Article

Fertilization and development of oocytes after ICSI with semen of stallions with different in vivo fertility

Authors:
Article

Fertilization and development of oocytes after ICSI with semen of stallions with different in vivo fertility

If you want to read the PDF, try requesting it from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Although its application to the chronically subfertile mare is more obvious, young fertile mares are becoming oocyte donors to produce embryos via ICSI to stallions who have limited quality and/or quantity of semen. Numerous reports have compared ICSI outcomes using stallions with variable field fertility (Lazzari et al. 2002;Colleoni et al. 2012;Herrera et al. 2012), but conclusions have been inconsistent and affected by a variety of clinical factors out of our control (Choi et al. 2016). There have been limited controlled studies that critically evaluated the paternal factors affecting ICSI outcome. ...
Article
Numerous variables affect invitro blastocyst development following intracytoplasmic sperm injection (ICSI). The paternal factor is affected by initial semen quality, processing techniques and final selection of individual spermatozoon for injection. This study investigated whether there was an effect of sperm cryoprotectant agent (CPA) on equine invitro blastocyst production, and reviews recent developments examining how processing equine semen affects ICSI outcomes. Single ejaculates from five stallions were collected and processed in a freezing extender containing either 1M dimethyl sulfoxide (DMSO) or 3.5% glycerol. Immature equine oocytes were obtained from ovarian follicles of mares during diestrus by transvaginal aspiration (n=128). After invitro maturation, MII oocytes (n=90) were fertilised by ICSI with thawed stallion spermatozoa (n=45 in both the DMSO and glycerol groups). The embryo cleavage rate was greater in the DMSO than glycerol group (73.3% vs 46.7% respectively; P=0.0098), but the blastocyst development rate per fertilised oocyte was similar between the two groups (28.9% vs 15.6% respectively; P=0.128), as was the blastocyst production rate per cleaved embryo (39.4% vs 33.3% respectively; P=0.653). In this study, cryopreservation of equine spermatozoa in 1M DMSO was correlated with significantly higher cleavage rates in IVM oocytes fertilised by ICSI compared with spermatozoa cryopreserved using 3.5% glycerol. Although not statistically significant in this small number of stallions, increased blastocyst production and individual stallion variability was observed among CPA treatments. This warrants further critical examination of cryoprotectants used in equine sperm subpopulations used for ICSI in a larger number of stallions.
Article
Oocyte activation is initiated when a fertilising spermatozoon delivers sperm-borne oocyte-activating factor(s) into the oocyte cytoplasm. Candidates for oocyte activation include two proteins, phospholipase Cζ1 (PLCZ1) and postacrosomal WW-binding protein (PAWP; also known as WBP2 N-terminal like (WBP2NL)). We localised PLCZ1 and WBP2NL/PAWP in stallion spermatozoa and investigated the PLCZ1 content and sperm parameters as well as cleavage after intracytoplasmic sperm injection (ICSI). PLCZ1 was identified as 71-kDa protein in the acrosomal and postacrosomal regions, midpiece and principal piece of the tail. Anti-WBP2NL antibody identified two WBP2NL bands (~28 and ~32kDa) in the postacrosomal region, midpiece and principal piece of the tail. PLCZ1 and WBP2NL expression was positively correlated (P=0.04) in sperm heads. Flow cytometry evaluation of PLCZ1 revealed large variations in fluorescence intensity and the percentage of positively labelled spermatozoa among stallions. PLCZ1 expression was significantly higher in viable than non-viable spermatozoa, and DNA fragmentation was negatively correlated with PLCZ1 expression and the percentage of positively labelled spermatozoa (P<0.05). The use of equine sperm populations considered to have high versus low PLCZ1 content resulted in significantly higher cleavage rates after ICSI of bovine and equine oocytes, supporting the importance of PLCZ1 for oocyte activation.
Article
