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Abstract

We analyze the Standard Model gauge group SU(3)×SU(2)×U(1) constructed

in F-theory. The non-Abelian part SU(3) × SU(2) is described by singularities of

Kodaira type. It is distinguished to näıve product of SU(3) and SU(2), revealed

by blow-up analysis, since the resolution procedures cannot be done separately to

each group. The Abelian part U(1) is constructed by obtaining a desirable global

two-form harboring it, using ‘factorization method’ similar to the decomposition

method of the spectral cover; It makes use of an extra section in the elliptic fiber of

the Calabi–Yau manifold, on which F-theory is compactified. Conventional gauge

coupling unification of SU(5) is achieved, without threshold correction from the flux

along hypercharge direction.
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1 Introduction

It has been well-known wisdom that the gauge group SU(3)×SU(2)×U(1) of the Standard

Model (SM) is far from arbitrary collection of simple and Abelian factors, because the

matter fields transforming under this have very particular charge assignments. Grand

Unified Theory (GUT) [1] suggests that it is best understood by embedding the group to

a series of the exceptional groups En, including SU(5) ≡ E4, SO(10) ≡ E5, and E6 [2]. In

this sense the SM group may be expressed as the unique, maximal E3 × U(1) subgroup

of E4. These En groups naturally occur in heterotic string and F-theory [3–14].

In this work, we analyze the singularities and the two-forms describing the Standard

Model gauge group SU(3) × SU(2) × U(1) in F-theory. The non-Abelian part can be

described by conventional singularities of Kodaira type for the elliptic fiber in an internal

manifold [4, 15–17]. Besides the sagacity that the GUT structure suggests, also in F-

theory the desired light matter fields of the SM—not only the (3, 2) representation but

also (3, 1) and (1, 2)—emerge on so-called matter curves [6–8, 18], only if the SU(3) ×

SU(2) is embedded in E6 at least, because essentially the matter fields can only arise by

branching the gauge multiplets in the adjoint representations of (local) unified groups.

With the clue of various gauge symmetry enhancement directions, we can obtain the

desired singularities for SU(3) × SU(2) by deforming the singularity of SU(5), verified

by matter curve structure, etc. [19, 20]. This will be reviewed and further analyzed by

resolution process in Section 2. Although the shape of the singularity was consistent, it

has been obtained by applying various necessary conditions. The analyses given in Section

2 now provides a complete proof of it.

In constructing the gauge theory, the real problem has been an Abelian U(1) group

that is not obtained from a Kodaira-type singularity. We obtain the Abelian gauge field

by expanding the three-form tensor of M/F-theory along a two-cycle à la Kaluza–Klein

reduction. For the components of Cartan subalgebra of non-Abelian groups, we can

automatically obtain such cycles by blowing-up the corresponding singularity. On the

other hand it was quite difficult to find such a curve for U(1) which is globally valid and

has intersection numbers giving the desired charges of matter fields. Again, one hint can

be embedding all the groups in a unified group, which would lead a two-form for Abelian

group in the similar fashion for non-Abelian group. So-called U(1)-restricted model was

the first successful method in describing such global U(1) for SU(5)×U(1) by embedding

the U(1) group into SU(2) [21–23]. However this heavily depends on a clever choice of

ansatz and extending this to general gauge group, following the En series was difficult.

There have been an indirect derivation from spectral cover [24] via heterotic–F-theory

duality [25], which gives a globally valid two-form in so-called stable degeneration limit,

but it is useful in the case admitting the duality. Recently, Refs. [27, 28], introduced
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a ‘multiple section’ method to introduce U(1)’s, essentially by finding a cousin of the

element from Cartan subalgebra from a certain unified group (see also [22, 25, 26]). Such

two-form naturally comes from more careful comparison between the elliptic equation and

the spectral cover. In this paper, and especially in Section 3, we employ this method to

obtain the U(1) correctly describing hypercharge. As a byproduct, this method provides

another proof to the expression of the singularity SU(3)×SU(2) in relation to the spectral

cover. We employed this method because this is extended to any number of U(1) sections

and although the exceptional divisors may not be directly embedded into a larger group

like E8, the intersection relation can be embedded into and traced from such group.

Another interesting direction is to find different sections making use of Mordell-Weil

group generated by a single group element in the elliptic fiber and/or ‘tops’ in toric

geometry [19, 29, 30].

At the moment, there is no clue whether we have the Standard Model at the unification

or string/F-theory scale without an intermediate GUT. Besides such a priori reason, the

direct construction of the SM also has following practical merits. First, we do not need

to turn on a flux in the hypercharge direction which gives rise to a threshold correction

to the corresponding gauge coupling, ruining the coupling unification relation. Second,

some sector related to electroweak symmetry breaking is better understand if we have

the unbroken group as the SM group, since some fields being footprints of GUT have

nontrivial coupling to the Higgs sector [31, 32]. Even we have the SM at the unification

scale, still we have footprints of GUT such as the number of generation, since the string

theory itself makes use of the unification relation [19, 20, 33]. These two features have

no analogy in heterotic string theory, since in F-theory we have two-step construction

of gauge theory: constructing smaller group than E8 and further symmetry breaking by

G-flux. It controls the number of generation obeying a certain unification relation while

the actual gauge symmetry is the smaller SM group.

2 Non-Abelian factor SU(3)× SU(2)

We first construct a singularity for the non-Abelian algebra SU(3)×SU(2) of the Standard

Model. As discussed in the introduction, it is not a mere product of simple algebras SU(3)

and SU(2), but it should be along the chain of En algebra1.

1In this paper, we do not need to distinguish between the product of the group and the sum of the

algebra, where the latter is more appropriate to our purpose, but we follow the traditional description.
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2.1 Description by singularity

We consider F-theory compactified on Calabi–Yau fourfold Y , which is an elliptic fiber-

ation over a three-base B. The elliptic fiber is given as an hypersurface by an elliptic

equation in the ‘Tate form’

P ≡ −y2 + x3 + a1xyz + a2x
2z2 + a3y + a4xz

4 + a6z
6 = 0 (1)

in P
2
[2,3,1] fiber over B, having homogeneous coordinates (x, y, z) with the respective weights

indicated as subscripts, and all the parameters are also appropriate holomorphic sections

over B [3, 17]. This can be regarded as a definition for our Calabi–Yau fourfold Y as a

hypersurface.

Tuning parameters ai in some base coordinate, say w defined with respect to a divisor

of B

W : w = 0, (2)

which should be already present from the construction of B, gives rise to singularities re-

lated to gauge symmetry on the worldvolume W ×R
4. For instance, an SU(5) singularity,

split I5, is obtained from the table by Kodaira [16].

a1 = b5, a2 = b4w, a3 = b2w
2, a4 = b2w

3, a6 = b0w
5, (3)

up to higher order terms in w. We have the discriminant of the elliptic equation (1) up

to fifth order in w,

∆ = b45(b0b
2
5 − b2b3b5 + b23b4)w

5 +O(w6),

responsible for the gauge group SU(5) [3, 4, 16].

