Article

Conduction modulation of π-stacked ethylbenzene wires on Si(100) with substituent groups

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

For the realization of molecular electronics, one essential goal is the ability to systematically fabricate molecular functional components in a well-controlled manner. Experimental techniques have been developed such that π-stacked ethylbenzene molecules can now be routinely induced to self-assemble on an H-terminated Si(100) surface at precise locations and along precise directions. Electron transport calculations predict that such molecular wires could indeed carry an electrical current, but the Si substrate may play a considerable role as a competing pathway for conducting electrons. In this work, we investigate the effect of placing substituent groups of varying electron donating or withdrawing strengths on the ethylbenzene molecules to determine how they would affect the transport properties of such molecular wires. The systems consist of a line of π-stacked ethylbenzene molecules covalently bonded to a Si substrate. The ethylbenzene line is bridging two Al electrodes to model current through the molecular stack. For our transport calculations, we employ a first-principles technique where density functional theory (DFT) is used within the non-equilibrium Green’s function formalism (NEGF). The calculated density of states suggest that substituent groups are an effective way to shift molecular states relative to the electronic states associated with the Si substrate. The electron transmission spectra obtained from the NEGF–DFT calculations reveal that the transport properties could also be extensively modulated by changing substituent groups. For certain molecules, it is possible to have a transmission peak at the Fermi level of the electrodes, corresponding to high conduction through the molecular wire with essentially no leakage into the Si substrate.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Within molecular electronics, the molecular scale transistor provides a compelling and central device. While substantial efforts have been expended on this subject, current embodiments typically involve cumbersome gating with non-intuitive routes for integration. In this theoretical study we examined the efficacy of combining a new molecular architecture with the well-established atomic resolution of the Si(100)2x1 hydride terminated surface to provide a molecular scale modulation scheme that is conceptually easier to integrate. A series of alkyl substituted carbazoles: ethylcarbazole, butylcarbazole, hexylcarbazole, and decylcarbazole, operating in the σ-π motif provided the transport conduit through extended conjugation of π-π stacking upon assembly along the Si(100)2x1 dimer row. It was found that alkyl substituent lengths greater than 4 methylene units (butylcarbazole) effectively isolated the extended π-conjugation from the underlying substrate by preventing tunneling due to breakdown at terminal alkyl chains and coupling of eigenstates between the π-stack and silicon crystal. These findings were corroborated by systematically stepping through the alkyl substitution length and noting the distribution of eignstates for all peaks in the corresponding transmission spectrum of π-stacked wires as well as by plotting the zero-bias resistance against wire length. The resistance plots demonstrated a single, molecularly isolated, tunneling type scaling factor β for hexyl through decylcarbazole. In contrast, an inflection point was observed for the shorter ethyl and butylcarbazole indicating a transition to dual, substrate routed, conduction pathways in these cases. Further investigation of device response to localized gate potentials demonstrated that substituent lengths greater than 6 methylene units (hexylcarbazole) could block eignestate coupling between the π-stack and substrate for gate potentials in the range of -4 to 1.5 V. This degree of isolation supported a modulation factor of over a 106x in conductance. These results suggest that elongating the σ group in crystalline organized σ-π assemblies may support transistor modulation by exploiting the underlying substrate as an easily integrated gate.
Article
It has been a long-standing goal to make conductive molecular wires or linear polymer chains on traditional semiconductors or insulator substrates to satisfy the ongoing miniaturization in electronic devices. Here, we have proposed a surface in situ polymerization reaction for a pre-absorbed molecule, 4-hydrazinyl-3-(pyridin-4-ylmethyl)-benzaldehyde (HPyMB), to produce a conductive molecular wire on a silicon surface. Our first-principles calculations show that HPyMB molecules can absorb alternatively on the exposed Si atoms created via ultrahigh vacuum scanning tunneling microscopy on a hydrogen passivated H-Si(001)2 × 1 surface along the [110] direction. The adsorption is exothermic and its generated energy is sufficient for the following intermolecular dehydration polymerization reaction to overcome the activation energy barriers and thereafter form a molecular wire on the surface. This polymerized molecular wire is mechanically stable since it is chemically bonded onto the surface. After polymerization, the system becomes conductive due to the charge transfer from the molecule-surface bonds to their pyridine rings. More importantly, by removing 1.1 electrons from the system, the surface polymer chain is the sole conductive channel. Furthermore, its conducting nature remains robust even under a large external electric field. Our findings open a new window for the fabrication of conductive molecular wires or polymer chains on semiconductor surfaces, and provide insights into the mechanism behind the molecular wire conductivity.
