Morbidity and Mortality of Cytoreduction with Intraperitoneal Chemotherapy: Outcomes from the ACS NSQIP Database

Article · August 2013with43 Reads
DOI: 10.1245/s10434-013-3223-z · Source: PubMed
Abstract
Cytoreduction with intraperitoneal chemotherapy (IPC) for treatment of peritoneal surface malignancies is increasingly utilized. However, the described morbidity and mortality rates are based predominantly on the experience at high-volume centers. We analyzed the American College of Surgeons National Surgical Quality Improvement Program (NSQIP) database for a nationwide perspective on morbidity and mortality associated with IPC. The NSQIP database was queried for all patients undergoing IPC and cytoreduction from 2005 to 2011. Univariate and forward stepwise multivariate regression identified factors associated with 30-day death and morbidity. A total of 795 patients underwent IPC. Patients underwent a median of seven operative procedures (range 2-13). Median hospital stay was 9 days (range 2-79 days). A total of 521 complications occurred in 249 (31 %) patients, and there were 19 (2.3 %) mortalities. The most common complications were bleeding (15.1 %) and sepsis (14.6 %). Univariate analysis identified age ≥60 years, ascites, weight loss, recent prior operation, albumin <3 g/dl, bilirubin ≥2 mg/dl, hematocrit ≤30 %, colon, spleen, small bowel, liver, kidney, diaphragm, and gastric resections, wound classification, operative time, and intraoperative transfusion requirement as significantly associated with death and morbidity. By multivariate analysis, age ≥60 years, preoperative albumin <3 g/dl, gastrectomy, operative time, and intraoperative transfusion requirement remained significantly associated with death and morbidity. Particularly high death and morbidity rates were associated with preoperative albumin <3 g/dl (58 %), gastrectomy (62 %), and operative time of >500 min (46 %). In this nationwide cohort, the death and morbidity rate associated with cytoreduction and IPC is consistent with other large series. Age ≥60 years, albumin <3 g/dl, gastrectomy, operative time, and intraoperative transfusion requirement were associated with 30-day death and morbidity. These factors may help guide patient selection, counseling, and preoperative optimization before IPC.
1 Figures
1
Morbidity and Mortality of Cytoreduction with Intraperitoneal Chemotherapy: Outcomes
from the ACS NSQIP Database.
Bartlett EK, Meise C, Roses RE, Fraker DL, Kelz RR, Karakousis GC.
Ann Surg Oncol. 2013 Aug 29. [Epub ahead of print] PMID: 23990289
The original publication is available at the Annals website at
www.springerlink.com/content/1534-4681.
Morbidity and Mortality of Cytoreduction with Intraperitoneal Chemotherapy:
Outcomes from the ACS NSQIP database.
Edmund K. Bartlett,
1
MD, Chelsey Meise,
1
BA, Robert E. Roses,
1
MD, Douglas L.
Fraker,
1
MD, Rachel R. Kelz,
1
MD, Giorgos C. Karakousis,
1
MD.
1
Department of Surgery, University of Pennsylvania, Philadelphia, PA
Running Title: Morbidity and Mortality of HIPEC
All authors have read and approved the manuscript.
The authors declare no funding or conflicts of interest
Corresponding Author:
Edmund Bartlett
Hospital of the University of Pennsylvania
3400 Spruce St., 4 Maloney, DSE
Philadelphia, PA 19147
Edmund.Bartlett@uphs.upenn.edu
Phone: 215-738-0380
Fax: 215-662-7476
2
Synopsis
In a national cohort of patients undergoing cytoreduction and intraperitoneal
chemotherapy, perioperative morbidity and mortality rates are found to be similar to
previously published series from individual high-volume institutions. Preoperative and
intraoperative factors associated with morbidity and mortality are identified.
3
Abstract
Background
Cytoreduction with intraperitoneal chemotherapy (IPC) for treatment of peritoneal
surface malignancies is increasingly utilized. However, the described morbidity and
mortality rates are based predominantly on the experience at high-volume centers. We
analyzed the American College of Surgeons National Surgical Quality Improvement
Program (NSQIP) database for a nationwide perspective on morbidity and mortality
associated with IPC.
Methods
The NSQIP database was queried for all patients undergoing IPC and cytoreduction from
2005-2011. Univariate and forward stepwise multivariate regression identified factors
associated with 30-day death and morbidity (D&M).
Results
795 patients underwent IPC. Patients underwent a median of 7 operative procedures
(range 2-13). Median hospital stay was 9 days (range 2-79). 521 complications occurred
in 249 (31%) patients, and there were 19 (2.3%) mortalities. The most common
complications were bleeding (15.1%) and sepsis (14.6%). Univariate analysis identified
age60, ascites, weight loss, recent prior operation, albumin<3g/dl, bilirubin2mg/dl,
hematocrit30%, colon, spleen, small bowel, liver, kidney, diaphragm and gastric
resections, wound classification, operative time, and intraoperative transfusion
requirement as significantly associated with D&M. By multivariate analysis, age60,
preoperative albumin<3g/dl, gastrectomy, operative time, and intraoperative transfusion
requirement remained significantly associated with D&M. Particularly high D&M rates
were associated with preoperative albumin<3g/dl (58%), gastrectomy (62%), and
operative time>500 minutes (46%).
Conclusion
In this nationwide cohort, the D&M rate associated with cytoreduction and IPC is
consistent with other large series. Age60, albumin<3g/dl, gastrectomy, operative time,
and intraoperative transfusion requirement were associated with 30-day D&M. These
factors may help guide patient selection, counseling, and preoperative optimization prior
to IPC.