Deforming the singularity by adding lower order terms in w to ai’s, we have less severe

singularity with smaller algebra. The claim in Refs. [19,20] is that, the singularity for the

SU(3)× SU(2) is given as,

a1 = b5 +O(w), (4)

a2 = b4w +O(w2), (5)

a3 = b3(b6 + w)w +O(w3), (6)

a4 = b2(b6 + w)w2 +O(w4), (7)

a6 = b0(b6 + w)2w3 +O(w6). (8)

The discriminant takes the form

∆ = b35P
2
(3,2)P(3,1)w

3 + P(3,2)P30w
4 +O(w5) (9)

where the parameters are displayed in Table 1 and P30 is a quite lengthy, non-factorizable

polynomial in bi, e.g. containing a term 2b23b4b
4
5.
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name parameter representation symm. enhancement

P(3,2) b6 (3, 2) SU(5)

P(3,1) b23b4b5 − b2b3b
2
5 + b0b

3
5 − b33b6 (3, 1) SU(4)× SU(2)

P(1,2) b23b4 − b2b3b5 + b0b
2
5 + b22b6 − 4b0b4b6 (1, 2) SU(3)× SU(3)

Table 1: Paramters of gauge symmetry enhancements.

We have a singularity so called Kodaira split I3 for SU(3) located at (x, y, w) =

(0, 0, 0), which has orders ord(a1, a2, a3, a4, a6,∆) = (0, 0, 1, 2, 3, 3) in w [16, 17]. On the

discriminant locus W in (2), F-theory interprets it that we have the SU(3) gauge theory

[3, 4]. Setting P(3,2) = 0 enhances the discriminant to degree five, whereas P(3,1) = 0

does to degree four. The subscripts indicate the corresponding quantum numbers of

unhiggsed fields in the branching, since (3, 2) is regarded as off-diagonal component of

the adjoint 24 under the breaking SU(5) → SU(3) × SU(2), while (3, 1) is that of

15 under SU(4) → SU(3). The former symmetry enhancement shows that the actual

group from the parameters (4)-(8) is larger than SU(3). It is because the parameters are

specially tuned up to ord(a1, a2, a3, a4, a6) = (0, 1, 2, 3, 5), as the deformations of the SU(5)

singularity in (3).

To see the other part, we change the reference as

w′ ≡ w + b6, (10)

defining a new divisor W ′ : w′ = 0 of B. The parameters become

a1 = b5 +O(w′),

a2 = b4(w
′ − b6) +O(w′2),

a3 = b3(w
′ − b6)w

′ +O(w′3),

a4 = b2(w
′ − b6)

2w′ +O(w′4),

a6 = b0(w
′ − b6)

3w′2 +O(w′6).

(11)

The discriminant has the form

∆ =
(

b25 − 4b4b6
)2

P 3
(3,2)P(1,2)w

′2 + P 2
(3,2)P

′
30w

′3 + P(3,2)P36w
′4 +O(w′5) (12)

where the parameters are shown in Table 1 and P ′
30, P36 are non-factorizable polynomials

containing respectively 3b23b4b
4
5,−3b23b4b

5
5b6. From the observation that ord(a1, a2, a3, a4, a6,∆) =

(0, 0, 1, 1, 2, 2) in w′ we see at (x, y, w′) = (0, 0, 0) there is the Kodaira singularity, split

I2 for SU(2). Again we have the SU(2) gauge theory localized on the locus W ′. The

parameter w′ is distinguished to w by the relation (10) via the parameter b6, which is the
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section depending on the base coordinate. We see the parameter P(3,2) = b6 again since

(3, 2) is also charged under this and vanishing of which enhance the gauge symmetry to

SU(5), in which limit we do not distinguish between w and w′. Also P(1,2) = 0 enhances

the symmetry SU(2) → SU(3). It is clear that our singularity describes the maximal

semisimple algebra SU(3)× SU(2) embedded in SU(5).

2.2 Resolution

We resolve the SU(3)×SU(2) singularities following the Tate algorithm [16,23,34]. This

resolution shall reveal nontrivial algebraic structure. Neglecting higher order terms in w,

the elliptic equation is

P = −y2+x3+b5xyz+b4wx
2z2+b3(b6+w)wyz3+b2(b6+w)w2xz4+b0(b6+w)2w3z6. (13)

First we resolve the I3 part located at (x, y, w) = (0, 0, 0). We introduce another affine

coordinate e1 of a P
1 curve such that

(x, y, w) = (x1e1, y1e1, w1e1),

and forbid the simultaneous vanishing x1 = y1 = w1 = 0. Then the original singularity

is only accessed by e1 = 0. The lowest order terms in e1 have common factor y1, so still

the point (e1, y1) = (0, 0) is again singular. To have smooth resolution of Y , we blow-up

again

(e1, y1) = (e′1e2, y2e2), (14)

or equivalently (x, y, w) = (x2e
′
1e2, y2e

′
1e

2
2, w2e

′
1e2), and remove e′1 = y2 = 0. Then the

lowest order terms now in e2 have no common factor and the resolution procedure termi-

nates. From now on we drop the subscripts in x, y, w and the prime in e′1, and so on, if

there is no confusion. The resulting polynomial is

P̃ =e21e
3
2

[

x3e1 − y2e2 + b5xyz + b4e1wx
2z2 + b3(b6 + e1e2w)wyz

3

+ b2(b6 + e1e2w)e1w
2xz4 + b0(b6 + e1e2w)

2e1w
3z6

]

.
(15)

Next, we go to the SU(2) part, by going to the primed coordinates using the relation

(10), however, now posessing the form

b6 + e1e2w ≡ w′, (16)

(Here w means w2 in the above (14)). We obtain

P̃ ′ =x3e31e
3
2 − y2e21e

4
2 + b5e

2
1e

3
2xyz + b4e

2
1e

2
2(w

′ − b6)x
2z2 + b3w

′(w′ − b6)e1e
2
2yz

3

+ b2w
′(w′ − b6)

2e1e2xz
4 + b0w

′2(w′ − b6)
3z6.

(17)
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x y z e1 e2 e e0 w′

Z 2 3 1 0 0 0 0 0

E1 1 1 0 −1 0 0 1 0

E2 1 2 0 0 −1 0 1 0

E 1 1 0 0 0 −1 0 1

Table 2: Scaling relations from the definition of the exceptional divisors e1, e2 and e. We

do not remove w′ by scaling, although it scales covariantly, but just constrained by (19).

As before this describes I2 singularity at (x, y, w′) = (0, 0, 0). We want blow up there by

introducing another coordinate e such that w′ → w′e.

(x, y, w′) → (xe, ye, w′e).

P̂ ′ =e2
[

x3e31e
3
2e− y2e21e

4
2 + b5e

2
1e

3
2xyz + b4e

2
1e

2
2(w

′e− b6)x
2z2 + b3w

′(w′e− b6)e1e
2
2yz

3

+ b2w
′(w′e− b6)

2e1e2xz
4 + b0w

′2(w′e− b6)
3z6

]

.

(18)

This is the standard resolution of I2 singularity, found in e.g. Ref [27]. It seems in this

primed coordinates, we would have more singularities such as (e2, w
′) = (0, 0). Shortly

we see, it turns out we have no more. We come back to the original coordinates, now by

the modified relation

w′e− b6 = e1e2e0. (19)

Then the equation becomes

P̂ =e21e
3
2

[

x3e3e1 − y2e2e2 + b5e
2xyz + b4e0e1e

2x2z2 + b3(e0e1e2 + b6)e0eyz
3

+ b2(e0e1e2 + b6)e
2
0e1exz

4 + b0(e0e1e2 + b6)
2e30e1z

6]
(20)

We have changed the name w to e0, since the divisor e0 = 0 plays the role of the extended

root of SU(3) below.

