Practice Patterns of Mitochondrial Disease Physicians in North America. Part 2: Treatment, Care and Management.

Center for Child Neurology, Cleveland Clinic Children's Hospital, Cleveland, OH. Electronic address: .
Mitochondrion (Impact Factor: 3.25). 09/2013; 13(6). DOI: 10.1016/j.mito.2013.09.003
Source: PubMed


Mitochondrial medicine is a young subspecialty. Clinicians have limited evidence-based guidelines on which to formulate clinical decisions regarding diagnosis, treatment and management for patients with mitochondrial disorders. Mitochondrial medicine specialists have cobbled together an informal set of rules and paradigms for preventive care and management based in part on anecdotal experience. The Mitochondrial Medicine Society (MMS) assessed the current state of clinical practice including diagnosis, preventive care and treatment, as provided by various mitochondrial disease providers in North America. In this second of two reports, we present data related to clinical practice that highlight the challenges clinicians face in the routine care of patients with established mitochondrial disease. Concerning variability in treatment and preventative care approaches were noted. We hope that sharing this information will be a first step toward formulating a set of consensus criteria and establishing standards of care.

Download full-text


Available from: Gregory M Enns, Dec 22, 2014
  • Source
    • "In view of the overlapping phenotypes that may exist between ThTR2 deficiency and mitochondrial disorders causing Leigh encephalopathy, it seems advisable to initiate empirically biotin and thiamin in every patient with Leigh syndrome. However, it is concerning that in a recent report on the practice patterns of mitochondrial disease physicians in North America, only 3 of 32 medical doctors administered thiamine and other B complex vitamins [31]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The clinical characteristics distinguishing treatable thiamine transporter-2 deficiency (ThTR2) due to SLC19A3 genetic defects from the other devastating causes of Leigh syndrome are sparse. Methods We report the clinical follow-up after thiamine and biotin supplementation in four children with ThTR2 deficiency presenting with Leigh and biotin-thiamine-responsive basal ganglia disease phenotypes. We established whole-blood thiamine reference values in 106 non-neurological affected children and monitored thiamine levels in SLC19A3 patients after the initiation of treatment. We compared our results with those of 69 patients with ThTR2 deficiency after a review of the literature. Results At diagnosis, the patients were aged 1 month to 17 years, and all of them showed signs of acute encephalopathy, generalized dystonia, and brain lesions affecting the dorsal striatum and medial thalami. One patient died of septicemia, while the remaining patients evidenced clinical and radiological improvements shortly after the initiation of thiamine. Upon follow-up, the patients received a combination of thiamine (10–40 mg/kg/day) and biotin (1–2 mg/kg/day) and remained stable with residual dystonia and speech difficulties. After establishing reference values for the different age groups, whole-blood thiamine quantification was a useful method for treatment monitoring. Conclusions ThTR2 deficiency is a reversible cause of acute dystonia and Leigh encephalopathy in the pediatric years. Brain lesions affecting the dorsal striatum and medial thalami may be useful in the differential diagnosis of other causes of Leigh syndrome. Further studies are needed to validate the therapeutic doses of thiamine and how to monitor them in these patients.
    Full-text · Article · Jun 2014 · Orphanet Journal of Rare Diseases
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leigh syndrome, also referred to as subacute necrotizing encephalomyelopathy, is a severe, early-onset neurodegenerative disorder that is relentlessly progressive and devastating to both the patient and the patient's family. Attributed to the ultimate failure of the mitochondrial respiratory chain, once it starts, the disease often results in the regression of both mental and motor skills, leading to disability and rapid progression to death. It is a mitochondrial disorder with both phenotypic and genetic heterogeneity. The cause of death is most often respiratory failure, but there are a whole host of complications, including refractory seizures, that may further complicate morbidity and mortality. The symptoms may develop slowly or with rapid progression, usually associated with age of onset. Although the disease is usually diagnosed within the first year of life, it is important to note that recent studies reveal phenotypic heterogeneity, with some patients having evidence of in utero presentation and others having adult-onset symptoms.
    Full-text · Article · Nov 2014 · The Application of Clinical Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Beyond the disorders recognized as mitochondrial diseases, abnormalities in function and/or ultrastructure of mitochondria have been reported in several unrelated pathologies. These encompass ageing, malformations, and a number of genetic or acquired diseases, as diabetes and cardiologic, haematologic, organ-specific (e.g., eye or liver), neurologic and psychiatric, autoimmune, and dermatologic disorders. The mechanistic grounds for mitochondrial dysfunction (MDF) along with the occurrence of oxidative stress (OS) have been investigated within the pathogenesis of individual disorders or in groups of interrelated disorders. We attempt to review broad-ranging pathologies that involve mitochondrial-specific deficiencies or rely on cytosol-derived prooxidant states or on autoimmune-induced mitochondrial damage. The established knowledge in these subjects warrants studies aimed at elucidating several open questions that are highlighted in the present review. The relevance of OS and MDF in different pathologies may establish the grounds for chemoprevention trials aimed at compensating OS/MDF by means of antioxidants and mitochondrial nutrients.
    Full-text · Article · May 2014 · Oxidative Medicine and Cellular Longevity
Show more