The Scientific Basis for Chelation: Animal Studies and Lead Chelation

Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, USA, .
Journal of medical toxicology: official journal of the American College of Medical Toxicology 10/2013; 9(4). DOI: 10.1007/s13181-013-0339-2
Source: PubMed


This presentation summarizes several of the rodent and non-human studies that we have conducted to help inform the efficacy and clinical utility of succimer (meso-2,3-dimercaptosuccincinic acid) chelation treatment. We address the following questions: (1) What is the extent of body lead, and in particular brain lead reduction with chelation, and do reductions in blood lead accurately reflect reductions in brain lead? (2) Can succimer treatment alleviate the neurobehavioral impacts of lead poisoning? And (3) does succimer treatment, in the absence of lead poisoning, produce neurobehavioral deficits? Results from our studies in juvenile primates show that succimer treatment is effective at accelerating the elimination of lead from the body, but chelation was only marginally better than the complete cessation of lead exposure alone. Studies in lead-exposed adult primates treated with a single 19-day course of succimer showed that chelation did not measurably reduce brain lead levels compared to vehicle-treated controls. A follow-up study in rodents that underwent one or two 21-day courses of succimer treatment showed that chelation significantly reduced brain lead levels, and that two courses of succimer were significantly more efficacious at reducing brain lead levels than one. In both the primate and rodent studies, reductions in blood lead levels were a relatively poor predictor of reductions in brain lead levels. Our studies in rodents demonstrated that it is possible for succimer chelation therapy to alleviate certain types of lead-induced behavioral/cognitive dysfunction, suggesting that if a succimer treatment protocol that produced a substantial reduction of brain lead levels could be identified for humans, a functional benefit might be derived. Finally, we also found that succimer treatment produced lasting adverse neurobehavioral effects when administered to non-lead-exposed rodents, highlighting the potential risks of administering succimer or other metal-chelating agents to children who do not have elevated tissue lead levels. It is of significant concern that this type of therapy has been advocated for treating autism.

Download full-text


Available from: Donald R Smith, Jun 03, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The National Center for Health Statistics estimates that more than 100,000 Americans receive chelation each year, although far fewer than 1 % of these cases are managed by medical toxicologists. Unfortunately, fatalities have been reported after inappropriate chelation use. There are currently 11 FDA-approved chelators available by prescription although chelation products may also be obtained through compounding pharmacies and directly over the internet. Promotion of chelation training is prominent on some alternative and complementary medicine websites.
    Preview · Article · Oct 2013 · Journal of medical toxicology: official journal of the American College of Medical Toxicology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chelation for heavy metal intoxication began more than 70 years ago with the development of British anti-lewisite (BAL; dimercaprol) in wartime Britain as a potential antidote the arsenical warfare agent lewisite (dichloro[2-chlorovinyl]arsine). DMPS (unithiol) and DMSA (succimer), dithiol water-soluble analogs of BAL, were developed in the Soviet Union and China in the late 1950s. These three agents have remained the mainstay of chelation treatment of arsenic and mercury intoxication for more than half a century. Animal experiments and in some instances human data indicate that the dithiol chelators enhance arsenic and mercury excretion. Controlled animal experiments support a therapeutic role for these chelators in the prompt treatment of acute poisoning by arsenic and inorganic mercury salts. Treatment should be initiated as rapidly as possible (within minutes to a few hours), as efficacy declines or disappears as the time interval between metal exposure and onset of chelation increases. DMPS and DMSA, which have a higher therapeutic index than BAL and do not redistribute arsenic or mercury to the brain, offer advantages in clinical practice. Although chelation following chronic exposure to inorganic arsenic and inorganic mercury may accelerate metal excretion and diminish metal burden in some organs, potential therapeutic efficacy in terms of decreased morbidity and mortality is largely unestablished in cases of chronic metal intoxication.
    No preview · Article · Nov 2013 · Journal of medical toxicology: official journal of the American College of Medical Toxicology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Four case studies described in this article were presented to a panel of physicians participating in the ACMT "Use and Misuse of Metal Chelation Therapy" Symposium in February 2012. The individuals who participated in the panel are listed in the appendix. These cases highlight some of the practical questions facing medical providers when issues of metal toxicity and its treatment arise. Medical toxicologists are valuable resources for information, public debate, consultation, and treatment of patients with concerns about heavy metal exposure.
    No preview · Article · Nov 2013 · Journal of medical toxicology: official journal of the American College of Medical Toxicology
Show more