The two resolution procedures should commute or should not prefer the order. Indeed,

we see it is, since we can write the overall result as

(x, y, w, w′) → (xee1e2, yee1e
2
2, e0e1e2, w

′e)

where the coordinate w is changed to e0 for later convenience. Nevertheless two resolutions

affect each other due to the constraint (19). The resolution procedures can be equivalently

re-expresed in terms of the scaling in Table 2. Besides the definition Z for the P
2
2,3,1, we

have introduced three new coordinates e1, e2, e and three scaling relations E1, E2, E.
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Once the scalings are established, for instance E1 in Table 2 means (x, y, z, e1, e2, e, e0) →

(λx, λy, z, λ−1e1, e2, e, λe0), we should exclude some points x = y = e0 = 0 as explained

above. A combination of two scalings always gives a new scaling in a different guise and

we see it has the structure of ideal. So we introduce the Stanrey–Reisner (SR) ideal,

containing such data, generated by

{xyz,xye0, ye1, xe0e2, yze, xze2, ze1e2, xyw
′} ∪ {(ze1, ze) xor xe0} ∪ {ze2 xor ye0}

{e1w
′ xor ee0} ∪ {e2w

′ xor yee0} ∪ {zee2 xor e0w
′} ∪ {xe2w

′ xor (ee0, e1e)} ∪ {xe1w
′ xor e2e}

(21)

where in each curly parenthesis, we can choose one of the elements (xor means exclusive

or), corresponding to a particular triangulation of the toric diagram [36]. We must choose

ze1 and ze2 to have four-dimensional Lorentz vector components for the Cartan subal-

gebras that will be related to e1 and e2, which we see below. What we choose here are

ee0, e2w
′, e0w

′, e1e, and xe1w
′, some of which generated by others. Finally we have

{xyz, xye0, ye1, xe0e2, ze1, ze2, ze, xyw
′, e0e, e1e, e0w

′, e2w
′}. (22)

2.3 Intersections

We hereafter consider divisors of the Calabi–Yau manifold Ŷ defined by P̂ = 0. Vanishing

loci of the blow-up coordinates ei define exceptional divisors Ei. Explicitly we have

E1 : e1 = 0 = −e2 + b5x+ b3b6e0, {ye1, ze1, ee1} (23)

E2 : e2 = 0 = x3e3e1 + b5e
2xy + b4e0e1e

2x2 (24)

+ b3b6ee0y + b2b6ee
2
0e1x+ b0e

3
0e1b

2
6, {ze2}

E0 : e0 = 0 = x3e1 − y2e2 + b5xyz = 0, {e0e} (25)

E : e = 0 = −y2e42 + b5e
3
2xy − b4b6e

2
2x

2

− b3b6w
′e22y + b2b

2
6e2w

′x− b0b
3
6w

′2, {ee1, ze} (26)

W ′ : w′ = 0 = x3e1e− y2 + b5xyz − b4b6x
2z2. {e0w

′, e2w
′} (27)

In the every second line, we simplified the relation using the SR ideal (22). The divisors

E1, E2, E0 are the objects in the SU(3) part, so we obtain them from P̂T after performing

proper transformation e21e
3
2P̂T = P̂ in (20) and we obtain E,W ′ of the SU(2) from e2P̂ ′

T =

P̂ ′ in (18). In particular the divisor E has dependence on the coordinate w′ that cannot be

eliminated by the constraint (19), so it is not able to be compared with the E1, E2, E0 in the

SU(3) part. However, due to the constraint (19), E does not have common intersection

with them. For the same reason, we simply decouple the factor e21e
2
2 in the equation

P̂ ′
T |w′=0 = 0 to define W ′, since the constraint (19) forbids vanishing of the either factor.
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Using the constraint e2 = −b6, we may massage the equation (26) to a fancier form, which

in fact becomes important later.

A complete intersection of Ei with two arbitrary divisors Da and Db in Ŷ gives a P
1

curve. Since Da and Db are arbitrary, an intersection number of two such P
1 curves is

given by the number of common solutions to the equations Ei = Ej = P̂ = 0:

E1 · E2 = 1 : e1 = e2 = b5x+ b3b6e0 = 0, (28)

E1 · E0 = 1 : e1 = e0 = −e2 + b5x = 0, (29)

E2 · E0 = 1 : e2 = e0 = e1 + b5y = 0. {xe0e2, e0e, e2e}, (30)

where the dot product notation is understood. Each equation has one solution in x, y,

and/or ei, assuming that bi’s are all nonzero. This completes the SU(3) root relations via

McKay correspondence that the intersection numbers corresponding to the minus of the

Cartan matrix of the algebra. The above intersections are also expressed as [37]
∫

Ŷ

Ei ∧ Ej ∧Da ∧Db = −Aij

∫

B

W ∧Da ∧Db, Ei ∈ Cartan subalgebra, (31)

where Aij is the Cartan matrix and Da, Db are divisors in B (whose pullback to Ŷ is

omitted without confusion).

These exceptional divisors E1, E2, E0, thus the corresponding roots in the SU(3) al-

gebra, are disconnected to the rest of divisors E and W ′ of SU(2), since the constraint

does not allow simultaneous vanishing of ei and e, or of ei and w′ for each i = 1, 2, 0.

For E and W ′, we have two solutions in y/x to

E ·W ′ = 2 : e = w′ = y2 − b5xy + b4b6x
2 = 0, {ez, e0e, e1e, e2w

′} (32)

consistent with the affine (roughly, extended) Dynkin diagram of SU(2). If there is only

one solution, the discriminant of (32) becomes

b25 − 4b4b6 = 0, (33)

which destroy the O(w′2) term in the discriminant (12) of the elliptic equation. We will

assume otherwise in what follows.

2.4 Matter curves and symmetry enhancement

In Section 2.1, we have studied various gauge symmetry enhancements by analyzing the

discriminant. In Table 1, each equation Pf = 0 defines a codimension one curve of the

SU(3) surface e0 = 0 and/or the SU(2) surface w′ = 0. Since we can interpret it as that

there are light matter fields f localized on the Pf = 0, we call it as the matter curve. Here

we further analyze the matter curves from properties of the exceptional divisors resulting

from the resolution.
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Matter curves for (3, 2) We first analyze the matter curve P(3,2) = 0 for (3, 2). On

this locus, there is local gauge symmetry enhancement to SU(5). Here we will see this is

reflected by further degeneration and rearrangement of the exceptional divisors.

The equations for exceptional divisors become

E1 → E1A : −e2 + b5x = 0 = e1, (34)

E2 → E2x ∪ E2E ∪ E2B : xe2(x2ee1 + b5y + b4e0e1x) = 0 = e2, (35)

E0 → E0C : x3e1 − y2e2 + b5xyz = 0 = e0, (36)

E → EE2 : e32y(−ye2 + b5x) = 0 = e, (37)

where we have degeneration of E2 and we renamed the divisors accordingly. We may

find E2E : e2 = e = 0 from E as well, and now the previously disconnected part can

communicate via this. It satisfies the modified constraint (19) now read as e = e2 using

the SR elements e0e and e1e. This locks only possible divisor from E to E2E , among

seemingly possible elements e.g. Ey : e = y = 0.

