Article

Intracellular, time-resolved speciation and quantification of arsenic compounds in human urothelial and hepatoma cells

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

In contrast to the temporary administration of arsenic in cancer therapy (e.g. in the form of arsenic trioxide), chronic exposure to low doses can cause bladder cancer and other cancers. Especially the trivalent arsenic species MMA(III) (monomethylarsonous acid) and DMA(III) (dimethylarsinous acid) are known to be highly toxic. In the present study we analysed the soluble, intracellular biotransformation products of MMA(III) in methylating HepG2 (hepatocytes) and non-methylating UROtsa cells (urothelial cells) after various times of exposure. As most of the intracellulararsenic is bound to cellular structures and proteins the soluble arsenicmetabolites can hardly be speciated and even less quantified. Using an improved isolation procedure and HPLC-ICP/MS, we investigated the time-resolved biotransformation of MMA(III) and detected and quantified MMA(V) (monomethylarsonic acid) as an oxidation product of MMA(III) and, to a minor degree, DMA(V) (dimethylarsenic acid) as a methylation and oxidation product of MMA(III) in the lysates of HepG2 cells. In contrast, only MMA(V) but no DMA(V) was detected in the lysates of UROtsa cells. We conclude from our study that MMA(III) is taken up by HepG2 and UROtsa cells and immediately oxidized to MMA(V). Only in HepG2 cellsMMA(V) is finally methylated to DMA(V) over time. The new method might help to advance the analysis of metabolic pathways of arsenic in mammalian cells.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... The following methodology (Hippler et al., 2011) was used for intracellular arsenic speciation and quantification: Cells were seeded into 150 cm² flasks and grown to confluence before experiments were performed. Both cell lines (UROtsa and HepG2) were incubated for five minutes to 24 hours in fresh growth medium containing 5 µM MMA(III) (exposure medium). ...
... To study the intracellular arsenic biotransformation of MMA(III) we incubated UROtsa and HepG2 cells with 5 µM MMA(III) for 5 min up to 24 hours, followed by a newly developed sample preparation process (Hippler et al., 2011). Using HPLC-ICP/MS analysis we were able to detect more than 99.99% of the total arsenic in the non-soluble fraction of both cell lines and only 0.003% in the soluble fraction of UROtsa cells and 0.01% of HepG2 cells, respectively. ...
... 40 However, pentavalent arsenic species cannot be considered completely nontoxic, as they may interfere with the phosphate uptake and transport phenomena of the body by acting as a phosphate analog, 22 furthermore it has also been suggested that arsenate (iAs V ) and phosphate can share the same transportation process, as addition of phosphate can reduce the absorption of arsenic. 41 The mechanisms by which arsenic causes toxicities including cancer are still undefined, [42][43][44] as there is much complexity in inducing toxicity within animal models using the same arsenic concentrations that can be deleterious to humans, making it much more difficult to investigate the exact mode of arsenic toxicity. 42,43,45,46 However, it is reported that arsenic may act as an efficient co-carcinogen in experimental rodents by promoting the effects of other carcinogens. ...
... Furthermore, most of the administered arsenic (approximately 70-80% of dose) was recovered in urine and feces at 12 h or 24 h after dosing, in an unmodified form. Hippler et al. 44 also portrayed a precise mechanism of MMA III metabolic pathway using the Hepatoma cell line (HepG2), signifying that when MMA III was exposed to HepG2, it was rapidly taken up by the cells and followed the binding to cellular proteins, and the liberated MMA V and DMA V were excreted. However, some of these pentavalent species may further undergo reduction by GSH instead of being excreted. ...
Article
Full-text available
Arsenic has received considerable attention in the world, since it can lead to a multitude of toxic effects and has been recognized as a human carcinogen causing cancers. Here, we focus on the current state of knowledge regarding the proposed mechanisms of arsenic biotransformation, with a little about cellular uptake, toxicity and clinical utilization of arsenicals. Since pentavalent methylated metabolites were found in animal urine after exposure to iAs(III), methylation was considered to be a detoxification process, but the discovery of methylated trivalent intermediates and thioarsenicals in urine has diverted the view and gained much interest regarding arsenic biotransformation. To further investigate the partially understood phenomena relating to arsenic toxicity and the uses of arsenic as a drug, it is important to elucidate the exact pathways involved in metabolism of this metalloid, as the toxicity and the clinical uses of arsenic can be best recognized in context of its biotransformation. Thereby, in this perspective, we have focused on arsenic metabolic pathways including three proposed mechanisms: a classic pathway by Challenger in 1945, followed by a new metabolic pathway proposed by Hayakawa in 2005 involving arsenic-glutathione complexes, while the third is a new reductive methylation pathway that is proposed by our group involving As-protein complexes. According to previous and present in vivo and in vitro experiments, we conclude that the methylation reaction takes place with simultaneous reductive rather than stepwise oxidative methylation. In addition, production of pentavalent methylated arsenic metabolites are suggested to be as the end product of metabolism, rather than intermediates.