4
Introduction
Peritoneal carcinomatosis can arise from a variety of malignancies including
gynecologic, gastrointestinal tract, and primary peritoneal cancers. In the late 1980s,
aggressive surgical cytoreduction combined with intraperitoneal chemotherapy was
popularized for treatment of those patients with disease confined to the peritoneal cavity.
1
Since that time, a number of variations on the technique have been introduced in an
attempt to minimize the morbidity and maximize the therapeutic effect. Currently the
most widely used approach combines aggressive cytoreductive surgery with
intraoperative hyperthermic intraperitoneal chemotherapy (HIPEC). This modality has
now been evaluated for patients with pseudomyxoma peritoneii and appendiceal
carcinomatosis in numerous large retrospective series,
2-7
as well as randomized trials in
gastric cancer
8
and colorectal cancer.
9-11
These studies have found cytoreduction and
HIPEC to be associated with improved outcomes in select patients. Despite this,
acceptance of the procedure has been limited, partially by the perceived high rates of
morbidity that accompany the operation.
The rates of perioperative morbidity and mortality range widely in the literature.
In patients undergoing cytoreduction and intraperitoneal chemotherapy for peritoneal
carcinomatosis of various primary origins, morbidity rates are reported from 0-52%. In a
2009 meta-analysis the overall reported rate was 29%.
12
Reported mortality rates range
from 0-17% with a mean of 2.9%.
12
These morbidity and mortality rates in the meta-
analysis were remarkably similar to the recent, and largest, multicenter study in patients
with pseudomyxoma peritonei which reported a perioperative morbidity rate of 24% and
mortality rate of 2%.
2
5
Prior studies have identified number of prior operations,
2
extent of
carcinomatosis,
2, 3
number of intraoperative procedures,
3, 13
number of anastomoses,
13, 14
operative time,
3, 13
extent of cytoreduction,
4, 14
and chemotherapy dose
4
as significantly
associated with increased risk of morbidity. Additionally, a significant learning curve has
been associated with cytoreduction and intraperitoneal chemotherapy, with one study
suggesting approximately 140 cases required before outcomes are optimized.
15
Importantly, the learning curve is not just associated with the surgical technique but with
patient selection as well.
6
Given the specialized nature of cytoreduction and intraperitoneal chemotherapy,
the vast majority of literature on the topic comes from a select few high volume centers.
Thus, we aimed to describe the morbidity and mortality of cytoreduction with
intraperitoneal chemotherapy in a national cohort of patients. Additionally, we looked to
define factors associated with 30-day death and morbidity that may help to guide patient
selection or preparation for the procedure. While numerous studies have defined the
procedure and disease-specific factors associated with morbidity, few have defined
patient preoperative factors well. As this procedure expands into lower volume centers, a
full understanding of the risk factors associated with the procedure may help to better
guide patient selection and potentially shorten the relatively long learning curve
traditionally associated with this procedure.
Methods
Patients were selected for inclusion in the study if they were enrolled in the
American College of Surgeons National Surgical Quality Improvement Program
6
Participant Use File (ACS NSQIP PUF) (FY 2005-2011) and underwent intraperitoneal
chemotherapy and a cytoreductive procedure during the same anesthetic. Intraperitoneal
chemotherapy was defined using Current Procedural Terminology (CPT) codes: 96445,
96446, or 96549, and cytoreduction was defined as any concurrent or other procedure
reflecting an intra-abdominal operation.
The ACS NSQIP PUF (FY 2005-2011) was selected to identify a national cohort
of patients undergoing intraperitoneal chemotherapy. In 2010, the ACS NSQIP database
contained 239 variables on 363,431 cases from 258 participating sites.
16, 17
All
organizations participating in the ACS NSQIP are granted access to the Participant Use
File for research purposes. The ACS NSQIP database captures both inpatient and
outpatient complications for 30 days after operation. The dataset has been widely used
and is recognized as a robust clinical registry with reliable and valid data.
18-20
Death and morbidity (D&M) within 30 days of cytoreduction and intraperitoneal
chemotherapy was defined as the primary outcome variable. Overall morbidity was
defined as the occurrence of at least one of the following postoperative complications:
superficial skin infection (involving only skin and subcutaneous tissue), deep surgical site
infection (involving muscle or fascia), or organ space infection (infection of areas
affected by the operation but deep to the fascia) (collectively referred to as surgical site
infection); sepsis or septic shock (sepsis complication); progressive renal failure or acute
renal failure requiring dialysis (renal complication); deep vein thrombosis or pulmonary
embolism (venous thromboembolic complication); pneumonia, intubation for greater than
48 hours, or re-intubation (respiratory complication); hemorrhage requiring transfusion of
at least 4 units of blood (bleeding complication); stroke or coma (neurologic
7
complication); myocardial infarction or arrest requiring resuscitation (cardiac
complication); or return to the operating room (reason for return not specified).
17
Urinary
tract infection was not included as a major morbidity.