Consequently, the only nontrivial intersections are

E0C ·E1A = 1 : e0 = e1 = −e2 + b5x = 0, (38)

E1A · E2x = 1 : e2 = e1 = x = 0, (39)

E2E · E2x = 1 : e2 = e = x = 0, (40)

E2E · E2B = 1 : e2 = e = b5y + b4x = 0, {e0e} (41)

E2B ·E0C = 1 : e2 = e0 = e1 + b5y = 0. (42)

The rest intersection numbers are zero. For instance, E2x · E0C = 0 : e0 = e2 = x = 0

forbidden by the SR element xe0e2. In particular there is no intersection between E2x

and E2B since the required equations e2 = x = y = 0 are forbidden by the SR element xy

which is inherited by xyw′ with w′ = 0.

Altogether these relations give rise to the extended Dynkin diagram the locally en-

hanced gauge symmetry SU(5). However globally the unbroken gauge symmetry on Ŷ

still remains SU(3) × SU(2). Although the divisor E had no intersections to E2 before

the symmetry enhancement, now their degenerated daughters do have nonzero intersec-

tions. This can be tracked to general factors e appearing in the divisors, resulted from

the resolution of the I2 part that cannot be separately done with respect to the I3 part.

Also we can calculate the SU(3) × SU(2) weight of the divisors (34)-(37) in Dynkin

basis, as [Ei · E1, Ei · E2;Ei · E], shown in Table 2.4. At the intersection or matter curve

b6 = 0, we have local gauge symmetry enhancement which explains the emergence of a

light field with quantum number (3, 2). Their six components and weights are displayed

in Table 4. As expected two roots of SU(3) are played by E1A and E2x +E2E +E2B, and
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divisor weight

E1A [−2, 1; 0]

E2x [1,−1; 1]

E2E [0, 0;−2]

E2B [0,−1; 1]

E0C [1, 1; 0]

Table 3: SU(3)× SU(2) weights of the exceptional divisors in Dynkin basis.

divisor weight

E2B + E0C [1, 0; 1]

E2B + E0C + E2E [1, 0;−1]

E2B + E0C + E1A [−1, 1; 1]

E2B + E0C + E1A + E2E [−1, 1;−1]

E2B [0,−1; 1]

E2B + E2E [0,−1;−1]

Table 4: The components of the matter representations (3, 2), at the matter curve b6 = 0.

the root of SU(2) is E2E . One can easily see that this is the only representation whose

components are only effective divisors.

Matter curves for (3, 1) There are other gauge symmetry enhancement directions,

according to Table 1. We have SU(3) → SU(4) symmetry enhancement, yielding light

matter (3, 1) at the matter curve P(3,1) = 0. For example solving in b6 and restoring

appropriately b6 again, we have a splitting of E2.

E2 → E2D ∪ E2F : e2 = 0 = b−2
3 b−1

5 b0(b3b6e0 + b5ex)

×
[

b3b5b6e
2
0e1 + b5(b2b3 − b0b5)ee0e1x+ b23e(b5y + ee1x

2)
]

.
(43)

We have E0 · E1 = 1 as before and in addition we have intersections of new divisors

E1 · E2D = 1 : e1 = e2 = b5x+ b3b6e0 = 0, (44)

E1 · E2F = 0 : e1 = e2 = b43b5 = b5x+ b3b6 = 0, {e1e, e1y} (45)

E0 · E2D = 0 : e0 = e2 = x = 0, {xe0e2} (46)

E0 · E2F = 1 : e0 = e2 = e1 + b5y = 0. {xe0e2} (47)

The representations are calculated in Table 5, where we must take the highest weight

[−1, 1; 0], not [0, 1; 0].
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divisor weight

E0 + E1 + E2F [−1, 1; 0]

E2F [0,−1; 0]

E1 + E2F [−2, 0; 0]

divisor weight

EG [0, 0; 1]

EG + E [0, 0;−1]

Table 5: The components of the matter representations (3, 1) at the matter curve P(3,1) =

0, and (1, 2) at the matter curve P(1,2) = 0.

Matter curves for (1, 2) Another symmetry enhancement direction is P(1,2) = 0, shown

in Table 6. We use the equation for the divisor E after applying the constraint (19), now

reads as e2 = −b6,

E : e = 0 = b6y
2 + b5xy + b4x

2 + b3w
′y + b2w

′x+ b0w
′2, (48)

after dropping −b36. It may degenerate into two divisors

EG ∪ EH : e = 0 = (pw′ + qx+ ry)(sw′ + ux+ vy), (49)

where

b0 = ps, b2 = pu+ qs, b3 = sr + pv, b4 = qu, b5 = ru+ qv, b6 = rv,

satisfying the relation P(1,2) = 0 in a highly nontrivial way. We can always solve six

parameters p, q, r, s, u, v for as many bi’s. In fact, setting w′ = 1 makes (48) to be identical

to spectral cover equation, in which the condition for local factorization (49) is precisely

the requirement for the existence of the (1, 2, 20) representation of SU(3) × SU(2) ×

SU(6) ⊂ E8 [10]. This is another evidence that the divisor equation for E (48) should be

obtained from P̂ ′
T not from P̂T .

Accordingly, each EG or EH provides a representation for (1, 2), shown in Table 5.

We may check the intersection relations in the same way

EG · EH = 1 : e = pw′ + qx+ ry = sw′ + ux+ vy = 0 (50)

where we have nontrivial solution to the last two equations in x and y if

(ur − qv)2 = b25 − 4b4b6 6= 0, (51)

which we have already met in (33) and assumed nonvanishing. As is

EG · E = EG · (EG + EH) = −2 + 1 = −1, (52)

so holds the same relation for EH , by the symmetry that we have no qualitative difference

between EG and EH . We see also there is no distinction between EG and EH group

theoretically, since (1, 2) is a self-conjugate representation. But this may be subject to

Freed–Witten global anomaly. This factorization and intersection structure of E indirectly

suggests that we should obtain E from the primed coordinates P̂ ′ not P̂ .
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3 Abelian factor U(1)

The work by Mayrhofer, Palti and Weigand [27], following that of Esole and Yau [28],

introduced a systematic way to obtain arbitrary number of U(1) gauge fields with desired

gauge quantum numbers, which we follow here (see also Ref. [25], which has similar

structure making use of heterotic/F-theory duality). The idea is to introduce a new

section than zero section in the elliptic fiber, by tuning the coefficients of the elliptic

equation. This is very similar and indeed related to the factorization of the spectral

cover to which we can relate the group elements. Then we have a conifold singularity at

the new section. Resolving this new singularity will give rise to a new section S having

wished intersection structures with the existing resolution divisors for the desirable gauge

quantum numbers.

3.1 More global sections from factorization

We need one-forms or gauge fields A1 of Abelian symmetries for either Cartan subalgebra

of non-Abelian groups or just U(1) groups. To realize them, we require harmonic two-

forms w2 ∈ H1,1(Ŷ ) by which the M/F-theory three-form tensor is expanded as

C3 =
∑

A1 ∧ w2

= Ae1
1 ∧ we1

2 + Ae2
1 ∧ we2

2 + Ae
1 ∧ we

2 + AY
1 ∧ wY

2 + · · · .
(53)

Here, wei
2 are the dual two-forms to the divisors E1, E2 or E of Ŷ obtained from the

blowing-ups in the previous section.