Article
The effect of methyl substitution in styrene molecules on the spatial arrangement of molecules in a one-dimensional (1-D) molecular assembly on the Si(100)-(2×1)-H surface has been studied using a scanning tunneling microscope (STM) at 300 K. Styrene molecules form well-defined 1-D molecular assemblies through a chain reaction mechanism along the dimer row direction, where the phenyl rings are separated by distances equal to that of the interdimer distance in a row and aligned parallel to each other. We observed that the substitution in a phenyl ring has no observable effect on the adsorption sites, configurations, and stacking of phenyl rings along the dimer row. In contrast, the methyl substitution at α site (α-methylstyrene) results in a 1-D assembly where the adsorption sites are similar to that of styrene but the adsorbed molecules are arranged in alternate geometrical configurations along the dimer row. In the case of β-methylstyrene, the adsorption sites (diagonal silicon atoms in a dimer row) and the geometrical configurations of adsorbed molecules along the dimer row are different from that of styrene. These results suggest that the selective arrangement of the molecules in a 1-D assembly can be achieved by inducing a steric hindrance through substitution at specific sites of the reacting molecule.
Article
Sensors play a significant role in the detection of toxic species and explosives, and in the remote control of chemical processes. In this work, we report a single-molecule-based pH switch/sensor that exploits the sensitivity of dye molecules to environmental pH to build metal-molecule-metal (m-M-m) devices using the scanning tunneling microscopy (STM) break junction technique. Dyes undergo pH-induced electronic modulation due to reversible structural transformation between a conjugated and a nonconjugated form, resulting in a change in the HOMO-LUMO gap. The dye-mediated m-M-m devices react to environmental pH with a high on/off ratio (≈100:1) of device conductivity. Density functional theory (DFT) calculations, carried out under the non-equilibrium Green's function (NEGF) framework, model charge transport through these molecules in the two possible forms and confirm that the HOMO-LUMO gap of dyes is nearly twice as large in the nonconjugated form as in the conjugated form.
Article
The formation of a molecular assembly through the chain reaction of some simple vinyl substituted acenes with the dangling bond site of H-terminated Si(100)-(2 X 1) surface has been studied under ultrahigh vacuum conditions at room temperature. The molecular assemblies formed on the surface were checked using an in situ scanning tunneling microscope (STM). While styrene and 2-vinylnaphthalene undergo a dangling bond initiated chain reaction forming a perfectly ordered one-dimensional (1D) assembly as expected, 9-vinylanthracene exhibits unique behavior in forming the molecular assemblies studied to date. Both the perfectly ordered ID and irregularly shaped disordered assemblies are formed by the 9-vinylanthracene molecules on the surface, which allows us to directly compare the interaction between molecules in two different assemblies. Biased dependent changes of the relative contrast of ordered and disordered assemblies formed by 9-vinylanthracene indicates a significant pi-pi interaction between the molecules in ID assembly, which tends to delocalize and disperse the valence and conduction band of ordered assemblies. This study suggests that an increased pi-pi interaction is expected in a ID assembly of larger molecules of the acene family, although there is a limit of forming such ordered assembly using larger acenes at room temperature.
Article
One-dimensional (ID) molecular assemblies have been considered as one of the potential candidates for miniaturized electronic circuits in organic electronics. Here, we present the quantitative experimental measurements of the dispersive electronic feature of 1D benzophenone molecular assemblies on the Si(001)-(2x1)-H. The well-aligned molecular lines and their certain electronic state dispersion were observed by scanning tunneling microscopy (STM) and angleresolved ultraviolet photoemission spectroscopy (ARUPS), respectively. Density functional theory (DFT) calculations reproduced not only the experimental STM image but also the dispersive features that originated from the stacking phenyl gorbitals in the molecular assembly. We obtained the effective mass of 2.0m(e) for the hole carrier along the dispersive electronic state, which was comparable to those of the single-crystal molecules widely used in organic electronic applications. These results ensure the one-dimensionally delocalized electronic states in the molecular lines, which is requisitely demanded for a charge-transport wire.