Preoperative variables included in the analysis were: sex, age (divided into <60 or
60 years for clinical applicability), race, functional status, body mass index (BMI;
underweight <18.5, normal = 18.5-25, overweight = 25.1-29.9, obese 30), hypertension,
diabetes, smoking, chronic obstructive pulmonary disease (COPD), congestive heart
failure (CHF), dialysis dependence, ascites, steroid use within 30 days, weight loss
(defined as >10% body weight in 6 months prior to surgery), chemotherapy within 30
days of surgery, radiation therapy within 90 days of surgery, and prior operation within
30 days of surgery. Laboratory values analyzed as binary variables included: creatinine
(2 or <2 mg/dl), albumin (3 or <3 g/dl), bilirubin (2 or <2 mg/dl), white blood cell
count (WBC12,000 or <12,000 cells/mcl), hematocrit (>30 or 30%), and international
normalized ratio (INR, 1.8 or <1.8).
Intraoperative variables included were: total number of procedures at the time of
cytoreduction and intraperitoneal chemotherapy, specific organ resections, operative
time, wound classification (clean, clean/contaminated, contaminated, or dirty), and
intraoperative transfusion requirement. The ACS NSQIP PUF provides information on up
to 21 procedures performed at the time of initial operation. These procedures are
described using CPT codes. In order to classify operative procedures by the organ
affected, the procedures were manually reviewed and the CPT codes were appropriately
sorted. Minor procedures such as gastrostomy tubes, jejunostomy tubes, and biopsies (ie.
liver biopsy) were excluded from the analysis.
8
Descriptive statistics were examined. Univariate and forward stepwise
multivariate logistic regression were performed. A p-value of less than 0.05 was
considered statistically significant. All data was transferred into STATA format using
Stat/Transfer Version 11.0 statistical program and analysis was performed using STATA
12.0/IC statistical software.
21-23
This study was reviewed and deemed exempt from
approval by the University of Pennsylvania Institutional Review Board.
Results
From 2005-2011, 795 patients underwent cytoreduction with intraperitoneal
chemotherapy in the ACS NSQIP database. The mean age of patients was 54, the slight
majority were female (54%), and the majority were white (82%). Table 1.
Patients underwent a median of 7 procedures at the time of intraperitoneal
chemotherapy. Peritoneal mass resection was the most common procedure (75% of
patients). The omentum was also frequently resected (42%). Colon resection was the
most common organ-specific procedure (49%), followed by cholecystectomy (36%),
splenectomy (28%) and small bowel resection (22%). Table 2.
The median length of hospital stay was 9 days (range 2-79). Overall, 521
complications occurred in 249 patients, for a morbidity rate of 31%. Most morbidity
events (75%) occurred within 2 weeks of surgery. Nineteen patients (2.3%) died within
30 days of surgery. All mortalities occurred within the first three weeks of surgery with
the majority occurring in week 2 or 3 (79%). Three patients died without a prior
morbidity listed. Thus 252 patients (32%) experienced a death or morbidity (D&M). The
9
most common complications were bleeding (15.1%), sepsis (14.6%), and surgical site
infection (11.4%). Figure 1 summarizes the postoperative morbidities.
Factors associated with increased rates of D&M and identified by univariate
analysis are listed in Table 2. Age 60 years (p=0.002), the presence of ascites (p=0.05),
weight loss of greater than 10% in the 6 months prior to the operation (p=0.01), and a
prior operation within 30 days (p=0.04) were identified as preoperative factors
significantly associated with higher rates of D&M. Albumin <3 g/dl (p<.0001), bilirubin
3 mg/dl (p=0.03), and hematocrit 30% (p=0.04) were preoperative laboratory values
significantly associated with D&M. Intraoperative factors associated with increased
D&M included the total number of procedures (p<.0001), prolonged operative time
(p<.0001), wound classification (p=0.003), and intraoperative transfusion requirement
(p<.0001). Additionally, individual organ resections of colon (p<.0001), spleen
(p<.0001), small bowel (p=0.006), kidney (p=0.0006), liver (p=0.006), diaphragm
(p=0.006), and stomach (p=0.0003) were associated with significantly increased D&M.
By multivariable regression, age 60 years remained the only preoperative patient
factor and albumin <3 g/dl the only preoperative laboratory value significantly associated
with D&M (OR=1.95 and 3.21, respectively). Gastric resection (OR=3.23), prolonged
operative time (OR=1.003), and intraoperative transfusion requirement (OR=1.01)
remained intraoperative factors significantly associated with D&M. Table 3. Patients 60
years or older had a D&M rate of 39%, and those receiving two or more units of blood
intraoperatively had a D&M rate of 38%. Particularly high D&M rates were associated
with preoperative albumin <3g/dl (58%), gastrectomy (62%), and operative time >500
minutes (46%). In the few patients 60 years or older with low preoperative albumin, the
10
D&M rate was 75% (12/16). Given the low incidence of mortality in the cohort, a
statistical analysis specifically for mortality was not performed. However, death more
frequently occurred in patients with preoperative albumin <3g/dl (6%, 3/52), a gastric
resection (7%, 2/27), or those who received two or more units of blood intraoperatively
(6%, 6/108). Operative time >500 minutes was not associated with particularly increased
mortality (3%, 10/290).
Discussion
From 2005-2011, 795 patients in ACS NSQIP participating hospitals underwent
cytoreduction with intraperitoneal chemotherapy. The 30-day morbidity rate in these
patients was 31% and the 30-day mortality rate was 2.3%. Postoperative infection
(systemic or surgical site) and bleeding were the most frequent complications. We
identified age 60, albumin <3 g/dl, gastric resection, prolonged operative time, and
intraoperative transfusion requirement as significantly associated with death and
morbidity.
The association of increased age, prolonged operative time, and increased need
for transfusion with D&M is consistent with several previous studies which have shown
these factors to be associated with morbidity after major laparotomy.