We need two kinds of requirements for w2’s. (i) Each A1 should have desired gauge

quantum number, so the Poincaré-dual divisor of the paired w2 in Ŷ should have appro-

priate intersections with other divisors. (ii) Every A1 should be seven-dimensional vector

field, which restricts the index structure of the components of the pared w2 [7]. For a

resolved Kodaira singularity, the blown-up cycles wei
2 automatically possess Requirement

(i), seen from the intersection structure, seen in Section 2.3. However there is no Kodaira

singularity for an Abelian symmetry, or would-be-related I1 singularity is actually smooth.

So we cannot do the resolution as in Section 2.2. We will see shortly that the desired

two-form is obtained from another kind of singularity under a more special condition.

The goal of this section is to find wY
2 harboring the hypercharge satisfying Requirement

(ii).

An important hint is the relation between the elliptic equation and spectral cover

equation. The latter in a sense shows the algebraic relation in more suggestive form, since

the coefficients are directly related to combinations of weight vectors. The relation is best
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seen by restricting the former on the hypersurface

X ≡ e0e
2
1ex

3 − (e0e1e2 + b6)y
2 = e(e0e

2
1x

3 − w′y2) = 0. (54)

It will be convenient to define t as

xe1t ≡ y, {e1y, xy} (55)

serving as a well-behaved holomorphic coordinate. It is because the condition t = 0 means

y = 0, and the opposite also holds because the SR elements indicated in (55) forbid x = 0

and e1 = 0. So from now on we use t = ye−1
1 x−1, under which (54) becomes

e0ex− (e0e1e2 + b6)t
2. (56)

Putting this to P̂ , we obtain

P̂
∣

∣

X=0
= e−3

0 e1e
2w′2(b0e

6
0z

6 + b2t
2e40z

4 + b3t
3e30z

3 + b4t
4e20z

2 + b5t
5e0z + b6t

6). (57)

Unless b6 = 0, E0 has no intersection to X so we do not care about the factor e−3
0 ,

otherwise there is a cancellation and no overall factor in e0 remains. Besides the prefactor,

the polynomial in z, in the parenthesis, is nothing but the spectral cover equation, whose

relation is discussed in Ref. [10, 27]. The F-theory compactification requires a global

section in the elliptic fiber, which is at (x, y, z) = (1, 1, 0) in our case and usually called

zero section Z. In the spectral cover description, the vanishing sum of five distinguished

points, for the unimodular group SU , should be translated to the absence of z5 term,

with our choice of the zero section.

In the spectral cover description, we have obtained a globally valid U(1) by ‘decompo-

sition’ [25]. Its first procedure is tuning of parameters (4)-(8) as follows [7,10,12,19,27,35].

b0 = a0d1, b2 = a0d2 + a1d1, b3 = a0d3 + a1d2,

b4 = a0d4 + a1d3, b5 = a0d5 + a1d4, b6 = a1d5.
(58)

In other words,

a1 = (a0d5 + a1d4), (59)

a2 = (a0d4 + a1d3)w, (60)

a3 = (a0d3 + a1d2)(a1d5 + w)w, (61)

a4 = (a0d2 + a1d1)(a1d5 + w)w2, (62)

a6 = a0d0(a1d5 + w)2w3. (63)

And the absence of a5 or b1 should be translated as a constraint

0 = a0d1 + a1d0.
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matter parameters

PX a1

Pq◦ d5

Puc
◦

a31d2 + a0a
2
1d3 + a20a1d4 + a30d5

Pdc◦

a0a1d2d3d4 + a20d
2
3d4 + a21d0d

2
4 − a0a1d

2
2d5

−a20d2d3d5 + 2a0a1d0d4d5 + a20d0d5

Pl◦

a51d5d
2
0 − a31d5a

2
0d2d0 − 2a1d5a

4
0d0d4 − 3a21d5a

3
0d0d3

+a30d0a
2
1d

2
4+a50d0d

2
5+a40d2a1d4d3−a50d2d5d3+a31d0d4a

2
0d3

+a0a
4
1d0d4d2 + a50d4d

2
3 + a40a1d

3
3 + 2a30a

2
1d

2
3d2 + a20a

3
1d3d

2
2

Pec◦ −2d1a
4
1 + d2a0a

3
1 − d3a

2
0a

2
1 + d4a

3
0a

2
1 − d5a

4
0

Table 6: Defining equation for the matter curves.

Then the Tate polynomial becomes factorized form

P̂
∣

∣

X=0
= e−3

0 e1e
2w′2(a0e0z + a1t)(d0e

5
0z

5 + d1e
4
0z

4t+ d2e
3
0z

3t2 + d3e
2
0z

2t3 + d4e0zt
4 + d5t

5).

≡ Y1Y2.

(64)

This will become the S[U(1)×U(5)] spectral cover equation in the heterotic side. However

to ensure this U(1) be global, we require another global section other than the zero

section [19, 27]. In our case, indeed we have the new section is at X = Y1 = 0. Since this

section is related to the ‘U(1) part’ Y1 or the parameter a1/a0, we may expect this section

has appropriate structure for the hypercharge.

The factorization structure (64) may be expressed in another way [27]

P̂T = XQ− Y1Y2 = 0, (65)

by introducing a polynomial Q, holomorphic in z and t. This leads to a conifold singularity

at

X = Q = Y1 = Y2 = 0, (66)

which is of higher codimension than one. We blow up Y1 = Q = 0 by introducing a P
1

with homogeneous coordinates (λ1, λ2) such that [28]

Y1λ2 = Qλ1, Y2λ1 = Xλ2. (67)

The original singularity (66) gives unconstrained λ1 and λ2, which means it is replaced

by the P1. Away from the singularity, we recover the original equation (65) by solving λ1
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and λ2. In effect, the equations in (67) have redefined the Calabi–Yau space, which we

denote as Ŷ again by abusing the notation, as a hypersurface in the new ambient space

including the P
1. Then, we obtain an an extra section than zero section as the following

divisor in Ŷ

S : λ1 = 0, (68)

which forces λ2 be nonzero and gives Y1 = X = 0 from (67). The lesson from the

spectral cover [25] tells us that Y1 = 0 is related to the hypercharge U(1) as a subset of

the commutant S[U(1) × U(5)] to the SM group in E8. The desired candidate for the

hypercharge (1, 1)-form is therefore Poincaré-Hodge dual to the threefold S in Ŷ , up to

some correction we should consider below.

Next, we consider Condition (ii) below Eq. (53), for A1 being a Lorentz vector. A

natural method is given in Ref. [27], which we follow here with similar notations. Such

forms w should satisfy following constraints
∫

Ŷ

w ∧Da ∧Db ∧Dc = 0, (69)
∫

Ŷ

w ∧ Z ∧Da ∧Db = 0, (70)

from which the two indices of w have one leg on the elliptic fiber and the other leg on the

base B. Here the divisors Da, Db, Dc of Ŷ are pullbacks of arbitrary divisors in B. It is

far from trivial for the Cartan subalgebra elements E1 and E2 to satisfy the relation (70),

without choosing the SR ideal (21). For w we find the desired linear combination

wY = S − Z − K̄ + a1 +
∑

tiEi (71)

where K̄ is the canonical class of the base B, a1 is the divisor defined by a1 = 0, and the

coefficients ti will be determined later. The general such process is called Shioda map [38].