Article
Advancements in computing architecture and in theoretical techniques allow for the modeling of complex, extended systems. This section of the 50th anniversary issue of Theoretical Chemistry Accounts highlights modeling work performed on nanostructured systems and underscores the enormous potential for synergy between theory and experiment in modern nanoscience.
Article
Full-text available
We present an efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set. In the first part the application of Pulay's DIIS method (direct inversion in the iterative subspace) to the iterative diagonalization of large matrices will be discussed. Our approach is stable, reliable, and minimizes the number of order N-atoms(3) operations. In the second part, we will discuss an efficient mixing scheme also based on Pulay's scheme. A special ''metric'' and a special ''preconditioning'' optimized for a plane-wave basis set will be introduced. Scaling of the method will be discussed in detail for non-self-consistent calculations. It will be shown that the number of iterations required to obtain a specific precision is almost independent of the system size. Altogether an order N-atoms(2) scaling is found for systems up to 100 electrons. If we take into account that the number of k points can be implemented these algorithms within a powerful package called VASP (Vienna ab initio simulation package). The program and the techniques have been used successfully for a large number of different systems (liquid and amorphous semiconductors, liquid simple and transition metals, metallic and semiconducting surfaces, phonons in simple metals, transition metals, and semiconductors) and turned out to be very reliable.
Article
Full-text available
The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Blöchl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules (H2, H2O, Li2, N2, F2, BF3, SiF4) and several bulk systems (diamond, Si, V, Li, Ca, CaF2, Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.
Article
Full-text available
Electrical transport through molecules has been much studied since it was proposed that individual molecules might behave like basic electronic devices, and intriguing single-molecule electronic effects have been demonstrated. But because transport properties are sensitive to structural variations on the atomic scale, further progress calls for detailed knowledge of how the functional properties of molecules depend on structural features. The characterization of two-terminal structures has become increasingly robust and reproducible, and for some systems detailed structural characterization of molecules on electrodes or insulators is available. Here we present scanning tunnelling microscopy observations and classical electrostatic and quantum mechanical modelling results that show that the electrostatic field emanating from a fixed point charge regulates the conductivity of nearby substrate-bound molecules. We find that the onset of molecular conduction is shifted by changing the charge state of a silicon surface atom, or by varying the spatial relationship between the molecule and that charged centre. Because the shifting results in conductivity changes of substantial magnitude, these effects are easily observed at room temperature.
Article
We report on the synthesis, scanning tunnel microscope (STM) imaging, and theoretical studies of the structure, electronic structure, and transport properties of linear chains of styrene and methylstyrene molecules and their heterojunctions on hydrogen-terminated dimerized silicon (001) surfaces. The theory presented here accounts for the essential features of the experimental STM data including the nature of the corrugation observed along the molecular chains and the pronounced changes in the contrast between the styrene and methylstyrene parts of the molecular chains that are observed as the applied bias is varied. The observed evolution with applied bias of the STM profiles near the ends of the molecular chains is also explained. Calculations are also presented of electron transport along styrene linear chains adsorbed on the silicon surface at energies in the vicinity of the molecular highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels. For short styrene chains this lateral transport is found to be due primarily to direct electron transmission from molecule to molecule rather than through the silicon substrate, especially in the molecular LUMO band. Differences between the calculated position dependences of the STM current around a junction of styrene and methylstyrene molecular chains under positive and negative tip bias are related to the nature of lateral electron transmission along the molecular chains and to the formation in the LUMO band of an electronic state localized around the heterojunction.
Article
Ultrahigh vacuum scanning tunneling microscopy is employed for the nanofabrication and characterization of atomically registered heteromolecular organosilicon nanostructures at room temperature. In the first fabrication step, feedback controlled lithography (FCL) is used to pattern individual 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) free radical molecules at opposite ends of the same dimer row on the Si(100)-2×1:H surface. In atomic registration with the first pattern, FCL is subsequently applied for the removal of a single hydrogen atom. The resulting dangling bond templates the spontaneous growth of a styrene chain that is oriented along the underlying dimer row. The styrene chain growth is bounded by the originally patterned TEMPO molecules, thus resulting in a heteromolecular organosilicon nanostructure. The demonstration of multistep FCL suggests that this approach can be widely used for fundamental studies and fabricating prototype devices that require atomically registered organic molecules mounted on silicon surfaces.
