilities, too, can be treated as linguistic variables with values such as likely, very likely, unlikely, etc. Computation with linguistic probabilities requires the solution of nonlinear programs and leads to results which are imprecise to the same degree as the underlying probabilities. The main applications of the linguistic approach lie in the realm of humanistic systems-especially in the fields of artificial intelligence, linguistics, human decision processes, pattern recognition, psychology, law, medical diagnosis, information retrieval, economics and related areas.
Article
By a linguistic variable we mean a variable whose values are words or sentences in a natural or artificial language. For example, Age is a linguistic variable if its values are linguistic rather than numerical, i.e.,young, not young, very young, quite young, old, not very old and not very young, etc., rather than 20, 21,22, 23, In more specific terms, a linguistic variable is characterized by a quintuple (L>, T(L), U,G,M) in which L is the name of the variable; T(L) is the term-set of L, that is, the collection of its linguistic values; U is a universe of discourse; G is a syntactic rule which generates the terms in T(L); and M is a semantic rule which associates with each linguistic value X its meaning, M(X), where M(X) denotes a fuzzy subset of U. The meaning of a linguistic value X is characterized by a compatibility function, c: U → [0,1], which associates with each u in U its compatibility with X. Thus, the compatibility of age 27 with young might be 0.7, while that of 35 might be 0.2. The function of the semantic rule is to relate the compatibilities of the so-called primary terms in a composite linguistic value-e.g., young and old in not very young and not very old-to the compatibility of the composite value. To this end, the hedges such as very, quite, extremely, etc., as well as the connectives and and or are treated as nonlinear operators which modify the meaning of their operands in a specified fashion. The concept of a linguistic variable provides a means of approximate characterization of phenomena which are too complex or too ill-defined to be amenable to description in conventional quantitative terms. In particular, treating Truth as a linguistic variable with values such as true, very true, completely true, not very true, untrue, etc., leads to what is called fuzzy logic. By providing a basis for approximate reasoning, that is, a mode of reasoning which is not exact nor very inexact, such logic may offer a more realistic framework for human reasoning than the traditional two-valued logic. It is shown that probabilities, too, can be treated as linguistic variables with values such as likely, very likely, unlikely, etc. Computation with linguistic probabilities requires the solution of nonlinear programs and leads to results which are imprecise to the same degree as the underlying probabilities. The main applications of the linguistic approach lie in the realm of humanistic systems-especially in the fields of artificial intelligence, linguistics, human decision processes, pattern recognition, psychology, law, medical diagnosis, information retrieval, economics and related areas.
Article
One of the fundamental tenets of modern science is that a phenomenon cannot be claimed to be well understood until it can be characterized in quantitative terms.l Viewed in this perspective, much of what constitutes the core of scientific knowledge may be regarded as a reservoir of concepts and techniques which can be drawn upon to construct mathematical models of various types of systems and thereby yield quantitative information concerning their behavior.
Article
Examines timely multidisciplinary applications, problems, and case histories in risk modeling, assessment, and management. Risk Modeling, Assessment, and Management, Third Edition describes the state of the art of risk analysis, a rapidly growing field with important applications in engineering, science, manufacturing, business, homeland security, management, and public policy. Unlike any other text on the subject, this definitive work applies the art and science of risk analysis to current and emergent engineering and socioeconomic problems. It clearly demonstrates how to quantify risk and construct probabilities for real-world decision-making problems, including a host of institutional, organizational, and political issues. Avoiding higher mathematics whenever possible, this important new edition presents basic concepts as well as advanced material. It incorporates numerous examples and case studies to illustrate the analytical methods under discussion and features restructured and updated chapters, as well as: A new chapter applying systems-driven and risk-based analysis to a variety of Homeland Security issues. An accompanying FTP site-developed with Professor Joost Santos-that offers 150 example problems with an Instructor's Solution Manual and case studies from a variety of journals. Case studies on the 9/11 attack and Hurricane Katrina. An adaptive multiplayer Hierarchical Holographic Modeling (HHM) game added to Chapter Three. This is an indispensable resource for academic, industry, and government professionals in such diverse areas as homeland and cyber security, healthcare, the environment, physical infrastructure systems, engineering, business, and more. It is also a valuable textbook for both undergraduate and graduate students in systems engineering and systems management courses with a focus on our uncertain world.
Enterprise AID: A performance measurement system for enterprise assessment, improvement, and design
  • P T Hester
  • T J Meyers
P. T. Hester and T. J. Meyers, "Enterprise AID: A performance measurement system for enterprise assessment, improvement, and design (NCSOSE-TR-12-001)," Norfolk, VA2012.