... The reducing intracellular environment might suggest that DMA III is the predominant form of dimethylated arsenic within the cell; however, this has been difficult to prove and DMA V has been detected in human cell lines and mouse liver homogenate (Currier et al., 2011). The highly reactive DMA III is highly protein bound and unlikely to be available for cellular export (Hippler et al., 2011;Shen et al., 2013). An equilibrium between DMA III and DMA V will exist within the cell, and the highaffinity high-capacity export of DMA V by MRP1 would provide a good mechanism for cellular detoxification. ...
Article
Full-text available
The ATP-binding cassette (ABC) transporter Multidrug Resistance Protein 1 (MRP1/ABCC1) is known to protect cells from the proven human carcinogen arsenic through the cellular efflux of arsenic triglutathione [As(GS)3], and the diglutathione conjugate of the highly toxic monomethylarsonous acid (MMAIII) [MMA(GS)2]. Previously, differences in MRP1 phosphorylation (at Y920/S921) and N-glycosylation (at N19/N23) were associated with marked differences in As(GS)3 transport kinetics between HEK293 and HeLa cell lines. The objectives of the current study were to determine if differences in MRP1-mediated cellular protection and transport of other arsenic metabolites exist between HEK293 and HeLa cells. MRP1 expressed in HEK293 cells conferred protection against the major urinary arsenic metabolite dimethylarsinic acid (DMAV) through high apparent affinity and capacity transport (Km 0.19 μM, Vmax 342 pmol mg-1 protein min-1). In contrast, DMAV transport was not detected using HeLa-WT-MRP1 membrane vesicles. MMA(GS)2 transport by HeLa-WT-MRP1 vesicles had a similar apparent Km, but a greater than 3-fold higher Vmax, compared to HEK-WT-MRP1 vesicles. Cell line differences in DMAV and MMA(GS)2 transport were not explained by differences in phosphorylation at Y920/S921. DMAV did not inhibit, while MMA(GS)2 was an uncompetitive inhibitor of As(GS)3 transport, suggesting that DMAV and MMA(GS)2 have non-identical binding sites to As(GS)3 on MRP1. Detoxification of different arsenic metabolites by MRP1 is likely influenced by multiple factors including cell and tissue type. This could have implications for the influence of MRP1 on both tissue specific susceptibility to arsenic-induced disease, and tumour sensitivity to arsenic-based therapeutics.
... For better comparability, results are reported in ng Se taken up per 10 6 cells normalized to μM of initially applied selenium. The medium was removed after 24 h and the cells were successively rinsed with Dulbecco's Phosphate Buffered Saline (DPBS, GIBCO), Ampuwa, and 0.1 mM 2,3-dimercapto-1-propanesulfonic acid sodium salt monohydrate (DMPS, Alfa Aesar, Karlsruhe, Germany, purity 95 %) according to a published procedure (Hippler et al. 2011) to ensure the absence of extracellular selenium. Cells were trypsinized, collected in 2 mL DPBS, and mechanically lysed using glass beads (Retsch, Haan, Germany). ...
Article
Full-text available
Based on acute cytotoxicity studies, selenosulfate (SeSO3−) has been suggested to possess a generally higher toxic activity in tumor cells than selenite. The reason for this difference in cytotoxic activity remained unclear. In the present study, cytotoxicity tests with human hepatoma (HepG2), malignant melanoma (A375), and urinary bladder carcinoma cells (T24) showed that the selenosulfate toxicity was very similar between all three tested cell lines (IC50 6.6–7.1 μM after 24 h). It was largely independent of exposure time and presence or absence of amino acids. What changed, however, was the toxicity of selenite, which was lower than that of selenosulfate only for HepG2 cells (IC50 > 15 μM), but similar to and higher than that of selenosulfate for A375 (IC50 4.7 μM) and T24 cells (IC50 3.5 μM), respectively. Addition of amino acids to T24 cell growth medium downregulated short-term selenite uptake (1.5 versus 12.9 ng Se/106 cells) and decreased its cytotoxicity (IC50 8.4 μM), rendering it less toxic than selenosulfate. The suggested mechanism is a stronger expression of the xc− transport system in the more sensitive T24 compared to HepG2 cells which creates a reductive extracellular microenvironment and facilitates selenite uptake by reduction. Selenosulfate is already reduced and so less affected. The cytotoxic activity of selenosulfate and selenite to tumor cells therefore depends on the sensitivity of each cell line, supplements like amino acids as well as the reductive state of the extracellular environment.