Article
1. Preliminary concepts 2. Conductance from transmission 3. Transmission function, S-matrix and Green's functions 4. Quantum Hall effect 5. Localisation and fluctuations 6. Double-barrier tunnelling 7. Optical analogies 8. Non-equilibrium Green's function formalism.
Article
We report on a self-consistent ab initio technique for modeling quantum transport properties of atomic and molecular scale nanoelectronic devices under external bias potentials. The technique is based on density functional theory using norm conserving nonlocal pseudopotentials to define the atomic core and nonequilibrium Green’s functions (NEGF’s) to calculate the charge distribution. The modeling of an open device system is reduced to a calculation defined on a finite region of space using a screening approximation. The interaction between the device scattering region and the electrodes is accounted for by self-energies within the NEGF formalism. Our technique overcomes several difficulties of doing first principles modeling of open molecular quantum coherent conductors. We apply this technique to investigate single wall carbon nanotubes in contact with an Al metallic electrode. We have studied the current-voltage characteristics of the nanotube-metal interface from first principles. Our results suggest that there are two transmission eigenvectors contributing to the ballistic conductance of the interface, with a total conductance G≈G0 where G0=2e2/h is the conductance quanta. This is about half of the expected value for infinite perfect metallic nanotubes.
Article
A fundamental theoretical understanding of transport in molecular systems and contacts will play an important role in interpreting and guiding the realization of molecular interconnects. We have performed local-orbital-basis density-functional theory and Green’s-function-based simulations to determine the electronic structure and transport properties of π-stacked molecular junctions, which closely complement ongoing experimental studies. Surface slabs are used to model electrode contacts with molecules. We have used simulations to study I‐V characteristics, applied voltage effects, and band alignments. The I‐V results of geometry-confined phenolate∕benzenediazonium pairs between Au(111) surfaces show a substantial increase in currents at low bias voltages, compared with that of benzene-based molecular wires.
Article
Electronic structure and transport properties of low dimensional organic systems have been theoretically investigated. On isolated molecules, a drastic decrease of the band gap by more than 4.5eV is observed in acene molecules containing up to 15 members rings. The additional band gap decrease observed upon molecular assembling does not depend on the nature of the molecules but more on the separation between them. Oligoacene assemblies with intermolecular spacing dmol⩽3.8Å are characterized by an improved π-electron coupling that facilitates the electrical transport through resonant tunneling mechanism. For such molecular arrangement, we have computed significant band dispersion (≈340meV), high transmittance (T¯(E)∼1), and relatively high mobility for holes and electrons (0.1–0.9cm2/Vs) in both resonant π-valence and π∗-conduction bands.
Article
Tuning of the electronic properties of semiconductors can be achieved by surface modification with organic molecules. In this work, we study, by periodic density functional theory, the change in work function that occurs upon the modification of nominally hydrogen-terminated Si(100)-2 × 1 by chemisorption of substituted styrene molecules. Our results show that monolayers derived from 4-X-styrene molecules, with X being electron donating groups or hydrogen, decrease the work function of the system. Conversely, monolayers derived from 4-X-styrene molecules, with X being electron withdrawing groups, increase the work function of the system. For the molecules used in the modeling, the calculations indicate that the work function can be substantially modified from −1.4 eV (XN(CH3)2) to +1.9 (XNO2) eV relative to H−Si(100)-2 × 1. Because the direction and magnitude of charge transferred upon chemisorption is the same for all molecules, the work function changes are not the result of band bending. The work function modification comes exclusively from the inherent dipoles of the molecules chemisorbed on the surface. The computed dipoles for the monolayers range from −1.3 (XN(CH3)2) to +1.4 (XNO2) Debye. We conclude that substantial local control over some of the electronic properties of silicon can be achieved by the chemisorption of dipole-containing molecules.