The condition (69) is satisfied using the relation
∫

Ŷ

S ∧Da ∧Db ∧Dc =

∫

Ŷ

Z ∧Da ∧Db ∧Dc =

∫

B

Da ∧Db ∧Dc

since both S and Z are global section. The next condition (70) is satisfied by (71) thanks

to the following. First, the intersection of Z : z = 0 means Y1 = a1t among the defining

equation of S. Using that xyz is an element SR ideal, the only nontriviality for intersection

S · Z comes from ∫

Ŷ

S ∧ Z ∧Da ∧Db =

∫

B

a1 ∧Da ∧Db.

Also the adjunction formula states
∫

Ŷ

Z ∧ Z ∧Da ∧Db = −

∫

B

K ∧Da ∧Db.
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3.2 More symmetry enhancement

The procedure described in the previous subsection introduces two new things: one is the

new section S and the other is further factorization of the matter curve. We calculate

the intersection of the divisors with S under various symmetry enhancement conditions

on matter curves. From this, we see that, although S did not originate from the Cartan

subalgebra of the SU(5) singularity or Kodaira I5, it plays exactly the same role for the

fourth generator of it, other than existing generators E1, E2, E.

Matter curves for (3, 2) Under the parametrization (59)-(63) the matter curve equa-

tion P(3,2) = 0 in (9) further factors as

P(3,2) = PqPX = 0,

with different intersection structures of exceptional divisors for each factor shown in Table

6. We can directly compute the intersections as, omitting λ1 = Da = 0,

S ·E1A,q = 0 : e1 = y = −e2 + a1d4x = d5 = 0, {ye1} (72)

S ·E2E,X = 1 : e2 = e = x = a1 = 0, {xe0e2, e0e, e1e} (73)

S · E2E,q = 1 : e2 = e = Y1 = d5 = 0, (74)

S ·E2B,X = 1 : e2 = e0 = e1 + a0d5y = a1 = 0, {xe0e2, e0e} (75)

S · E2B,q = 0 : e2 = X = Y1 = x2ee1 + a1d4y + (a1d3 + a0d4)e0e1x = d5 = 0, (76)

S · E2x,q = 0 : e2 = x = y = d5 = 0. {xy} (77)

In calculating the intersection of Y1 = a0e0 + a1t with x = 0 or e1 = 0, the definition of t

is not valid so we need to restore its original form a0e0e1x+ a1y.

We should remember that although we have local gauge symmetry enhancement, still

on Ŷ the gauge symmetry is SU(3)×SU(2)×U(1), whose basis corresponds to E1, E2, E.

Thus we have a definite product between those with S. We should have a definite inter-

section S · E1 = S ·E1A,q = 0 so we should also have

S · E1A,X = 0.

As before, we have an invariant

S ·E2 = S · (E2x + E2E + E2B) = 1 (78)

calculated from the matter curve q. Since S · E2 should be independent of the decompo-

sition, therefore we should have the same value for the X and we have

S · E2x,X = −1.

17



Also indirectly we can obtain the value. From the definition of the extended root E0, we

have linear dependence relation E0C +E1A+E2x+E2E +E2B = 0, fixing, for both X and

q,

S ·E0C = −1.

Matter curves for (3, 1) Now we go to the case of (3, 1). In this case our factorization

is

P(3,1) = PucPdc = 0.

where each factor is again displayed in Table 6. Also omitting λ1 = Da = 0, we have

S · E2D,uc = 1 : e2 = b3b6e0 + b5ex = X = 0, (79)

S · E2D,dc = 0 : e2 = b3b6e0 + b5ex = X = Y1 = 0, (80)

S ·E2F,uc = 0 : e2 = b3b5b6e
2
0e1 + b5(b2b3 − b0b5)ee0e1x+ b23e(b5y + ee1x

2) = X = Y1 = 0

(81)

S · E2F,dc = 1 : e2 = b3b5b6e
2
0e1 + b5(b2b3 − b0b5)ee0e1x+ b23e(b5y + ee1x

2) = X = 0.

(82)

While the constraint Puc = a21b3 + a20b5 = 0 makes the conditions in (79) automatically

solve the equation Y1 = 0, it is not in the case of dc curve in (80). The same situation holds

for E2F . The rest of intersection is the same as in the previous case S ·E0 = −1, S ·E1 = 0.

There are still no matter curve for (1, 2) for the factorization (58); For generic ai’s

and di’s, we cannot solve the six parameters in (49).

Matter curve for (1, 2) With the factorization at X = 0, one of EG and EH has a

solution in the form

EG : p+ qx+ ry = (a0e0z + a1t)(g0e
2
0z

2 + g1e0zt + g2t
2) = 0, (83)

with the constraint a0g1+a1g0 = 0. This is regarded as the definition of EG from now on,

and the other part EH is untouched. Thus the modified defining equation of EG contains

the factor Y1 = 0 and the condition is redundant. This is the reason why we have no

further factorization of P(2,1). Therefore we have the intersection structure

S ·EG = 1 : P(2,1) = X = Y1 = λ1 = Da = 0, (84)

S ·EH = 0. (85)

At the same time can distinguish the lepton doublet from the down-type Higgs doublet

by extra U(1) quantum numbers than hypercharge.
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Matter curve for (1, 1) After the factorization to obtain the hypercharge symmetry

U(1)Y , we have a new charged singlet ec : (1, 1)1 under the SM group SU(3)× SU(2)L ×

U(1)Y , shown in Table 6. On the matter curve Pec = 0, we have gauge symmetry en-

hancement U(1)Y → SU(2)R so that the resulting SU(3) × SU(2)L × SU(2)R is still a

subgroup of SO(10) [41].

We note that Pec = 0 is contained in the complete intersection between Y1 and Y2.

Around here, the fiber equation (65) locally has a binomial structure of a deformed Ko-

daira I2 equation xy = z1z2, which describes nothing but this SU(2)R gauge symme-

try [21, 27, 28]. Therefore the small resolution gives the P
1 fiber (66) over the locus

Pec = 0, which we now call S ′. This S ′ will be related to the weight vector for ec. Away

from the intersection Pec = 0 in the base B, its fiber described by (66) is already a P
1,

which we call E ′. These two have McKay correspondence of the affine SU(2)R, namely

S ′ ·E ′ = 2. And we can show that S intersects the entire fiber S ′+E ′ at a single point [27].

Therefore S ′ provides the desirable intersection giving the correct hypercharge of ec,

S · S ′ = −1. (86)

3.3 Hypercharge generator from the embedding

In the previous section, we have studied the intersections of the new divisor S in (68) with

various divisors, or, to be more precise, the intersection numbers between their P1 fibers

in the sense of (31). Although on various loci Pf = 0 each of the divisors E1, E2, E may

further degenerate into many, we can recollect the results in terms of the intersections

among E1, E2, E and S. For example, the relation (78) may be recollected as S · E2 = 1

since this relation is independent on any specific locus Da = Db = 0 on which we calculate.

Therefore we summarize the result as follows. We have McKay correspondence of

intersections of the P
1 fibers











E1 E2 S E

E1 −2 1 0 0

E2 1 −2 1 0

S 0 1 −2 1

E 0 0 1 −2











= −ASU(5) (87)

being the minus of the Cartan matrix of SU(5). The divisor S provides the ‘fourth root’ of

SU(5). This is a good news, since the hypercharges are correctly given to the fields when

we choose S as the generator with a suitable normalization. The divisors E1, E2, E may

be blown down to zero size to recover nonabelian singularity SU(3) × SU(2). However

the divisor S cannot be blown down maintaining the factorization (64), since we cannot
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allow the conifold singularity with higher codimension. Therefore, at best we can have

the gauge group SU(3)× SU(2)× U(1), not the full SU(5).