... Despite the highly reducing environment of the cell, DMA V is detected in murine liver homogenates and human cell lines analyzed with oxidation state-specific hydride generationcryotrapping-atomic absorption spectroscopy (Currier et al., 2011). Furthermore, the highly reactive nature of DMA III combined with the lack of evidence for physiologic formation of dimethylarsenic glutathione [DMA(GS)] (Leslie, 2012) mean that DMA III is highly bound to protein and not available for transport (Hippler et al., 2011;Shen et al., 2013). MRP4 transport of DMA V was with high apparent affinity (K 0.5 , 0.22 mM) and would allow for the efficient efflux of DMA V at low cellular concentrations. ...
Article
Full-text available
Hundreds of millions of people world-wide are exposed to unacceptable levels of arsenic in drinking water. This is a public health crisis because arsenic is a Group I (proven) human carcinogen. Human cells methylate arsenic to monomethylarsonous acid (MMA(III)), monomethylarsonic acid (MMA(V)), dimethylarsinous acid (DMA(III)), and dimethylarsinic acid (DMA(V)). Although the liver is the predominant site for arsenic methylation, elimination occurs mostly in urine. The protein(s) responsible for transport of arsenic from the liver (into blood), ultimately for urinary elimination are unknown. Human multidrug resistance protein 1 (MRP1/ABCC1) and MRP2 (ABCC2), are established arsenic efflux pumps, but unlike the related MRP4 (ABCC4), are not present at the basolateral membrane of hepatocytes. MRP4 is also found at the apical membrane of renal proximal tubule cells making it an ideal candidate for urinary arsenic elimination. In the current study, human MRP4 expressed in HEK293 cells reduced the cytotoxicity and cellular accumulation of As(V), MMA(III), MMA(V), DMA(III), and DMA(V) while two other hepatic basolateral MRPs (MRP3 and MRP5) did not. Transport studies with MRP4-enriched membrane vesicles revealed that the diglutathione conjugate of MMA(III) [MMA(GS)2] and DMA(V) were the transported species. MMA(GS)2 and DMA(V) transport was osmotically sensitive, allosteric (Hill coefficients of 1.4 ± 0.2 and 2.9 ± 1.2, respectively), and high affinity (K0.5 of 0.70 ± 0.16 μM and 0.22 ± 0.15 μM, respectively). DMA(V) transport was pH dependent with highest affinity and capacity at pH 5.5. These results suggest human MRP4 could be a major player in the elimination of arsenic.
... After 24 h of exposure, the medium was collected. To ensure complete removal of extracellular arsenic, the cell layer was rinsed four times using DPBS, Ampuwa, 0.1 mM DMPS, and DPBS according to a published procedure (Hippler et al. 2011). Subsequently, the cells were trypsinized (trypsin-EDTA was used for HepG2 cells, trypsin was used for UROtsa cells), collected in 2 mL DPBS, counted with the CASY Model TT (Roche Applied Sciences), and mechanically lysed using glass beads (Retsch GmbH, Germany). ...
Article
Full-text available
Arsenic, a common poison, is known to react with sulfide in vivo, forming thioarsenates. The acute toxicity of the inorganic thioarsenates is currently unknown. Our experiments showed that a fourfold sulfide excess reduced acute arsenite cytotoxicity in human hepatocytes (HepG2) and urothelial cells (UROtsa) significantly, but had little effect on arsenate toxicity. Speciation analysis showed immediate formation of thioarsenates (up to 73 % of total arsenic) in case of arsenite, but no speciation changes for arsenate. Testing acute toxicity of mono- and trithioarsenate individually, both thioarsenates were found to be more toxic than their structural analogue arsenate, but less toxic than arsenite. Toxicity increased with the number of thio groups. The amount of cellular arsenic uptake after 24 h corresponded to the order of toxicity of the four compounds tested. The dominant to almost exclusive intracellular arsenic species was arsenite. The results imply that thiolation is a detoxification process for arsenite in sulfidic milieus. The mechanism could either be that thioarsenates regulate the amount of free arsenite available for cellular uptake without entering the cells themselves, or, based on their chemical similarity to arsenate, they could be taken up by similar transporters and reduced rapidly intracellularly to arsenite.
Article
Full-text available
The toxic metalloid inorganic arsenic (iAs) is widely distributed in the environment. Chronic exposure to iAs from environmental sources has been linked to a variety of human diseases. Methylation of iAs is the primary pathway for metabolism of iAs. In humans, methylation of iAs is catalyzed by arsenic (+ 3 oxidation state) methyltransferase (AS3MT). Conversion of iAs to mono- and di-methylated species (MAs and DMAs) detoxifies iAs by increasing the rate of whole body clearance of arsenic. Interindividual differences in iAs metabolism play key roles in pathogenesis of and susceptibility to a range of disease outcomes associated with iAs exposure. These adverse health effects are in part associated with the production of methylated trivalent arsenic species, methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII), during AS3MT-catalyzed methylation of iAs. The formation of these metabolites activates iAs to unique forms that cause disease initiation and progression. Taken together, the current evidence suggests that methylation of iAs is a pathway for detoxification and for activation of the metalloid. Beyond this general understanding of the consequences of iAs methylation, many questions remain unanswered. Our knowledge of metabolic targets for MAsIII and DMAsIII in human cells and mechanisms for interactions between these arsenicals and targets is incomplete. Development of novel analytical methods for quantitation of MAsIII and DMAsIII in biological samples promises to address some of these gaps. Here, we summarize current knowledge of the enzymatic basis of MAsIII and DMAsIII formation, the toxic actions of these metabolites, and methods available for their detection and quantification in biomatrices. Major knowledge gaps and future research directions are also discussed.
