Low-duty-cycle operation has been adopted to alleviate the consumption rate of energy, which is significant for the power scarcity sensor networks. The sleep latency brought by low-duty-cycle mode, however, leads to a dramatic increase of delay, which may not be tolerable for delay-sensitive applications. In this work, we introduce the transmission power control mechanism into low-duty-cycle
... [Show full abstract] sensor networks. Particularly, we propose Delay-bounded Transmission Power Control (DTPC), a cross-layer approach, to minimize the energy consumption of sensor nodes while meeting the user-specified delay constraint. In DTPC, each node builds its own transmission table using dynamical programming and then adaptively selects the approximate forwarding entry according to the delay bound. In addition, our design is embedded to support both single-parent and multi-parent data forwarding scheme. The extensive simulations and test-bed experiment results show that DTPC can guarantee the delay bound with much lower energy cost compared with other well-known schemes.