We determined if microfluidic sorting (MF) of frozen-thawed stallion sperm improves sperm population characteristics and results in embryo development after intracytoplasmic sperm injection (ICSI). The efficiency and efficacy of MF sperm separation was evaluated by comparing pre- and post-separation sperm population variables. Procedural comparisons were performed after sorting with MF, single-layer colloidal centrifugation (SLC) or swim-up (SU), and cleavage and embryo development were evaluated after ICSI using MF-sorted sperm. In Experiment 1, when compared to the original sperm sample, MF sorting resulted in a sperm subpopulation with greater motility, morphology, viability, and membrane as well as DNA integrity. After sorting by MF, SLC and SU in Experiment 2, motility, viability, and membrane integrity were similar for sperm sorted using MF and SLC; however, morphology and DNA integrity were greater in sperm sorted using MF when compared with SLC. Swim-up was the least effective sorting method. In Experiment 3, sperm were processed using MF and SLC prior to ICSI. Motility, morphology and DNA integrity were similar for sperm subpopulations sorted using either method; but viability was greater for sperm sorted using MF than SLC. Sorting did not improve sperm membrane integrity. Sorting with MF prior to ICSI resulted in similar cleavage and blastocyst development rates as SLC. We concluded that MF separation of stallion sperm resulted in a subpopulation with improved sperm population parameters, comparable or better than SLC and SU. Embryos were produced after ICSI using MF sperm sorting.
Article
Limited clinical information is available regarding sperm population parameters that are important for use with equine intracytoplasmic sperm injection (ICSI). Therefore, the appropriateness of a sample of sperm is typically not known before ICSI. The aim of our study was to determine which sperm population characteristics were predictive of ICSI outcome. Frozen-thawed sperm samples (n = 114) from 37 stallions in a clinical program were analyzed after ICSI for percentages of normal morphology (MORPH+), live as assessed by eosin/nigrosin stain (LIVE+), membrane intact as assessed by hypoosmotic swelling test (HOS+), and DNA fragmentation determined by sperm chromatin dispersion (DNA-). ICSI was performed on 147 oocytes, and cleavage (≥2 cells), embryo development (morula or blastocyst), and pregnancy status after embryo transfer were determined. Among the examined sperm parameters, LIVE + correlated positively with MORPH+ and HOS+, and MORPH + negatively with DNA-; no other significant correlations were observed. When used for ICSI, sperm population percentages for MORPH+ and DNA- were not predictive of ICSI outcome, including cleavage, embryo development, and establishment of a pregnancy. Sperm population percentages significantly affecting ICSI outcomes were LIVE+ and HOS + for oocyte cleavage, LIVE + for embryo development, and HOS + for establishment of a pregnancy. The probability of a pregnancy was significantly higher for sperm populations having HOS+ ≥40% than populations having HOS+ ≤20%. The mean age of the donor mare per sperm-injected oocyte did not differ for oocyte cleavage, embryo production, or establishment of pregnancy. In our study, the probability of sperm-injected oocytes to develop into an embryo (morula or blastocyst) improved when sperm were selected from a population with higher indicators of membrane integrity (LIVE+ and HOS+).
Article
There is growing interest of the equine industry in Assisted Reproductive Technologies (ART) to treat both male and female infertility or to value individuals of high genetic merit. Ovum Pick Up and Intracytoplasmic Sperm Injection are the most recent introduced techniques in the equine ART toolbox. We have reviewed in this manuscript the contribution of the male factor to the success of these procedures in a clinical setting and we have reported some experimental new data. The semen sample used for ICSI is critical for the outcome of the procedure and many factors including breed, fertility in vivo, method of sperm preparation and batch play a role. It is not simple to identify these factors in a clinical setting since the variability from the male side is added to that of the donor female. Preliminary tests in vitro can help to assess the potential contribution of any given batch of semen and identify potential problems to the successful outcome of ICSI.
ResearchGate has not been able to resolve any references for this publication.