Article
Setting regulatory limits for arsenic in food is complicated owing to the enormous diversity of arsenic metabolism in humans, lack of knowledge about the toxicity of these chemicals, and lack of accurate arsenic speciation data on foodstuffs. Identification and quantification of the toxic arsenic compounds is imperative to understanding the risk associated with exposure to arsenic from dietary intake, which in turn underscores the need for speciation analysis of the food. Arsenic speciation in seafood is challenging owing to its existence in myriads of chemical forms and oxidation states. Interconversions occurring between chemical forms, matrix complexity, lack of standards and certified reference materials, and lack of widely accepted measurement protocols present additional challenges. This review covers the current analytical techniques for diverse arsenic species. The requirement for high quality arsenic speciation data that is essential for establishing legislation and setting regulatory limits for arsenic in food is explored.
Article
Diet, especially seafood, is the main source of arsenic exposure for humans. Total arsenic content of a diet offers inadequate information for assessment of the toxicological consequences of arsenic intake, which has impeded progress in the establishment of regulatory limits for arsenic in food. Toxicity assessments are mainly based on inorganic arsenic, a well-characterized carcinogen, and arsenobetaine, the main organoarsenical in seafood. Scarcity of toxicity data for organoarsenicals, and the predominance of arsenobetaine as an organic arsenic species in seafood, has led to the assumption of their non-toxicity. Recent toxicokinetic studies show that some organoarsenicals are bioaccessible and cytotoxic with demonstrated toxicities like that of pernicious trivalent inorganic arsenic, underpinning the need for speciation analysis. The need to investigate and compare the bioavailability, metabolic transformation, and elimination from the body of organoarsenicals to the well-established physiological consequences of inorganic arsenic and arsenobetaine exposure is apparent. This review provides an overview of the occurrence and assessment of human exposure to arsenic toxicity associated with the consumption of seafood.
Article
Chronic exposure to inorganic arsenic (iAs), a contaminant of water and food supplies, is associated with many adverse health effects. A notable feature of iAs metabolism is sequential methylation reactions which produce mono- and di-methylated arsenicals that can contain arsenic in either the trivalent (III) or pentavalent (V) valence states. Because methylated arsenicals containing trivalent arsenic are more potent toxicants than their pentavalent counterparts, the ability to distinguish between the +3 and +5 valence states is a crucial property for physiologically based pharmacokinetic (PBPK) models of arsenicals to possess if they are to be of use in risk assessment. Unfortunately, current analytic techniques for quantifying arsenicals in tissues disrupt the valence state; hence, pharmacokinetic studies in animals, used for model calibration, only reliably provide data on the sum of the +3 and +5 valence forms of a given metabolite. In this paper we show how mathematical modeling can be used to overcome this obstacle and present a PBPK model for the dimethylated metabolite of iAs, which exists as either dimethylarsinous acid, (CH3)2AsIIIOH (abbreviated DMAIII) or dimethylarsinic acid, (CH3)2AsV(O)OH (abbreviated DMAV). The model distinguishes these two forms and sets a lower bound on how much of an organ's DMA burden is present in the more reactive and toxic trivalent valence state. We conjoin the PBPK model to a simple model for DMAIII-induced oxidative stress in liver and use this extended model to predict cytotoxicity in liver in response to the high oral dose of DMAV. The model incorporates mechanistic details derived from in vitro studies and is iteratively calibrated with lumped-valence-state PK data for intravenous or oral dosing with DMAV. Model formulation leads us to predict that orally administered DMAV undergoes extensive reduction in the gastrointestinal (GI) tract to the more toxic trivalent DMAIII.