24-26
Gastric
resection as an independent factor associated with morbidity in the setting of
intraperitoneal chemotherapy, however, has not been well described. In fact, multiple
studies have looked at the morbidity associated with cytoreduction and intraperitoneal
chemotherapy in the setting of patients with gastric cancer, and a recent systematic
review found the overall morbidity to be 22% in these patients.
27
Of note, many of these
11
patients had previously undergone resection of their primary tumor, so the rate of
gastrectomy in these studies was variable. One single institution study looked specifically
at the safety of gastric resections at the time of intraperitoneal chemotherapy across all
histologies.
28
They reported a 45% rate of morbidity in 37 patients, which although high
is still less than the 62% we observe here. Given that other major organ resections such as
liver or pancreas were not associated with similar complication rates, this finding is
difficult to explain. Gastric resection is often associated with an anastomosis, and the
number of anastomoses has been identified in other series as associated with morbidity.
13,
14
Additionally, underlying histology, disease burden, and patient selection may all
contribute to the high D&M rate we observed, but these variables are not reliably
captured in ACS NSQIP.
Although well described in the general surgical literature,
24, 25
the finding that low
albumin is associated with markedly high rates of postoperative morbidity (58%) is
important, as it is the one potentially modifiable factor identified in this analysis. A low
preoperative albumin value may be a marker of disease status or extent of prior treatment.
Nevertheless, it should be taken into account when counseling patients prior to surgery
and in the consideration of preoperative supplemental nutrition. Given that these patients
are frequently heavily pretreated with chemotherapy in addition to the intraoperative
therapy, even the most robust patient is at risk for poor wound healing. If possible,
optimizing nutrition preoperatively may be an approach to improving outcomes in these
patients, particularly those at high risk such as the elderly and those with low albumin.
There are a number of limitations associated with the use of ACS NSQIP data for
this analysis worth discussing. Neither the histologic diagnosis nor specific pathologic
12
information is available for these patients (including extent of disease), yet the peritoneal
carcinomatosis index (PCI) and the extent of cytoreduction achieved have both been
associated with morbidity in prior series.
2-4, 14
Despite not being directly captured in this
study, the impact of these variables is likely reflected in our study by operative time and
intraoperative transfusion requirement which were both found to be highly associated
with death and morbidity.
Additionally, details specific to the cytoreduction and intraperitoneal
chemotherapy such as the type of chemotherapy, open versus closed technique, use of
hyperthermia, and use of early postoperative chemotherapy are not captured in the
database. Finally, no data is available at the hospital or surgeon level to allow comparison
of outcomes associated with high versus low volume centers. Despite these limitations,
the identified morbidity and mortality rates are remarkably similar to the morbidity and
mortality identified in recent large series of patients with pseudomyxoma peritonei and in
a large meta-analysis of patients undergoing HIPEC.
2, 12
Although studies defining the morbidity and mortality of cytoreduction with
intraperitoneal chemotherapy have been widely published, few reports analyze the
extensive preoperative patient characteristics available through ACS NSQIP.
Additionally, ACS NSQIP captures complications for 30 days, regardless of in-patient
status, which are not accurately captured in many institutional series. Further, this report
represents the first description of a national cohort of patients undergoing cytoreduction
and intraperitoneal chemotherapy. The consistency of our findings with those reported
from high volume centers suggests that the complication rates at ACS NSQIP
participating institutions as a group are comparable to rates at high volume centers,
13
although this may in part be influenced by the participation of a number of high volume
centers in ACS NSQIP. Regardless, the well-established reliability of the ACS NSQIP
data should reassure referring physicians that previously reported data from single
institutions is reproducible on a national level.
In conclusion, we find the overall morbidity and mortality associated with
cytoreduction and intraperitoneal chemotherapy in the ACS NSQIP database is consistent
with individual large institutions. We identify multiple factors which may aid in patient
selection and counseling, as well as one factor, low albumin, which may guide
preoperative patient optimization. By using this national cohort, the factors we identify
are institution independent. We believe this data can be used in a complimentary fashion
to the large single center experiences to aid with patient selection and preoperative
optimization in those patients undergoing cytoreduction and intraperitoneal
chemotherapy.
Acknowledgement
The American College of Surgeons National Surgical Quality Improvement Program and
the hospitals participating in the ACS NSQIP are the source of the data used herein; they
have not verified and are not responsible for the statistical validity of the data analysis or
the conclusions derived by the authors.
14
References
1. Sugarbaker PH. Surgical treatment of peritoneal carcinomatosis: 1988 Du Pont
lecture. Can J Surg 1989; 32(3):164-70.
2. Chua TC, Moran BJ, Sugarbaker PH, et al. Early- and long-term outcome data of
patients with pseudomyxoma peritonei from appendiceal origin treated by a
strategy of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy.
J Clin Oncol 2012; 30(20):2449-56.
3. Glehen O, Osinsky D, Cotte E, et al. Intraperitoneal chemohyperthermia using a
closed abdominal procedure and cytoreductive surgery for the treatment of
peritoneal carcinomatosis: morbidity and mortality analysis of 216 consecutive
procedures. Ann Surg Oncol 2003; 10(8):863-9.
4. Kusamura S, Younan R, Baratti D, et al. Cytoreductive surgery followed by
intraperitoneal hyperthermic perfusion: analysis of morbidity and mortality in 209
peritoneal surface malignancies treated with closed abdomen technique. Cancer
2006; 106(5):1144-53.
