Synergistic Effect of Proanthocyanidin on the Bactericidal Action of the Photolysis of H2O2

Tohoku University Graduate School of Dentistry.
Biocontrol science 09/2013; 18(3):137-41. DOI: 10.4265/bio.18.137
Source: PubMed


The in vitro antibacterial activity of the hydroxyl radical generation system by the photolysis of H2O2 in combination with proanthocyanidin, which refers to a group of polyphenolic compounds, was examined. Bactericidal activity of photo-irradiated H2O2 at 405 nm against Streptococcus mutans, a major pathogen of dental caries, was augmented in the presence of proanthocyanidin, whose bactericidal effect by itself was very poor, in a concentration-dependent manner. This combination was also proven effective against Porphyromonas gingivalis, a major pathogen of periodontitis. It is speculated that H2O2, generated from photo-irradiated proanthocyanidin around the bacterial cells, is photolyzed to the hydroxyl radical, which would in turn affect the membrane structure and function of the bacterial cells, resulting in augmented sensitivity of bacterial cells to the disinfection system utilizing the photolysis of H2O2. The present study suggests that the combination of H2O2 and proanthocyanidin works synergistically to kill bacteria when photo-irradiated.

Download full-text


Available from: Yoshimi Niwano
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study aimed to evaluate the interaction between wavelength of light in the range of ultra violet A-visible and concentration of H2O2 in the reaction of photolysis of H2O2 from the point of view of hydroxyl radical (·OH) generation and the bactericidal activity. Light emitting diodes (LEDs) emitting the light at wavelengths of 365, 385, 400 and 465 nm were used at an irradiance of 1000 mW/cm2. H2O2 was used at the final concentrations of 0, 250, 500, and 1000 mM. Quantitative analysis of ·OH generated by the LED irradiation of H2O2 were performed using an electron spin resonance-spin trapping technique. In a bactericidal assay, a bacterial suspension of Staphylococcus aureus prepared in sterile physiological saline was irradiated with the LEDs. The bactericidal activity of each test condition was evaluated by viable counts. When H2O2 was irradiated with the LEDs, ·OH was generated and bacteria were killed dependently on the concentration of H2O2 and the wavelength of LED. The two-way analysis of variance revealed that the wavelength, the H2O2 concentration and their interaction significantly affected the yield of ·OH and the bactericidal activity of the photolysis of H2O2. Therefore, it is suggested that bactericidal activity of photolysis of H2O2 could be enhanced by controlling the wavelength and the concentration of H2O2, which may contributes to shortening the treatment time and/or to reducing the concentration of H2O2.
    Full-text · Article · Oct 2014 · Journal of Bioscience and Bioengineering