Article
Arsenic (As) is a notoriously toxic pollutant of health concern worldwide with potential risk of cancer induction, but meanwhile it is used as medicines for the treatment of different conditions including hematological cancers. Arsenic can undergo extensive metabolism in biological systems, and both toxicological and therapeutic effects of arsenic compounds are closely related to their metabolism. Recent studies have identified methylated thioarsenicals as a new class of arsenic metabolites in biological systems after exposure of inorganic and organic arsenicals, including arsenite, dimethylarsinic acid (DMAV), dimethylarsinous glutathione (DMAIIIGS), and arsenosugars. The increasing detection of thiolated arsenicals, including monomethylmonothioarsonic acid (MMMTAV), dimethylmonothioarsinic acid (DMMTAV) and its glutathione conjugate (DMMTAV(GS)), and dimethyldithioarsinic acid (DMDTAV) suggests that thioarsenicals may be important metabolites and play important roles in arsenic toxicity and therapeutic effects. Here we summarized the reported occurrence of thioarsenicals in biological systems, the possible formation pathways of thioarsenicals, and their toxicity, and discussed the biological implications of thioarsenicals on arsenic metabolism, toxicity, and therapeutic effects.
Article
An experimental set-up consisting of a flow injection hydride generator coupled to an atomic fluorescence spectrometer was optimized in order to generate arsanes from tri- and pentavalent inorganic arsenic species (iAsIII, iAsV), monomethylarsonic acid (MAsV) and from dimethylarsinic acid (DMAsV) with 100% efficiency with the use of only HCl and NaBH4 as the reagents. The optimal concentration of HCl was 2 mol L-1, optimal concentration of NaBH4 was 2.5% (m/v) and volume of the reaction coil was 8.9 mL. To prevent excessive signal noise due to fluctuations of hydride supply to an atomizer a new design of a gas-liquid separator was implemented. The optimized experimental set-up was subsequently interfaced to HPLC and employed for speciation analysis of arsenic. Two chromatography columns were tested: (i) ion-pair chromatography and (ii) ion exchange chromatography. The latter offered much better results for human urine samples without a need for sample dilution. Due to the equal hydride generation efficiency (and thus the sensitivities) of all As species, a single species standardization by DMAsV standard was feasible. The limits of detection for iAsIII, iAsV, MAsV and DMAsV were 40, 97, 57 and 55 pg mL-1 respectively. Accuracy of the method was tested by the analysis of the standard reference material (human urine NIST 2669) and the method was also verified by the comparative analyses of human urine samples collected from five individuals with an independent reference method.
Article
Microorganisms are abundant in many surface and near-surface geochemical environments. They interact with arsenic through a variety of mechanisms, including sorption, mobilisation, precipitation and redox and methylation transformation; sometimes, this is to their benefit, while other times it is to their detriment, substantially affecting the fate and transport of arsenic in the environment. Here, an attempt was made to review the current state of knowledge concerning microbial influences on arsenic transformation and retention processes at the water–solid interface with the goal to elucidate the ability of microorganisms to react with arsenic, and to quantify the role of microorganisms in the biogeochemical arsenic cycle. Such knowledge is indispensable for comprehensive understanding arsenic behaviour in the environment and support accurate assessment of the threat of arsenic contamination to human and environmental health, as well as for the development of novel technologies for arsenic bioremediation.
Article
Full-text available
An ultra sensitive method for arsenic (As) speciation analysis based on selective hydride generation (HG) with preconcentration by cryotrapping (CT) and inductively coupled plasma- mass spectrometry (ICP-MS) detection is presented. Determination of valence of the As species is performed by selective HG without prereduction (trivalent species only) or with L-cysteine prereduction (sum of tri- and pentavalent species). Methylated species are resolved on the basis of thermal desorption of formed methyl substituted arsines after collection at -196°C. Limits of detection of 3.4, 0.04, 0.14 and 0.10 pg mL(-1) (ppt) were achieved for inorganic As, mono-, di- and trimethylated species, respectively, from a 500 μL sample. Speciation analysis of river water (NRC SLRS-4 and SLRS-5) and sea water (NRC CASS-4, CASS-5 and NASS-5) reference materials certified to contain 0.4 to 1.3 ng mL(-1) total As was performed. The concentrations of methylated As species in tens of pg mL(-1) range obtained by HG-CT-ICP-MS systems in three laboratories were in excellent agreement and compared well with results of HG-CT-atomic absorption spectrometry and anion exchange liquid chromatography- ICP-MS; sums of detected species agreed well with the certified total As content. HG-CT-ICP-MS method was successfully used for analysis of microsamples of exfoliated bladder epithelial cells isolated from human urine. Here, samples of lysates of 25 to 550 thousand cells contained typically tens pg up to ng of iAs species and from single to hundreds pg of methylated species, well within detection power of the presented method. A significant portion of As in the cells was found in the form of the highly toxic trivalent species.
