In vivo dark-field imaging of the retinal pigment epithelium cell mosaic

Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA.
Biomedical Optics Express (Impact Factor: 3.65). 09/2013; 4(9):1710-23. DOI: 10.1364/BOE.4.001710
Source: PubMed


Non-invasive reflectance imaging of the human RPE cell mosaic is demonstrated using a modified confocal adaptive optics scanning light ophthalmoscope (AOSLO). The confocal circular aperture in front of the imaging detector was replaced with a combination of a circular aperture 4 to 16 Airy disks in diameter and an opaque filament, 1 or 3 Airy disks thick. This arrangement reveals the RPE cell mosaic by dramatically attenuating the light backscattered by the photoreceptors. The RPE cell mosaic was visualized in all 7 recruited subjects at multiple retinal locations with varying degrees of contrast and cross-talk from the photoreceptors. Various experimental settings were explored for improving the visualization of the RPE cell boundaries including: pinhole diameter, filament thickness, illumination and imaging pupil apodization, unmatched imaging and illumination focus, wavelength and polarization. None of these offered an obvious path for enhancing image contrast. The demonstrated implementation of dark-field AOSLO imaging using 790 nm light requires low light exposures relative to light safety standards and it is more comfortable for the subject than the traditional autofluorescence RPE imaging with visible light. Both these factors make RPE dark-field imaging appealing for studying mechanisms of eye disease, as well as a clinical tool for screening and monitoring disease progression.

  • Source
    • "We believe that this is benefi cial for AO retinal imaging, as the optical surfaces that are likely the source of the eye's monochromatic aberration are close to the exit pupil plane, and thus more amenable to correction with a single wavefront corrector that is optically conjugate to it. Here, we used a modifi ed custom AOSLO (Dubra & Sulai, 2011;) capable of simultaneous confocal (refl ectance), dark-fi eld (Scoles et al., 2013) and nonconfocal split-detection (Scoles et al., 2014) imaging to visualize the 13LGS photoreceptor mosaic. We then measured photoreceptor density (Chui et al., 2008), spacing (Rossi & Roorda, 2010) and performed Voronoi analysis, all of which were then compared to histological reports in similar species. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ground squirrels are an increasingly important model for studying visual processing, retinal circuitry, and cone photoreceptor function. Here, we demonstrate that the photoreceptor mosaic can be longitudinally imaged noninvasively in the 13-lined ground squirrel ( Ictidomys tridecemlineatus) using confocal and nonconfocal split-detection adaptive optics scanning ophthalmoscopy using 790 nm light. Photoreceptor density, spacing, and Voronoi analysis are consistent with that of the human cone mosaic. The high imaging success rate and consistent image quality in this study reinforce the ground squirrel as a practical model to aid drug discovery and testing through longitudinal imaging on the cellular scale.
    Full-text · Article · Jan 2016 · Visual Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Scattering and fluorescence images provide complementary information about the health condition of the human eye, so getting them in a single measurement, using a single device may significantly improve a quality of diagnosis as it has been already demonstrated in Spectralis (Heidelberg Eng.) OCT instrument. There is still challenge to improve quality of fundus autofluorescence (FAF) images. The biggest obstacle in obtaining in vivo images of sufficient quality is very low fluorescence signal. For eye safety reasons, and because of patient comfort, using highpower fluorescence excitation is not an adequate solution to the low signal problem. In this contribution we show a new detection method in the retinal autofluorescence imaging, which may improve the sensitivity. We used a fast modulated (up to 500 MHz) diode laser of wavelength 473 nm and detected fluorescence in the spectral range 500-680 nm by photomultiplier and lock-in amplifier. Average power of the collimated blue beam on the cornea used for FAF measurements was set to 50 μW, 10 μW, and even 4.5 μW.
    Full-text · Article · Mar 2013 · Proceedings of SPIE - The International Society for Optical Engineering
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To improve the ability to image the vascular walls in the living human retina using multiply-scattered light imaging with an adaptive optics scanning laser ophthalmoscope (AOSLO). Methods: In vivo arteriolar wall imaging was performed on eight healthy subjects using the Indiana AOSLO. Noninvasive imaging of vascular mural cells and wall structure were performed using systematic control of the position of a 10× Airy disk confocal aperture. Retinal arteries and arterioles were divided into four groups based on their lumen diameters (group 1: ≥100 μm; group 2: 50-99 μm; group 3: 10-49 μm; group 4: <10 μm). Results: Fine structure of retinal vasculature and scattering behavior of erythrocytes were clearly visualized in all eight subjects. In group 1 vessels the mural cells were flatter and formed the outer layer of regularly spaced cells of a two (or more) layered vascular wall. In the vessels of groups 2 and 3, mural cells were visualized as distinct cells lying along the lumen of the blood vessel, resulting in a wall of irregular thickness. Vascular wall components were not readily identified in group 4 vessels. Conclusions: Our results show that retinal vascular mural cells and wall structure can be readily resolved in healthy subjects using AOSLO with multiply scattered light imaging for retinal vessels with a lumen diameter greater than or equal to 10 μm. Our noninvasive imaging approach allows direct assessment of the cellular structure of the vascular wall in vivo with potential applications in retinal vascular diseases such as diabetes and hypertension.
    No preview · Article · Sep 2013 · Investigative ophthalmology & visual science
Show more