However the Poincaré–Hodge dual two-form to the divisor S is not exactly what we

want as hypercharge generator, since we need a disconnected ωY ≃ S from the other

group SU(3)× SU(2) as
∫

Ŷ

wY ∧ Ei ∧Da ∧Db = 0 for E1, E2, E. (88)

We may form a linear combination of S with Ei’s to have the desired property. This is

to find the coefficients ti in (71) in the Shioda map [38] done in the following mnemonics.

Take the inverse Cartan matrix A−1 of the enhanced gauge symmetry of rank r+ 1. The

Dynkin basis is defined to be and provides a convenient orthogonal relation between roots

αi and weights wi in a group under consideration

αi · w
j = δji , ai =

∑

j

Aijw
j,

where the Cartan matrix provides the product metric and the sum is done over all the

weights in that algebra. The symmetry breaking is described by deleting the jth node of

the Dynkin diagram and the resulting unbroken symmetry with Cartan matrix being the

one with without the jth row and jth column. From the orthonormality relation, what

we need here is to take jth row of the inverted Cartan matrix as the coefficients ti of

linear combinations of root divisors Ei. In our case

A−1
SU(5) =

1

5











4 3 2 1

3 6 4 2

2 4 6 3

1 2 3 4











.

The symmetry breaking SU(5) → SU(3)×SU(2)×U(1) is done by removing 3rd row (and

removing the extended root of the SU(5)). Therefore, we take the third row (2, 4, 6, 3),

neglecting the overall normalization 1/5, to obtain 2, 4, 6, 3 for coefficients of E1, E2, S,

and E, respectively. This always guarantee the integral charges under this U(1). We

finally have the hypercharge generator

wY = −

[

S − Z − K̄ − a1 +
1

6
(2E1 + 4E2 + 3E)

]

, (89)

with the overall normalization chosen according to the conventional charge. Applying this

to any component Ef of each field f gives the hypercharge Yf =
∫

Ef
wY as

Yq =
1

6
, YX = −

5

6
, Yuc = −

2

3
, Ydc =

1

3
, Yl = −

1

2
, Yec = 1. (90)
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It is highly nontrivial that every component has different inner product with 6S and

2E1 + 4E2 + 3E, but their sum is always the same, as it should be for the components in

a same multiplet.

3.4 Further factorization

The model we have been building so far cannot be realistic for some reasons below.

1. Even with a ‘1+5’ factorization giving the hypercharge U(1), we could not obtain

the massless field with the quantum number (2, 1) for generic parameters ai’s and

di’s, since we have no solution to the equation for the desired weights (49). We may

hope that further tuning of these parameters may solve the problem.

2. The spectrum so far, listed in Table 6, cannot take into account the Higgs fields.

By further factorization, we hope we can distinguish up and down Higgses by their

localization on different matter curves.

3. To have four dimensional chiral spectrum, we have to turn on G-flux. If we turn

on the universal G-flux along the entire ‘SU(5)’ part2 we have partial unification

relation of SU(5). That is, the SM field belonging to the same representation

of SU(5) has the same number of generations among themselves. For example

nq = nuc = nec from 10 where nf is the number of generations of a matter field f . If

we want more strong unification relation, we may turn on G-flux along smaller part

than SU(5), for instance SU(4), which gives a larger commutant for the unification

relation, for instance of SO(10).

Note that always the unbroken group here is the SM group SU(3)×SU(2)×U(1)Y ,

purely determined by the tuning of the parameters (58) of the elliptic equation,

regardless the choice of G-flux.

In spectral cover construction, it was shown that factorization with the spectral cover

S[U(3)×U(1)×U(1)×U(1)] is most realistic [31], and the same applies to our F-theory

version.

As before, we seek extra sections as subset of the variety X = 0. So we will require

the factorization of the elliptic equation in the form (we will drop the factor e0 and z for

simplicity)3

P̂ |X=0 = (a0 + a1t)(b0 + b1t)(d0 + d1t)(f0 + f1t + f2t
2 + f3t

3) ≡ Y1Y2Y3Y4

2For convenience we call this SU(5) part as a commutant group of the SU(3)× SU(2)× U(1) in E8,

just borrowing the nomenclatures of spectral cover construction. The other commutant in this case is

the hypercharge U(1)Y since the abelian group commutes to itself.
3In what follows we have new definitions on Yi’s and Q, etc. and they are not related to similar ones

in the previous section.
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with the constraint

a1b0d0f0 + a0b1d0f0 + a0b0d1f0 + a0b0d0f1 = 0.

Rewriting this again as XQ = Y1Y2Y3Y4 by introducing a holomorphic polynomial Q, the

above four factors of Yi’s give rise to singularities. We know we shall have three U(1)’s

so we introduce as many P
1’s with homogeneous coordinates (λ1, λ2), (µ1, µ2), (ν1, ν2) and

choose a resolution as

Y1λ2 = Qλ1, Y2µ2 = µ1ν2, Y3λ1µ1ν1 = λ2µ2, Y4ν2 = Xν1. (91)

The resulting manifold is smooth since the Jacobian has the maximal rank. We are

content to verify that at least locally this reduces to the binomial resolution for three

factors, shown in Ref. [28]. When we have locally Y2 ≃ 1, we have µ2 = µ1ν2. Plugging

them, the relations agree as

Y1λ2 = Qλ1, Y3λ1ν1 = λ2ν2, Y4ν2 = Xν1.

When Y3 ≃ 1, we have µ2 = λ1µ1ν1/λ2 on one patch λ2 6= 0 and we reproduce

Y1λ2 = Qλ1, Y2λ1ν1 = λ2ν2, Y4ν2 = Xν1.

This also holds good on the other patch λ1 6= 0.

Consequently, we have new exceptional hypersurfaces containing the sections X =

Yi = 0 for i = 1, 2, 3

S : λ1 = µ2 = ν2 = 0 =⇒ X = Y1 = 0, (92)

SX : λ2 = µ1 = ν1 = 0 =⇒ X = Y2 = Q = 0, (93)

SZ : λ2 = µ2 = ν2 = 0 =⇒ X = Y3 = Q = 0. (94)

The two extra U(1) charges we call X and Z. This S divisor has essentially the same

definition as that in the previous factorization (68), having the same group and Lorentz

properties. As before, the newly found divisors SX and SZ provide ‘missing’ Cartan

subalgebra of SU(5) or SO(10), respectively. We can recycles the U(1) generators wY ,

since the latter satisfies all the requirement of Cartan subalgebra (88) and the whole

generators satisfy desirable conditions (69), (70). Thus we find the new generators with

normalization

wX =5(SX − Z −K − b1) + 2E1 + 4E2 + 6E + 3(−6wY ), (95)

wZ =4(SZ − Z −K − d1) + 2E1 + 4E2 + 6E + 5wX + 3(−6wY ), (96)
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where the factor −6 in front of wY is due to the special fractional convention of hy-

percharge. Since SX and SZ are going to belong to SO(10) and E6, respectively, the

coefficients are also found from the inverted Cartan matrices

A−1
SO(10) =

1

4















4 4 4 2 2

4 8 8 4 4

4 8 12 6 6

2 4 6 5 3

2 4 6 3 5















, A−1
E6

=
1

3





















4 5 6 4 2 3

5 10 12 8 4 6

6 12 18 12 6 9

4 8 12 10 5 6

2 4 6 5 4 3

3 6 9 6 3 6





















Further generalization is straightforward. The spectrum of the fields and the correspond-

ing charges are shown in Table. 1 in Ref. [31].