Article
Full-text available
The formation of methylarsonous acid (MAs(III)) and dimethylarsinous acid (DMAs(III)) in the course of inorganic arsenic (iAs) metabolism plays an important role in the adverse effects of chronic exposure to iAs. High-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) and hydride generation-cryotrapping-atomic absorption spectrometry (HG-CT-AAS) have been frequently used for the analysis of MAs(III) and DMAs(III) in biological samples. While HG-CT-AAS has consistently detected MAs(III) and DMAs(III), HPLC-ICP-MS analyses have provided inconsistent and contradictory results. This study compares the capacities of both methods to detect and quantify MAs(III) and DMAs(III) in an in vitro methylation system consisting of recombinant human arsenic (+3 oxidation state) methyltransferase (AS3MT), S-adenosylmethionine as a methyl donor, a non-thiol reductant tris(2-carboxyethyl)phosphine, and arsenite (iAs(III)) or MAs(III) as substrate. The results show that reversed-phase HPLC-ICP-MS can identify and quantify MAs(III) and DMAs(III) in aqueous mixtures of biologically relevant arsenical standards. However, HPLC separation of the in vitro methylation mixture resulted in significant losses of MAs(III), and particularly DMAs(III) with total arsenic recoveries below 25%. Further analyses showed that MAs(III) and DMAs(III) bind to AS3MT or interact with other components of the methylation mixture, forming complexes that do not elute from the column. Oxidation of the mixture with H2O2 which converted trivalent arsenicals to their pentavalent analogs prior to HPLC separation increased total arsenic recoveries to ~95%. In contrast, HG-CT-AAS analysis found large quantities of methylated trivalent arsenicals in mixtures incubated with either iAs(III) or MAs(III) and provided high (>72%) arsenic recoveries. These data suggest that an HPLC-based analysis of biological samples can underestimate MAs(III) and DMAs(III) concentrations and that controlling for arsenic species recovery is essential to avoid artifacts.
Article
Full-text available
Biomethylation is considered a major detoxification pathway for inorganic arsenicals (iAs). According to the postulated metabolic scheme, the methylation of iAs yields methylated metabolites in which arsenic is present in both pentavalent and trivalent forms. Pentavalent mono- and dimethylated arsenicals are less acutely toxic than iAs. However, little is known about the toxicity of trivalent methylated species. In the work reported here the toxicities of iAs and trivalent and pentavalent methylated arsenicals were examined in cultured human cells derived from tissues that are considered a major site for iAs methylation (liver) or targets for carcinogenic effects associated with exposure to iAs (skin, urinary bladder, and lung). To characterize the role of methylation in the protection against toxicity of arsenicals, the capacities of cells to produce methylated metabolites were also examined. In addition to human cells, primary rat hepatocytes were used as methylating controls. Among the arsenicals examined, trivalent monomethylated species were the most cytotoxic in all cell types. Trivalent dimethylated arsenicals were at least as cytotoxic as trivalent iAs (arsenite) for most cell types. Pentavalent arsenicals were significantly less cytotoxic than their trivalent analogs. Among the cell types examined, primary rat hepatocytes exhibited the greatest methylation capacity for iAs followed by primary human hepatocytes, epidermal keratinocytes, and bronchial epithelial cells. Cells derived from human bladder did not methylate iAs. There was no apparent correlation between susceptibility of cells to arsenic toxicity and their capacity to methylate iAs. These results suggest that (1) trivalent methylated arsenicals, intermediary products of arsenic methylation, may significantly contribute to the adverse effects associated with exposure to iAs, and (2) high methylation capacity does not protect cells from the acute toxicity of trivalent arsenicals.
Article
Full-text available
Arsenic is categorized by the WHO as the most significant environmental contaminant of drinking water due to the prevalence of geogenic contamination of groundwaters. Arsenic and the compounds which it forms are considered to be carcinogenic. The mechanism of toxicity and in particular of carcinogenicity of arsenic is still not well understood. The complexity originates from the fact that arsenic can form a rich variety of species, which show a wide variability in their toxicological behavior. The process of biomethylation was for many years regarded as a detoxification process; however, more recent research has indicated that the reverse is in fact the case. In this book chapter we give a summary of the current state of knowledge on the toxicities and toxicological mechanisms of organoarsenic species in order to evaluate the role and significance of these regarding their adverse effects on human health.
Article
Full-text available
Macroautophagy is a multistep, vacuolar, degradation pathway terminating in the lysosomal compartment, and it is of fundamental importance in tissue homeostasis. In this review, we consider macroautophagy in the light of recent advances in our understanding of the formation of autophagosomes, which are double-membrane-bound vacuoles that sequester cytoplasmic cargos and deliver them to lysosomes. In most cases, this final step is preceded by a maturation step during which autophagosomes interact with the endocytic pathway. The discovery of AuTophaGy-related genes has greatly increased our knowledge about the mechanism responsible for autophagosome formation, and there has also been progress in the understanding of molecular aspects of autophagosome maturation. Finally, the regulation of autophagy is now better understood because of the discovery that the activity of Atg complexes is targeted by protein kinases, and owing to the importance of nuclear regulation via transcription factors in regulating the expression of autophagy genes.