Article
Organic radicals are of interest in molecular electronics because unpaired electrons lead to degeneracy splitting in other energy levels and such molecules may act as spin filters. This work employs first principles transport calculations using a combination of density-functional theory and a nonequilibrium Green’s function technique to model the electron transport properties of 1,4-benzenediamine (BDA) molecules bridging two Au electrodes. These molecules were substituted in the 2-position with −CH3, −NH2, and −OH, and also with their radical analogues −CH2•, −NH•, and −O•, which have π-type singly occupied molecular orbitals (SOMO). Spin filter efficiency (SFE) values for these radicals vary as 49%, 27%, and 1% for the −CH2•, −NH•, and −O• containing systems, respectively. The large difference is due to the electron affinity of each radical. We found that the radical can indeed accept some charge once it is connected to electrodes, thereby reducing the fraction of excess spin which, in turn, reduces the amount of MO level splitting and the SFE. The transport properties of a radical with a σ-type SOMO were also calculated for a BDA molecule with the H atom in the 2-position of the benzene ring removed. A SFE of 34% was calculated for this system, but most importantly we found that a significant amount of electron transport can indeed occur through a σ-type MO.
Article
The transfer matrix of a solid described by the stacking of principal layers is obtained by an iterative procedure which takes into account 2" layers after n iterations, in contrast to usual schemes where each iteration includes just one more layer. The Green function and density of states at the surface of the corresponding semi-infinite crystal are then given by well known formulae in terms of the transfer matrix. This method, especially convenient near singularities, is applied to the calculation of the spectral as well as the total densities of states for the (100) face of molybdenum. The Slater-Koster algorithm for the calculation of tight-binding parameters is used with a basis of nine orbitals per atom (4d, 5s, 5p). Surface states and resonances are first identified and then analysed into orbital components to find their dominant symmetry. Their evolution along the main symmetry lines of the two-dimensional Brillouin zone is given explicitly. The surface-state peak just below the Fermi level (Swanson hump) is not obtained. This is traced to the difficulty in placing an appropriate boundary condition at the surface with the tight-binding parameterisation scheme.
Article
An approach for electronic structure calculations is described that generalizes both the pseudopotential method and the linear augmented-plane-wave (LAPW) method in a natural way. The method allows high-quality first-principles molecular-dynamics calculations to be performed using the original fictitious Lagrangian approach of Car and Parrinello. Like the LAPW method it can be used to treat first-row and transition-metal elements with affordable effort and provides access to the full wave function. The augmentation procedure is generalized in that partial-wave expansions are not determined by the value and the derivative of the envelope function at some muffin-tin radius, but rather by the overlap with localized projector functions. The pseudopotential approach based on generalized separable pseudopotentials can be regained by a simple approximation.
Article
Using density functional theory in conjunction with the nonequilibrium Green's function technique, the electron transport through the substituted benzenedithiol molecules inserted between two gold electrodes was investigated. We calculated the current–voltage characteristics for positive and negative bias voltages. It was found that due to interaction with the applied electric field, the current–voltage curve of amino substituted benzene molecule is asymmetric and exhibited switching behavior. Despite the asymmetric structure of benzene molecule substituted with hydroxyl group, there was no obvious rectification behavior in its current–voltage curve, but a peak and a valley were observed in its current–voltage characteristics. Furthermore, we calculated the current–voltage curve for benzenediselenol and found that the best anchoring atom depends on bias voltage.Research highlights► Due to interaction with the applied electric field, the current–voltage curve of amino substituted benzene molecule is asymmetric. ► Current–voltage curve of amino substituted benzene molecule exhibited switching behavior. ► Despite the asymmetric structure of benzene molecule substituted with hydroxyl group, there was no obvious rectification behavior in its current–voltage curve, but a peak and a valley were observed in its current–voltage characteristics.
Article
We present a simple procedure to generate first-principles norm-conserving pseudopotentials, which are designed to be smooth and therefore save computational resources when used with a plane-wave basis. We found that these pseudopotentials are extremely efficient for the cases where the plane-wave expansion has a slow convergence, in particular, for systems containing first-row elements, transition metals, and rare-earth elements. The wide applicability of the pseudopotentials are exemplified with plane-wave calculations for copper, zinc blende, diamond, alpha-quartz, rutile, and cerium.