5. Levine EA, Stewart JHt, Russell GB, et al. Cytoreductive surgery and
intraperitoneal hyperthermic chemotherapy for peritoneal surface malignancy:
experience with 501 procedures. J Am Coll Surg 2007; 204(5):943-53; discussion
953-5.
6. Smeenk RM, Verwaal VJ, Zoetmulder FA. Learning curve of combined modality
treatment in peritoneal surface disease. Br J Surg 2007; 94(11):1408-14.
7. Sugarbaker PH, Alderman R, Edwards G, et al. Prospective morbidity and
mortality assessment of cytoreductive surgery plus perioperative intraperitoneal
chemotherapy to treat peritoneal dissemination of appendiceal mucinous
malignancy. Ann Surg Oncol 2006; 13(5):635-44.
8. Yang XJ, Huang CQ, Suo T, et al. Cytoreductive surgery and hyperthermic
intraperitoneal chemotherapy improves survival of patients with peritoneal
carcinomatosis from gastric cancer: final results of a phase III randomized clinical
trial. Ann Surg Oncol 2011; 18(6):1575-81.
9. Verwaal VJ, Bruin S, Boot H, et al. 8-year follow-up of randomized trial:
cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic
chemotherapy in patients with peritoneal carcinomatosis of colorectal cancer. Ann
Surg Oncol 2008; 15(9):2426-32.
10. Verwaal VJ, van Ruth S, de Bree E, et al. Randomized trial of cytoreduction and
hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and
palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J
Clin Oncol 2003; 21(20):3737-43.
11. Elias D, Delperro JR, Sideris L, et al. Treatment of peritoneal carcinomatosis
from colorectal cancer: impact of complete cytoreductive surgery and difficulties
in conducting randomized trials. Ann Surg Oncol 2004; 11(5):518-21.
12. Chua TC, Yan TD, Saxena A, Morris DL. Should the treatment of peritoneal
carcinomatosis by cytoreductive surgery and hyperthermic intraperitoneal
chemotherapy still be regarded as a highly morbid procedure?: a systematic
review of morbidity and mortality. Ann Surg 2009; 249(6):900-7.
15
13. Stephens AD, Alderman R, Chang D, et al. Morbidity and mortality analysis of
200 treatments with cytoreductive surgery and hyperthermic intraoperative
intraperitoneal chemotherapy using the coliseum technique. Ann Surg Oncol
1999; 6(8):790-6.
14. Gusani NJ, Cho SW, Colovos C, et al. Aggressive surgical management of
peritoneal carcinomatosis with low mortality in a high-volume tertiary cancer
center. Ann Surg Oncol 2008; 15(3):754-63.
15. Kusamura S, Baratti D, Deraco M. Multidimensional analysis of the learning
curve for cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in
peritoneal surface malignancies. Ann Surg 2012; 255(2):348-56.
16. American College of Surgeons National Surgical Quality Improvement Program.
American College of Surgeons. http://site.acsnsqip.org/
, 2010.
17. User Guide for the 2010 Participant Use Data File. Americal College of Surgeons
National Surgical Quality Improvement Program 2011;
http://site.acsnsqip.org/wp-content/uploads/2012/03/2010-User-
Guide_FINAL.pdf.
18. Daley J, Forbes MG, Young GJ, et al. Validating risk-adjusted surgical outcomes:
site visit assessment of process and structure. National VA Surgical Risk Study. J
Am Coll Surg 1997; 185(4):341-51.
19. Raval MV, Hamilton BH, Ingraham AM, et al. The importance of assessing both
inpatient and outpatient surgical quality. Ann Surg 2011; 253(3):611-8.
20. Shiloach M, Frencher SK, Jr., Steeger JE, et al. Toward robust information: data
quality and inter-rater reliability in the American College of Surgeons National
Surgical Quality Improvement Program. J Am Coll Surg 2009; 210(1):6-16.
21. StataCorp. Stata/IC 12.0 Statistical Software. www.stata.com. Sata Corporation
LP. College Station, TX. 1985-2011.
22. Circle Systems. Stat/Transfer: Version 11. Circle Systems Inc. Seattle, WA.
2011.
23. Juul S. F, M. An Introduction to Stata for Health Researchers. 3rd Ed. StataCorp
LP 2010:pp.179-196.
24. Aloia TA, Fahy BN, Fischer CP, et al. Predicting poor outcome following
hepatectomy: analysis of 2313 hepatectomies in the NSQIP database. HPB
(Oxford) 2009; 11(6):510-5.
25. Greenblatt DY, Kelly KJ, Rajamanickam V, et al. Preoperative factors predict
perioperative morbidity and mortality after pancreaticoduodenectomy. Ann Surg
Oncol 2011; 18(8):2126-35.
26. Grossmann EM, Longo WE, Virgo KS, et al. Morbidity and mortality of
gastrectomy for cancer in Department of Veterans Affairs Medical Centers.
Surgery 2002; 131(5):484-90.
27. Gill RS, Al-Adra DP, Nagendran J, et al. Treatment of gastric cancer with
peritoneal carcinomatosis by cytoreductive surgery and HIPEC: a systematic
review of survival, mortality, and morbidity. J Surg Oncol 2011; 104(6):692-8.
28. Piso P, Slowik P, Popp F, et al. Safety of gastric resections during cytoreductive
surgery and hyperthermic intraperitoneal chemotherapy for peritoneal
carcinomatosis. Ann Surg Oncol 2009; 16(8):2188-94.