Article
Full-text available
The design and development of an automated flow injection instrument for the determination of arsenite [As(III)] and arsenate [As(V)] in natural waters is described. The instrument incorporates solenoid activated self-priming micropumps and electronic switching valves for controlling the fluidics of the system and a miniature charge-coupled device spectrometer operating in a graphical programming environment. The limits of detection were found to be 0.79 and 0.98 microM for As(III) and As(V), respectively, with linear range of 1-50 microM. Spiked ultrapure water samples were analyzed and recoveries were found to be 97%-101% for As(III) and 95%-99% for As(V), respectively. Future directions in terms of automation, optimization, and field deployment are discussed.
Article
Full-text available
The strength of synaptic inhibition depends partly on the number of GABA(A) receptors (GABA(A)Rs) found at synaptic sites. The trafficking of GABA(A)Rs within the endocytic pathway is a key determinant of surface GABA(A)R number and is altered in neuropathologies, such as cerebral ischemia. However, the molecular mechanisms and signaling pathways that regulate this trafficking are poorly understood. Here, we report the subunit specific lysosomal targeting of synaptic GABA(A)Rs. We demonstrate that the targeting of synaptic GABA(A)Rs into the degradation pathway is facilitated by ubiquitination of a motif within the intracellular domain of the gamma2 subunit. Blockade of lysosomal activity or disruption of the trafficking of ubiquitinated cargo to lysosomes specifically increases the efficacy of synaptic inhibition without altering excitatory currents. Moreover, mutation of the ubiquitination site within the gamma2 subunit retards the lysosomal targeting of GABA(A)Rs and is sufficient to block the loss of synaptic GABA(A)Rs after anoxic insult. Together, our results establish a previously unknown mechanism for influencing inhibitory transmission under normal and pathological conditions.
Article
Full-text available
Arsenic is a known human carcinogen, inducing tumors of the skin, urinary bladder, liver and lung. Inorganic arsenic, existing in highly toxic trivalent and significantly less toxic pentavalent forms, is methylated to mono- and di-methylated species mainly in the liver. Due to the low toxicity of pentavalent methylated species, methylation has been regarded as a detoxification process for many years; however, recent findings of a high toxicity of trivalent methylated species have indicated the contrary.
Article
Full-text available
The proteasome inhibitor bortezomib has shown impressive clinical activity alone and in combination with conventional and other novel agents for the treatment of multiple myeloma (MM) and some solid cancers. Although bortezomib is known to be a selective proteasome inhibitor, the downstream mechanisms of cytotoxicity and drug resistance are poorly understood. Proteasome activity, intracellular glutathione (GSH) and ROS levels, as well as activities of GSH synthesis enzymes were measured using spectrophotometric methods. Cell death was analyzed using flow cytometry and caspase activity assay. The expression level of GSH synthesis enzymes were measured using real-time RT-PCR. At concentrations that effectively inhibited proteasome activity, bortezomib induced apoptosis in FRO cells, but not in ARO cells. Bortezomib elevated the amount of glutathione (GSH) and the treatment with bortezomib increased the level of mRNA for GCL, a rate-limiting enzyme in glutathione synthesis. Furthermore, depletion of GSH increases apoptosis induced by bortezomib, in contrast, repletion of GSH decreases bortezomib-mediated cell death. GSH protects cells from proteasome inhibition-induced oxidative stress and glutathione-dependent redox system might play an important role in the sensitivity to proteasome inhibition-induced apoptosis.
Article
Full-text available
Ingestion of arsenic, both from water supplies and medicinal preparations, is known to cause skin cancer. The evidence assessed here indicates that arsenic can also cause liver, lung, kidney, and bladder cancer and that the population cancer risks due to arsenic in U.S. water supplies may be comparable to those from environmental tobacco smoke and radon in homes. Large population studies in an area of Taiwan with high arsenic levels in well water (170-800 micrograms/L) were used to establish dose-response relationships between cancer risks and the concentration of inorganic arsenic naturally present in water supplies. It was estimated that at the current EPA standard of 50 micrograms/L, the lifetime risk of dying from cancer of the liver, lung, kidney, or bladder from drinking 1 L/day of water could be as high as 13 per 1000 persons. It has been estimated that more than 350,000 people in the United States may be supplied with water containing more than 50 micrograms/L arsenic, and more than 2.5 million people may be supplied with water with levels above 25 micrograms/L. For average arsenic levels and water consumption patterns in the United States, the risk estimate was around 1/1000. Although further research is needed to validate these findings, measures to reduce arsenic levels in water supplies should be considered.