Article
Density functional theory combined with nonequilibrium Green's function techniques was used to model the conduction through disubstituted benzenedithiol molecules bonded to leads composed of 3x3, 5x5 gold and 3x3 aluminum. For the disubstituted 3x3 Au-benzenedithiol-Au systems, the small lead cross section results in a region of nearly zero transmission from -0.4 to -0.2 eV, relative to E(F), due to the absence of lead states. This feature results in negative differential resistance in the current-voltage curves and also causes the main peaks in the transmission spectra, which are dominated by the highest occupied molecular orbitals, to be centered near E(F). The zero-bias transmissions for the disubstituted benzenedithiol, as well as currents at applied biases, correlate very well with the Hammett parameter sigma(p), a quantity that relates the electron donating or withdrawing strength of a substituent. Calculations on disubstituted benzenedithiol connected to 5x5 Au leads produced transmission spectra that showed no gaps over the energy range considered and no negative differential resistance. The transmission in these cases also predominately involves the highest occupied molecular orbitals, and electron donating and withdrawing groups are able to increase and decrease current, respectively. However, there is no strong correlation between current and sigma(p) for this system. This suggests that the correlation observed in the 3x3 Au systems arises from the abrupt cutoff of the main transmission peaks near E(F). The disubstituted 3x3 Al-benzenedithiol-Al systems displayed markedly different behavior from the Au analogs. Electron donating groups and H benzenedithiol-substituted systems display almost no transmission over the energy range considered. However, electron withdrawing group disubstituted benzenedithiol systems had significant peaks in the transmission spectra near E(F), which are associated with the lowest-energy, unoccupied pi-type molecular orbitals. Higher currents are calculated for cases where the substituents have pi-type orbitals that are conjugated with the ring moiety of benzenedithiol. In all cases, the current through the 3x3 Al-benzenedithiol-Al systems is about a factor of 2 less than that through the analogous Au systems. These simulations reveal that the electrical conductance behavior through nanosystems of the type investigated in this work depends on the nature of the molecule as well as the size and composition of the leads to which it is connected. The results suggest that rational design of nanoelectronic systems might be possible under certain conditions but that structure-function relationships cannot be transferred from one system to another.
Article
Advances in techniques for the nanoscale manipulation of matter are important for the realization of molecule-based miniature devices1, 2, 3, 4, 5, 6, 7, 8 with new or advanced functions. A particularly promising approach involves the construction of hybrid organic-molecule/silicon devices9, 10, 11, 12, 13, 14. But challenges remain�both in the formation of nanostructures that will constitute the active parts of future devices, and in the construction of commensurately small connecting wires. Atom-by-atom crafting of structures with scanning tunnelling microscopes15, 16, 17, although essential to fundamental advances, is too slow for any practical fabrication process; self-assembly approaches may permit rapid fabrication18, but lack the ability to control growth location and shape. Furthermore, molecular diffusion on silicon is greatly inhibited19, thereby presenting a problem for self-assembly techniques. Here we report an approach for fabricating nanoscale organic structures on silicon surfaces, employing minimal intervention by the tip of a scanning tunnelling microscope and a spontaneous self-directed chemical growth process. We demonstrate growth of straight molecular styrene lines�each composed of many organic molecules�and the crystalline silicon substrate determines both the orientation of the lines and the molecular spacing within these lines. This process should, in principle, allow parallel fabrication of identical complex functional structures.
Article
One of the most important challenges of molecular electronics is to enable systematic fabrication of molecular functional components on well-characterized solid-state substrates in a controlled manner. Recently, experimental techniques were developed to achieve such fabrication where lines of pi-stacked ethylbenzene molecules are induced to self-assemble on an H-terminated Si(100) surface at precise locations and along precise directions. In this work, we theoretically analyze charge transport properties of these ethylbenzene wires using a state-of-the-art first-principles technique where density functional theory (DFT) is used within the nonequilibrium Green's function formalism (NEGF). Our device model consists of ethylbenzene stacks bonded to an H-terminated Si(100) surface and bridging two metal leads. The electron transmission spectrum and its associated scattering states as well as the resistance of the molecular wire are determined by the self-consistent NEGF-DFT formalism. The transmission spectrum has a resonance nature for energies around the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the ethylbenzene wires. However, near the Fermi level of the device, which sits inside the HOMO-LUMO gap, the Si substrate is found to play an important role in providing additional pathways for conduction. It has emerged that, within our model system, the transmission peak nearest to the Fermi level corresponds to transport through the Si substrate and not the pi-stacked molecular line. The low-bias resistance R is found to increase exponentially with the length of the molecular line n, as R approximately e(betan), indicating a tunneling behavior in conduction. We further found that the exponential scaling has two regimes characterized by two different scaling parameters beta: a high value for conduction through the molecular stack in short lines and a lower value for conduction through the substrate in longer lines. Our results suggest that when the conduction of molecular wires bonded to semiconductor substrates is theoretically analyzed, conduction pathways through the substrate need to be taken into account.