4 Comment on gauge coupling unification

With localization of each gauge theory on a complex surface S4 in B, a part of eight

dimensional worldvolume, we have the following field theory limit having dimensional

reduction [6, 7]

−
e−φ

(2πα′)4

∫

S4×R4

d8xF 2
8D = −

Vol S4

4g2YM

∫

R4

d4xF 2
4D + · · · , (97)

with the vacuum expectation value of the dilaton eφ becoming string coupling. In the IIB

string theory limit, this VolS4 is interpreted as the effective volume of the cycle wrapped

by dynamical severbranes with both NSNS and RR charges.

The volumes of S(3) and S(2) respectively spanned by the SU(3) locus W ≡ E0 : e0 = 0

(in B) and the SU(2) locus W ′ : w′ = 0 are related, using (87).

VolS(3) =
1

2

∫

S(3)

J ∧ J =
1

2

∫

B

W ∧ J ∧ J = −
1

2

∫

Ŷ

E2 ∧ S ∧ J ∧ J

= −
1

2

∫

Ŷ

E ∧ S ∧ J ∧ J =
1

2

∫

B

W ′ ∧ J ∧ J =
1

2

∫

S(2)

J ∧ J = VolS(2).

(98)

where J is the Kähler form of Ŷ . Therefore we have the same worldvolume for these

two non-Abelian gauge groups. Here the calibrated geometry plays a role: the effec-

tive volumes are given by intersection numbers, not depending on scaling factors of the

coordinates.

The gauge coupling of the hypercharge U(1) can be readily determined in the relation

to the enhanced group such as SU(5). It should be a global limit b6 = 0, i.e. not local
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gauge symmetry enhancement on matter curves

P̂ |b6=0 =e21e
3
2

[

x3e3e1 − y2e2e2 + b5e
2xyz + b4e0e1e

2x2z2 + b3e
2
0e1e2eyz

3

+ b2e
3
0e

2
1e2exz

4 + b0e
5
0e

3
1e

2
2z

6]
(99)

with the tuned parameters bi in (58). It is happy to see that in this limit, the two-

cycles e0, e1, e2 are identical to those in the standard resolution of SU(5) singularity I5
(See, e.g. [27], after renaming e2 → e4). The woldvolume is provided by the divisor

W0 : e0 = P̂T |b6=0 = 0, which is the same as W of the SU(3). Thus

VolS(5) =
1

2

∫

S(5)

J ∧ J =
1

2

∫

B

W0 ∧ J ∧ J =
1

2

∫

B

W ∧ J ∧ J = VolS(3). (100)

The fact that W,W ′,W0 have the same volume is obvious since the SU(3) and the SU(2)

are obtained by deforming SU(5) singularity. It is not affected by another deformation

arising from the resolution S of the conifold singularity. The volume of the P
1 fiber of S

cannot be nonzero so there cannot be unbroken SU(5). Nevertheless the gauge couplings

are unaffected by the volume of this P1 and in the low energy limit, we just have heavy

X, Y gauge multiplets.

In this limit, S provides the Cartan subalgebra element related to hypercharge, as

seen in the relation (87) thus

−
1

4g2
trF 2

SU(5) = −
1

4g2
(trF 2

SU(3) + trF 2
SU(2) + trF 2

U(1)),

where we defined the gauge field as matrix valued AM = Aa
M ta, trtatb = 1

2
δab. In particular,

from the Cartan matrix (87), the generator S is related to the Cartan element with

t = 1√
60
diag(2, 2, 2,−3,−3). The two-cycle wY is just a modification of that of S, and the

linear transformation within the same group SU(5) (otherwise even the definition (89)

does not make sense) is just a transformation not affecting the gauge coupling. Thus the

gauge coupling of the hypercharge U(1)Y should be related by group theory of the unified

group SU(5) rembedding SU(3)× SU(2)×U(1)Y , in the standard way. Normalizing the

U(1) charge of the ec to be 1, we fix the coupling as

g2 = g23 = g22 =
3

5
g2Y ,

with the weak mixing angle at this string theory scale

sin θ0W =
g2Y

g22 + g2Y
=

3

8
,

consistent with the observation. For any U(1) having an embedding to a certain GUT,

we may use this method, however it is an open question whether every U(1) obtainable

in F-theory has such embedding.
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To this coupling relation, we have threshold correction, if there is a nontrivial G-flux

along a certain U(1) direction. When we construct the SM group at the string scale,

we should not turn on G-flux along the hypercharge direction if we want it to be gauge

symmetry. For GUT such as SU(5), we may break it by turning on G-flux without

breaking gauged hypercharge [6, 8]. Other U(1) symmetries constructed for the realistic

model building, it is desirable to broken down by G-flux. Then by Stückelberg mechanism,

the corresponding gauge boson acquires mass and the symmetry becomes global. There

are also threshold correction to it from the flux [8, 39, 40].

5 Conclusion

We analyzed the Standard Model gauge group SU(3) × SU(2) × U(1), and also its ac-

companying matter fields, constructed in F-theory, using resolution procedures. The

non-Abelian part SU(3)×SU(2) is described by the singularities of Kodaira type, which

locally looks like I3 and I2, as nontrivial deformation of the SU(5) singularity I5. They are

respectively supported at different divisors w = 0 and w′ = 0, which are related by a co-

ordinate transformation (19), nevertheless described by single elliptic equation (20). The

resolution analysis revealed that the SM group should be distinguished to näıve product of

SU(3) and SU(2), since the two groups are connected by coordinate transformations and

the blowing-ups cannot be done independently. On the matter curves, there are gauge

the symmetry enhancements to various unified groups, and the exceptional divisors from

different simple groups mix in some particular way, yielding matter fields having desired

charges. This desirable feature is present only if the SM group is embedded in En series

group.

The Abelian part U(1) is obtained by ‘factorization method’ making use of an extra

section in the elliptic fiber of an internal manifold. At a particular restriction X = 0,

the factorization of the elliptic equation is related to gauge symmetry enhancement in

certain group direction. The resolution at the conifold singularity originating from this

factorization gives rise to the two-form harboring the desired gauge group, having the

correct assignment of U(1) charges. This new two-form and the corresponding divisor

should be understood in terms of a certain unified group, and from which the conventional

SU(5) gauge coupling unification relation is achieved if no flux is turned on the U(1) part.

We hope that this analysis provides a complete proof to the SM singularity suggested

before: Either by relating to the spectral cover in the heterotic dual limit and explicit

calculation of the charges of the matter fields. Gauge coupling unification can be another

good clue for the model building, which is not shared by other models in the similar

context having an intermediate Grand Unification. We may apply this method to a direct
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construction of the Standard Model in the native F-theory context. Mathematically, the

appearance of an extra U(1) as an element of Cartan subalgebra in a larger unified group

is very suggestive, so it would be interesting to extend the work to find more systematic

method to find groups involving multiple U(1)’s.
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