16
Figure Legends:
Figure 1. Distribution of Morbidity following Cytoreduction and Intraperitoneal
Chemotherapy. The rates displayed in the chart on the right reflect the incidence of a
given complication in the overall population. Because multiple patients experienced more
than one type of complication, the sum of the complications in the right chart is greater
than the 31% of patients who experienced a morbidity (shown on the left). SSI (Surgical
site infection), VTE (Venous thromboembolism).
17
Table 1. Patients Undergoing Cytoreduction and
Intraperitoneal Chemotherapy (N=795)
N %
Gender
Male 362 46
Female 432 54
Age, Mean (SD) 54.4 (11.8)
Race
White 648 82
Black 72 9
Other 27 3
Procedures per Patient,
Median (Range) 7 (2-13)
Length of Stay, Median
(Range) 9 (2-79)
Overall 30-day Morbidity
249 31
Overall 30-day Mortality
19 2.3
Overall 30-day D&M
a
252 32
a
D&M – Death and morbidity
18
Table 2. Factors Associated with Death and Morbidity by Univariate Analysis
Overall, N (%) No D&M, N (%) D&M, N (%) p-value
Patient Characteristics
a
Sex Male 362 (46) 250 (69) 112 (31) 0.68
Female 432 (54) 292 (68) 140 (32)
Age <60 528 (66) 380 (72) 148 (28)
0.002
60 267 (34) 163 (61) 104 (39)
Race White 648 (82) 455 (70) 193 (30) 0.54
Black 72 (9) 46 (64) 26 (36)
Other 27 (3) 19 (70) 8 (30)
Functional Status
0.12
Independent 381 (98)
294 (77) 87 (23)
Partially Dependent 8 (2)
5 (63) 3 (38)
Totally Dependent 1 (<1)
0 (0) 1 (100)
BMI Underweight 28 (4) 17 (61)
11 (39) 0.77
Normal 262 (33) 178 (68)
84 (32)
Overweight 266 (33) 186 (70)
80 (30)
Obese 239 (30) 162 (68)
77 (32)
Hypertension
287 (36)
192 (67) 95 (33) 0.52
Diabetes
62 (8)
42 (65) 22 (35) 0.5
Smoke
98 (12)
62 (63) 36 (37) 0.25
COPD
7 (1)
3 (43) 4 (57) 0.15
Ascites
111 (14)
67 (60) 44 (40)
0.05
Steroid Use
11 (1)
8 (73) 3 (27) 0.75
Weight Loss
53 (7)
28 (53) 25 (47)
0.01
Chemotherapy
76 (11)
51 (67) 25 (33) 0.59
Radiotherapy
2 (0.3)
1 (50) 1 (50) 0.54
Prior Operation
17 (3)
8 (47) 9 (53)
0.04
Preoperative Laboratory Values
a
Creatinine 2 mg/dl
8 (1) 5 (63) 3 (37) 0.69
Albumin <3 g/dl
52 (7) 22 (42) 30 (58)
<.0001
Bilirubin 2 mg/dl
9 (1) 3 (33) 6 (67)
0.03
WBC 12,000 cells/mcl
24 (3) 18 (75) 6 (25) 0.49
Hematocrit 30%
44 (6) 24 (55) 20 (45)
0.04
Intraoperative Factors
a
Total Procedures, Mean
(SD)
6.9 (2)
6.7 (2.4) 7.6 (2.5)
<.0001
Surgical Resection
Peritoneal Mass
597 (75)
403 (68) 194 (32) 0.4
Colon
389 (49)
238 (61) 151 (39)
<.0001
19
Omentum
330 (42)
235 (71) 95 (29) 0.14
Gallbladder
282 (35)
186 (66) 96 (34) 0.29
Spleen
225 (28)
131 (59) 94 (41)
0.0001
Small bowel
177 (22)
106 (60) 71 (40)
0.006
Uterus/Ovary
119 (15)
79 (66) 40 (34) 0.63
Liver
123 (15)
71 (58) 52 (42)
0.006
Intestine NOS
102 (13)
68 (67) 34 (33) 0.7
Kidney
93 (12)
49 (53) 44 (47)
0.0006
Diaphragm
74 (9)
40 (54) 34 (46)
0.006
Appendix
63 (8)
39 (62) 24 (38) 0.25
Pancreas
61 (8)
40 (66) 21 (34) 0.63
Stomach
29 (4)
11 (38) 18 (62)
0.0003
Operative Time
(Minutes), Mean (SD)
454 (160)
425 (148) 517 (167)
<.0001
Wound Classification
0.003
Clean
90 (11)
73 (81) 17 (19)
Clean/Contaminated
669 (84)
452 (68) 217 (32)
Contaminated
32 (4)
15 (47) 17 (53)
Dirty/Infected
4 (1)
3 (75) 1 (25)
Intraoperative
Transfusion (PRBC
units), Mean (SD)
1.07 (1.98)
0.8 (1.6) 2.0 (2.7)
<.0001
a
Factors not displayed due to effecting less than 5 patients include: preoperative
congestive heart failure, preoperative dialysis dependence, preoperative INR1.8, bladder
or adrenal resection. PRBC (Packed red blood cell)
20
Table 3. Factors Associated with Death and Morbidity by Stepwise
Multivariate Analysis
a
95% CI p-value
OR Low High multivariate
Age 60
1.95
1.33 2.84 0.0006
Albumin <3 g/dl
3.21
1.52 6.71 0.0021
Gastric Resection
3.23
1.34 7.75
0.0088
Operative Time (Minutes)
1.003
1.002 1.005
<.0001
Intraoperative Transfusion
(PRBC units)
1.01
1.01 1.02
<.0001
a
Variables excluded by the stepwise regression procedure were: ascites, weight loss,
prior operation, bilirubin 2 mg/dl, hematocrit 30%, resections of colon, spleen, small
bowel, liver, kidney, and diaphragm, and wound classification. PRBC (Packed red blood
cell)
    • The completeness of cytoreduction (CCR) score is significantly associated with postoperative prognosis. However, it is difficult to achieve CCR0-1 in the clinical surgery or precise resection that results in no residual lesion or residual lesions with the greatest diameter less than 2.5 mm, thereby leading to poor survival.The third concern comprises associated severe complications.Studies have shown that cytoreduction surgery and hyperthermic intraperitoneal chemotherapy result in morbidity and mortality rates of 30% and 3%, respectively [20]. The high incidence rate of complications owing to cytoreduction surgery and hyperthermic intraperitoneal chemotherapy is closely associated with several factors, such as diagnostic accuracy rate, operative time, and the learning curve of the treating physician [21].
