Diagnosis and Outcome of SCN4A-Related Severe Neonatal Episodic Laryngospasm (SNEL): 2 New Cases

Service de Neuropédiatrie, Hôpital Timone Enfants, Marseille, France
PEDIATRICS (Impact Factor: 5.47). 08/2013; 132(3). DOI: 10.1542/peds.2012-3065
Source: PubMed


Mutations of SCN4A encoding the skeletal muscle sodium channel Nav 1.4 cause several types of disease, including sodium channel myotonias. The latter may be responsible for neonatal symptoms, including severe neonatal episodic laryngospasm (SNEL). Establishing the diagnosis of SCN4A-related SNEL early in the neonatal period is crucial because treatment is available that can reduce laryngospasm and improve vital and cerebral outcome. We report 2 new unrelated French patients who presented with SNEL. The first patient was initially diagnosed with laryngomalacia and underwent laryngeal surgery in the neonatal period before being diagnosed with myotonia at 14 months of age. The episodes of laryngospasm disappeared spontaneously, although occasional circumstances such as cold exposure could trigger laryngeal reactions; in addition, he developed myotonia corresponding to an adult myotonia permanens phenotype. This patient is now 24 years old and leading a normal life. The second patient was initially diagnosed with gastroesophageal reflux, then SNEL; his condition improved with carbamazepine treatment, and he is now 6 months old. The diagnostic sequence in both patients was the same: first, severe episodic apneic attacks necessitating hospitalization occurring in the first week of life; second, observation of muscle hypertrophy and peripheral hypertonia with a clear myotonic pattern on electromyogram (at 14 and 3 months of age, respectively); third, genetic testing revealing de novo SCN4A G1306E mutation. Both patients have had good therapeutic response to sodium channel blockers (carbamazepine or mexiletine).

Full-text preview

Available from:
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the sodium channel blocker mexiletine is considered the first-line drug in myotonia, some patients experiment adverse effects, while others do not gain any benefit. Other antimyotonic drugs are thus needed to offer mexiletine alternatives. In the present study, we used a previously-validated rat model of myotonia congenita to compare six marketed sodium channel blockers to mexiletine. Myotonia was induced in the rat by injection of anthracen-9-carboxylic acid, a muscle chloride channel blocker. The drugs were given orally and myotonia was evaluated by measuring the time of righting reflex. The drugs were also tested on sodium currents recorded in a cell line transfected with the human skeletal muscle sodium channel hNav1.4 using patch-clamp technique. In vivo, carbamazepine and propafenone showed antimyotonic activity at doses similar to mexiletine (ED50 close to 5 mg/kg); flecainide and orphenadrine showed greater potency (ED50 near 1 mg/kg); lubeluzole and riluzole were the more potent (ED50 near 0.1 mg/kg). The antimyotonic activity of drugs in vivo was linearly correlated with their potency in blocking hNav1.4 channels in vitro. Deviation was observed for propafenone and carbamazepine, likely due to pharmacokinetics and multiple targets. The comparison of the antimyotonic dose calculated in rats with the current clinical dose in humans strongly suggests that all the tested drugs may be used safely for the treatment of human myotonia. Considering the limits of mexiletine tolerability and the occurrence of non-responders, this study proposes an arsenal of alternative drugs, which may prove useful to increase the quality of life of individuals suffering from non-dystrophic myotonia. Further clinical trials are warranted to confirm these results.
    Full-text · Article · May 2014 · Experimental Neurology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myotonia is often a painful and disabling symptom which can interfere with daily motor function resulting in significant morbidity. Since myotonic disorders are rare it has generally proved difficult to obtain class I level evidence for anti-myotonic drug efficacy by performing randomized placebo controlled trials. Current treatment guidance is therefore largely based on anecdotal reports and physician experience. Despite the genetic channel heterogeneity of the myotonic disorders the sodium channel antagonists have become the main focus of pharmacological interest. Mexiletine is currently regarded as the first choice sodium channel blocker based on a recent placebo controlled randomized trial. However, some patients do not respond to mexiletine or have significant side effects limiting its use. There is a clinical need to develop additional antimyotonic agents. The study of Desaphy et al. is therefore important and provides in vitro evidence that a number of existing drugs with sodium channel blocking capability could potentially be repurposed as anti-myotonic drugs. Translation of these potentially important in vitro findings into clinical practice requires carefully designed randomized controlled trials. Here we discuss Desaphy's findings in the wider context of attempts to develop additional therapies for patients with clinically significant myotonia.
    No preview · Article · Sep 2014 · Experimental Neurology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose of review: This article reviews recent advances in clinical, genetic, diagnostic and pathophysiological aspects of the skeletal muscle channelopathies. Recent findings: Genetic advances include the use of the minigene assay to confirm pathogenicity of splice site mutations of CLC-1 chloride channels and a new gene association for Andersen-Tawil syndrome. Mutations causing a gating pore current have been established as a pathomechanism for hypokalaemic periodic paralysis. Mutations in nonchannel genes, including the mitochondrial mATP6/8 genes, have been linked to channelopathy-like episodic weakness. Advances in diagnostic tools include the use of MRI and muscle velocity recovery cycles to evaluate myotonia congenita patients. Specific neonatal presentations of sodium channel myotonia are now well documented. An international multicentre placebo-controlled randomized clinical trial established that mexiletine is an effective therapy in the nondystrophic myotonias. This is the first evidence-based treatment for a skeletal muscle channelopathy. Recent evidence in mouse models indicated that bumetanide can prevent attacks of hypokalaemic periodic paralysis, but this has not yet been tested in patient trials. Summary: Advances in genetic, clinical, diagnostic and pathomechanistic understanding of skeletal muscle channelopathies are being translated into improved therapies. Mexiletine is the first evidence-based treatment for nondystrophic myotonias. Bumetanide is effective in preventing attacks in mouse models of hypokalaemic periodic paralysis and now needs to be tested in patients.
    Full-text · Article · Oct 2014 · Current Opinion in Neurology
Show more