Article
We report on the synthesis, scanning tunneling microscopy (STM) and theoretical modeling of the electrostatic and transport properties of one-dimensional organic heterostructures consisting of contiguous lines of CF3- and OCH3-substituted styrene molecules on silicon. The electrostatic fields emanating from these polar molecules are found, under appropriate conditions, to strongly influence electrical conduction through nearby molecules and the underlying substrate. For suitable alignment of the OCH3 groups of the OCH3-styrene molecules in the molecular chain, their combined electric fields are shown by ab initio density functional calculations to give rise to potential profiles along the OCH3-styrene chain that result in strongly enhanced conduction through OCH3-styrene molecules near the heterojunction for moderately low negative substrate bias, as is observed experimentally. Under similar bias conditions, dipoles associated with the CF3 groups are found in both experiment and in theory to depress transport in the underlying silicon. Under positive substrate bias, simulations suggest that the differing structural and electrostatic properties of the CF3-styrene molecules may lead to a more sharply localized conduction enhancement near the heterojunction at low temperatures. Thus choice of substituents, their attachment site on the host styrene molecules on silicon and the orientations of the molecular dipole and higher multipole moments provide a means of differentially tuning transport on the molecular scale.
Article
We present ab initio quantum-mechanical molecular-dynamics calculations based on the calculation of the electronic ground state and of the Hellmann-Feynman forces in the local-density approximation at each molecular-dynamics step. This is possible using conjugate-gradient techniques for energy minimization, and predicting the wave functions for new ionic positions using subspace alignment. This approach avoids the instabilities inherent in quantum-mechanical molecular-dynamics calculations for metals based on the use of a fictitious Newtonian dynamics for the electronic degrees of freedom. This method gives perfect control of the adiabaticity and allows us to perform simulations over several picoseconds.
Article
Generalized gradient approximations (GGA{close_quote}s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. {copyright} {ital 1996 The American Physical Society.}
Article
Current interest in the fabrication of organic nanostructures on silicon surface is focused on the self-directed growth of 1D molecular lines with predefined position, structure, composition, and the length on the H-terminated Si(100)-(2 x 1) surface. To date, no studies have succeeded in growing the molecular line across the dimer rows on Si(100)-(2 x 1)-H, which is highly desirable. Using scanning tunneling microscopy (STM), we studied a new molecular system (allyl mercaptan, CH2=CH-CH2-SH) that undergoes chain reaction across the dimer row on the Si(100)-(2 x 1)-H surface at 300 K and produces covalently bonded 1D molecular lines. In combination with the previous findings of chain reaction along the rows, the present observations of self-directed growth of 1D molecular lines across the dimer rows on the Si(100)-(2 x 1)-H surface provide a means to connect any two points (through molecular lines) on a 2D surface.
Article
To realize nanoscale wiring in two dimensions (2D), the fabrication of interconnected one-dimensional (1D) molecular lines through the radical chain reaction of alkene molecules (CH2=CH-R) on the H-terminated Si(100)-(2 x 1) surface have been investigated using scanning tunneling microscopy (STM) at 300 K. By the judicious choice of R in the CH2=CH-R molecule and by creating a dangling bond (DB) at a desired point using the STM tip, the perpendicularly connected allyl mercaptan (ALM) and styrene lines have been fabricated on the Si(100)-(2 x 1)-H surface. The continuous growth of the styrene line at the end DB of a growing ALM line (or vice versa) does not occur, perhaps, due to steric hindrance or/and interaction between adsorbed molecules.
Article
We report on a theoretical study of spin-polarized quantum transport through a Ni-bezenedithiol(BDT)-Ni molecular magnetic tunnel junction (MTJ). Our study is based on carrying out density functional theory within the Keldysh nonequilibrium Green's function formalism, so that microscopic details of the molecular MTJ are taken into account from first principles. A magnetoresistance ratio of approximately 27% is found for the Ni-BDT-Ni MTJ which declines toward zero as bias voltage is increased. The spin currents are nonlinear functions of bias voltage, even changing sign at certain voltages due to specific features of the coupling between molecular states and magnetic leads.