    [Show abstract] [Hide abstract] ABSTRACT: Peritoneal carcinomatosis from gastric cancer represents a common recurrent gastric cancer that seriously affects the survival, prognosis, and quality of life of patients at its advanced stage. In recent years, complete cytoreduction surgery in combination with hyperthermic intraperitoneal chemotherapy has been demonstrated to improve the survival and prognosis of patients with malignant tumors including peritoneal carcinomatosis from gastric cancer. Establishing viable methods of accurately assessing the tumor burden in patients with peritoneal carcinoma and correctly selecting suitable patients in order to improve cytoreduction surgical outcomes and reduce the risk of postoperative complications has become a challenge in the field of peritoneal carcinoma research. Here, we investigated peritoneal carcinomatosis from gastric cancer in a mouse model by using our self-developed surgical navigation system that combines optical molecular imaging with an integrin-targeting Arg-Gly-Asp-indocyanine green (RGD-ICG) molecular probe. The results showed that our diagnostic method could achieve a sensitivity and specificity of up to 93.93% and 100%, respectively, with a diagnostic index (DI) of 193.93% and diagnostic accuracy rate of 93.93%.Furthermore, the minimum tumor diameter measured during the surgery was 1.8 mm and the operative time was shortened by 3.26-fold when compared with the conventionally-treated control group. Therefore, our surgical navigation system that combines optical molecular imaging with an RGD-ICG molecular probe, could improve the diagnostic accuracy rate for peritoneal carcinomatosis from gastric cancer, shorten the operative time, and improve the quality of the cytoreduction surgery for peritoneal carcinomatosis from gastric cancer, thus providing a solid foundation for its future clinical development and application.
    Full-text · Article · Dec 2016
  • [Show abstract] [Hide abstract] ABSTRACT: potentiating factor for responses to ILI versus limb perfusions, but measurement of the degree of hypoxia is poorly reported. By using optical spectroscopy, tumor hypoxia was measured as being more profound than in the normal skin of patients undergoing ILI. This technique could help noninvasively examine the tissue microenvironment and provide clues to the effectiveness of therapies. Lohani et al. 3 present their research examining the microenvironment regarding patients with the pseudomyxoma peritonei syndrome; their work examines cytokines in the serum and ascites. They also attempt to correlate these levels with the stroma and tumor cells. While C-reactive protein is elevated in patients with pseudomyxoma peritonei, traditional inflammatory markers such as IL-1 were not elevated. This work supports a complex model of inflammation and neoplasia demonstrating the peritoneal synthesis of cytokines and serum elevations of IL-8 and MIP-1b. While understanding that tumor‐host microenvironments are important in advancing the field, the direct impact of these interactions is seen in patients who undergo regional therapies. The next articles demonstrate the delicate balance between aggressiveness of disease, genetics, and histology in predicting response to therapy. Magge et al. 4 tackle a difficult problem in evaluating the role of cytoreductive surgery and HIPEC in the management of patients with gastric cancer and peritoneal carcinomatosis. Close on the heels of a recently published randomized trial, this study demonstrates the survival benefit in selected patients with gastric cancer in a Western population. 5 Despite aggressive surgical techniques and careful selection of patients with minimal peritoneal disease [median peritoneal carcinomatosis index (PCI) = 10], the 3-year survival in this cohort was a humbling 18 %. The group identified characteristics such as male gender, signet ring histology, incomplete cytoreduction, and multivisceral surgery as factors predicting either worse survival or progression of disease.
    Full-text · Article · Feb 2014
  • [Show abstract] [Hide abstract] ABSTRACT: In 1999, the Institute of Medicine (IOM) published Ensuring Quality Cancer Care, an influential report that described an ideal cancer care system and issued ten recommendations to address pervasive gaps in the understanding and delivery of quality cancer care. Despite generating much fervor, the report's recommendations-including two recommendations related to quality measurement-remain largely unfulfilled. Amidst continuing concerns regarding increasing costs and questionable quality of care, the IOM charged a new committee with revisiting the 1999 report and with reassessing national cancer care, with a focus on the aging US population. The committee identified high-quality patient-clinician relationships and interactions as central drivers of quality and attributed existing quality gaps, in part, to the nation's inability to measure and improve cancer care delivery in a systematic way. In 2013, the committee published its findings in Delivering High-Quality Cancer Care: Charting a New Course for a System in Crisis, which included two recommendations that emphasize coordinated, patient-centered quality measurement and information technology enhancements: Develop a national quality reporting program for cancer care as part of a learning health care system; and,Develop an ethically sound learning health care information technology system for cancer that enables real-time analysis of data from cancer patients in a variety of care settings. These recommendations underscore the need for independent national oversight, public-private collaboration, and substantial funding to create robust, patient-centered quality measurement and learning enterprises to improve the quality, accessibility, and affordability of cancer care in America.
