This article investigates the use of Multi-Criteria Decision-Making (MCDM) methodologies, particularly the Analytic Hierarchy Process (AHP), to address the ongoing challenge of earthquake management in Morocco, focusing on recent seismic events in the Al Haouz province. The study rigorously assesses ten distinct earthquake management strategies in Morocco: A1: building codes and construction standards; A2: early warning systems; A3: public education and awareness; A4: land use planning; A5: emergency response plans; A6: international cooperation; A7: research and monitoring; A8: infrastructure resilience; A9: community preparedness; and A10: insurance and financial preparedness. These strategies are evaluated against a comprehensive set of criteria, including C1 (effectiveness in risk reduction), C2 (cost-effectiveness), C3 (inclusivity and social equity), C4 (adaptability and flexibility), C5 (environmental impact), C6 (compliance with standards and insurance uptake), C7 (interagency collaboration), and C8 (data utilization). The resulting criteria weights reflect their importance, with C1 highly significant (0.3), C2 moderately important (0.2), and C3 also moderately important (0.15), while C4, C5, C6, C7, and C8 hold less significance (0.1 or 0.05). Performance scores rank earthquake management strategies, with A2 achieving the highest score (0.45), followed by A4 (0.43), A10 (0.42), A9 (0.41), and A3 (0.4), while A1 attains a moderate score (0.32), aiding decision-making for earthquake risk reduction. This research emphasizes the critical role of early warning systems in earthquake management, stressing the importance of timely alerts, community engagement, and financial preparedness in Morocco's comprehensive risk reduction strategy, utilizing data-driven decision-making to enhance preparedness, response capabilities, and mitigation measures.