Article
A new density functional (DF) of the generalized gradient approximation (GGA) type for general chemistry applications termed B97-D is proposed. It is based on Becke's power-series ansatz from 1997 and is explicitly parameterized by including damped atom-pairwise dispersion corrections of the form C(6) x R(-6). A general computational scheme for the parameters used in this correction has been established and parameters for elements up to xenon and a scaling factor for the dispersion part for several common density functionals (BLYP, PBE, TPSS, B3LYP) are reported. The new functional is tested in comparison with other GGAs and the B3LYP hybrid functional on standard thermochemical benchmark sets, for 40 noncovalently bound complexes, including large stacked aromatic molecules and group II element clusters, and for the computation of molecular geometries. Further cross-validation tests were performed for organometallic reactions and other difficult problems for standard functionals. In summary, it is found that B97-D belongs to one of the most accurate general purpose GGAs, reaching, for example for the G97/2 set of heat of formations, a mean absolute deviation of only 3.8 kcal mol(-1). The performance for noncovalently bound systems including many pure van der Waals complexes is exceptionally good, reaching on the average CCSD(T) accuracy. The basic strategy in the development to restrict the density functional description to shorter electron correlation lengths scales and to describe situations with medium to large interatomic distances by damped C(6) x R(-6) terms seems to be very successful, as demonstrated for some notoriously difficult reactions. As an example, for the isomerization of larger branched to linear alkanes, B97-D is the only DF available that yields the right sign for the energy difference. From a practical point of view, the new functional seems to be quite robust and it is thus suggested as an efficient and accurate quantum chemical method for large systems where dispersion forces are of general importance.
Article
We measure the low bias conductance of a series of substituted benzene diamine molecules while breaking a gold point contact in a solution of the molecules. Transport through these substituted benzenes is by means of nonresonant tunneling or superexchange, with the molecular junction conductance depending on the alignment of the metal Fermi level to the closest molecular level. Electron-donating substituents, which drive the occupied molecular orbitals up, increase the junction conductance, while electron-withdrawing substituents have the opposite effect. Thus for the measured series, conductance varies inversely with the calculated ionization potential of the molecules. These results reveal that the occupied states are closest to the gold Fermi energy, indicating that the tunneling transport through these molecules is analogous to hole tunneling through an insulating film.
Article
Future nanoscale integrated circuits will require the realization of interconnections using molecular-scale nanostructures; a practical fabrication scheme would need to be largely self-assembling and operate on a large number of like structures in parallel. The self-directed growth of organic molecules on hydrogen-terminated silicon(100) [H-Si(100)] offers a simple method of realizing one-dimensional molecular lines. In this work, we introduce the ability to change the growth direction and form more complex, contiguous shapes. Numerous styrene and trimethylene sulfide L shapes were grown on a H-Si(100)-3x1 surface in parallel with no intermediate surface lithography steps, and similar shapes were also grown using allyl mercaptan and benzaldehyde on H-Si(100)-2x1. Registered scanning tunneling microscopy (STM) images and high-resolution electron energy loss spectroscopy (HREELS) were used to investigate the growth process.
Article
We have investigated the electronic structure and transport properties of a pi-stacking molecular chain which is covalently bonded to a H/Si(100) surface, using the first-principles density functional theory approach combined with Green's function method. The highest occupied molecular orbital (HOMO) dispersion is remarkably reduced, but remains noticeable ( approximately 0.1 eV), when a short pi-stacking styrene wire is cut from an infinitely long wire and sandwiched between metal electrodes. We find that the styrene chain's HOMO and lowest unoccupied molecular orbital (LUMO) states are not separated from Si, indicating that it does not work as a wire. By substituting -NO2 or -NH2 for the top -H of styrene, we are able to shift the position of the HOMO and LUMO with respect to the Fermi level. More importantly, we find that the HOMO of styrene-NH2 falls into the band gap of the substrate and is localized in the pi-stacking chain, which is what we need for a wire to be electrically separated from the substrate. The conductance of such an assembly is comparable to that of Au/benzene dithiolate/Au wire based on chemical bonding, and its tunability makes it a promising system for a molecular device.