    Article · Mar 2014
  • [Show abstract] [Hide abstract] ABSTRACT: Background: Frequent perioperative morbidity and mortality have been observed in randomized surgical studies for gastric cancer, but specific patient factors associated with morbidity and mortality after total gastrectomy have not been well characterized. Methods: We queried the American College of Surgeons National Surgical Quality Improvement Program database (2005-2011) for all patients with a gastric neoplasm undergoing total gastrectomy. Univariate and multivariate logistic regression analyses were performed to identify factors associated with an increased risk of morbidity or mortality. Results: In 1,165 patients undergoing total gastrectomy, 416 patients (36%) experienced a complication, and 55 died (4.7%) within 30 days of operation. In a reduced multivariate model, age >70 years, preoperative weight loss, splenectomy, and pancreatectomy were associated with morbidity, whereas age >70 years, weight loss, albumin <3 g/dL, and pancreatectomy were associated with mortality (P < .05 each). The number of present preoperative risk factors stratified morbidity from 26 to 46%, with an adjacent organ resection (splenectomy, pancreatectomy) associated with 56% morbidity. Similarly, mortality rates ranged from 0.4% in those without risk factors to 5 of 9 patients with all three preoperative factors present. Patients undergoing pancreatectomy had a 13% mortality rate. Conclusion: Total gastrectomy for malignancy is associated with substantial morbidity and mortality. Identification of high-risk factors may allow more rational patient selection or sequencing of therapy.
    Article · Mar 2014
  • [Show abstract] [Hide abstract] ABSTRACT: Background: The model for end-stage liver disease (MELD) has been validated as a prediction tool for postoperative mortality, but its role in predicting morbidity has not been well studied. We sought to determine the role of MELD, among other factors, in predicting morbidity and mortality in patients with nonmalignant ascites undergoing hernia repair. Methods: All patients undergoing hernia repair in the American College of Surgeons National Surgical Quality Improvement database (2009-11) were identified. Those with nonmalignant ascites were compared with patients without ascites. A subset analysis of patients with nonmalignant ascites was performed to evaluate the association between MELD and morbidity and mortality with adjustment for potential confounders. The association of significant factors with the rate of morbidity was displayed using a best-fit polynomial regression. Results: Of 138,366 hernia repairs, 778 (0.56%) were performed on patients with nonmalignant ascites. Thirty-day morbidity (4% versus 19%) and mortality (0.2% versus 5.3%) were significantly more frequent in patients with ascites (P < 0.001). In univariate analysis of the 636 patients with a calculable MELD, MELD was associated with both morbidity and mortality (P < 0.001 each). In multivariate analysis, MELD remained significantly associated with morbidity (odds ratio [OR] = 1.11). Ventral hernia repair (OR = 2.9), dependent functional status (OR = 2.3), alcohol use (OR = 2.3), emergent operation (OR = 2.0) white blood count (OR = 1.1), and age (OR = 1.02) were also significantly associated with morbidity (P < 0.05). Conclusions: Before hernia repair, the MELD score can be used to risk-stratify patients with nonmalignant ascites not only for mortality but also morbidity. Morbidity rates increase rapidly with MELD above 15, but other factors should additionally be accounted for when counseling patients on their perioperative risk.
    Article · May 2014
  • [Show abstract] [Hide abstract] ABSTRACT: Background: Death following surgical procedures, although uncommon, represents the most significant and costly postoperative complication. The authors delineate several key independently associated risk factors for 30-day mortality in a large nationwide plastic surgery population and generate a simple risk-assessment tool. Methods: Patients who underwent a primary plastic surgery procedure (n = 24,778) were identified from the 2005 to 2011 American College of Surgeons National Surgical Quality Improvement Program databases. Preoperative patient comorbidities and operative variables were analyzed to determine associations with mortality. Multivariate regression modeling and risk stratification were performed to generate a decision-support tool capable of assessing mortality risk. Results: Seventy-eight patients (0.31 percent) experienced 30-day mortality. Age older than 65 years, inpatient surgery, hepatorenal disease, recent chemotherapy, and partial or dependent functional status were perioperative factors associated with 30-day mortality. A composite mortality risk score was used to stratify patients into groups of low (n = 18,063) (30-day mortality, 0.06 percent), intermediate (n = 1252) (30-day mortality, 0.96 percent), high (n = 314) (30-day mortality, 5.10 percent), or extreme (n = 126) (30-day mortality, 17.46 percent) risk. The scoring groups accurately separated risk (p < 0.001) with a 291-fold variation between low- and extreme-risk patients (C statistic, 0.93). Conclusions: This study defines a 0.31 percent risk of perioperative 30-day mortality in a heterogeneous cohort of plastic surgery patients and identifies risk factors independently associated with 30-day mortality. These data can be used to tailor and improve informed consent, to optimize surgical decision-making, and to implement risk-reduction strategies in high-risk patients.
    Article · Jul 2014
Show more