Article
Full-text available
Lysosomes are acidic organelles that play multiple roles in various cellular oxidative activities such as the oxidative burst during cytotoxic killing. It remains to be determined how lysosomal lumen oxidative activity and pH interact and are regulated. Here, I report the use of fluorescent probes to measure oxidative activity and pH of lysosomes in live macrophages upon treatment with the tumor promotor phorbol 12-myristate 13-acetate (PMA), and providing new insight on regulation mechanism of oxidative activity and pH. The substrate used to measure oxidative activity was bovine serum albumin covalently coupled to dihydro-2',4,5,6,7,7'-hexafluorofluorescein (OxyBURST Green H2HFF BSA). During pulse-chase procedures with live macrophages, this reduced dye was internalized through an endocytic pathway and accumulated in the lysosomes. Oxidation of this compound, which results in fluorescence increases, depends on the redox potential in the lysosomal lumen. By using low-light level fluorescence microscopy, I determined that phorbol ester treatment results in increased oxidative activity and pH elevation in different subsets of lysosomes. Furthermore, lysosomes with stronger oxidative activity tend to exclude an acidotropic lysosomal indicator, and thus exhibit higher alkalinity. Results indicate that there is a regulatory mechanism between lysosomal oxidative activity and pH. Activation of lysosomal Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase by phorbol ester may result in increase of intralysosomal O2- and H2O2, concurrent with pH elevation due to consumption of H+ and generation of OH-. Furthermore, effect of phorbol ester on elevated oxidative activity and pH is heterogeneous among total lysosomal population. Higher oxidative activity and/or pH are only observed in subsets of lysosomes.
Article
Full-text available
4-hydroxynonenal (HNE), a highly reactive lipid peroxidation product, may adversely modify proteins. Accumulation of HNE-modified proteins may be responsible for pathological lesions associated with oxidative stress. The objective of this work was to determine how HNE-modified proteins are removed from cells. The data showed that alphaB-crystallin modified by HNE was ubiquitinated at a faster rate than that of native alphaB-crystallin in a cell-free system. However, its susceptibility to proteasome-dependent degradation in the cell-free system did not increase. When delivered into cultured lens epithelial cells, HNE-modified alphaB-crystallin was degraded at a faster rate than that of unmodified alphaB-crystallin. Inhibition of the lysosomal activity stabilized HNE-modified alphaB-crystallin, but inhibition of the proteasome activity alone had little effect. To determine if other HNE-modified proteins are also degraded in a ubiquitin-dependent lysosomal pathway, lens epithelial cells were treated with HNE and the removal of HNE-modified proteins in the cells was monitored. The levels of HNE-modified proteins in the cell decreased rapidly upon removal of HNE from the medium. Depletion of ATP or the presence of MG132, a proteasome/lysosome inhibitor, resulted in stabilization of HNE-modified proteins. However, proteasome-specific inhibitors, lactacystin-beta-lactone and epoxomicin, could not stabilize HNE-modified proteins in the cells. In contrast, chloroquine, a lysosome inhibitor, stabilized HNE-modified proteins. The enrichment of HNE-modified proteins in the fraction of ubiquitin conjugates suggests that HNE-modified proteins are preferentially ubiquitinated. Taken together, these findings show that HNE-modified proteins are degraded via a novel ubiquitin and lysosomal-dependent but proteasome-independent pathway.
Article
Full-text available
The metabolism of arsenic is generally accepted to proceed by repetitive reduction and oxidative methylation; the latter is mediated by arsenic methyltransferase (Cyt19). In human urine, the major metabolites of inorganic arsenicals such as arsenite (iAsIII) and arsenate (iAsV) are monomethylarsonic acid (MMA(V)) and dimethylarsinic acid (DMA(V)). On the other hand, in rat bile, the major metabolites of iAsIII have been reported to be arsenic-glutathione (As-GSH) complexes. In the present study we investigate whether these As-GSH complexes are substrates for arsenic methyltransferase by using human recombinant Cyt19. Analyses by high-performance liquid chromatography-inductively coupled plasma mass spectrometry suggested that arsenic triglutathione (ATG) was generated nonenzymatically from iAsIII when GSH was present at concentrations 2 mM or higher. Human recombinant Cyt19 catalyzed transfer of a methyl group from S-adenosyl-L-methionine to arsenic and produced monomethyl and dimethyl arsenicals. The methylation of arsenic was catalyzed by Cyt19 only when ATG was present in the reaction mixture. Moreover, monomethylarsonic diglutathione (MADG) was a substrate of Cyt19 for further methylation to dimethylarsinic glutathione (DMAG). On the other hand, monomethylarsonous acid (MMA(III)), a hydrolysis product of MADG, was not methylated to dimethyl arsenical by Cyt19. These results suggest that As-GSH complexes such as ATG and MADG were converted by Cyt19 to MADG and DMAG, respectively. Both MADG and DMAG were unstable in solution when the GSH concentration was lower than 1 mM, and were hydrolyzed and oxidized to MMA(V) and DMA(V), respectively. Metabolism of iAsIII to methylated arsenicals by Cyt19 was via ATG and MADG rather than by oxidative methylation of iAsIII and MMA(III).
Article
Full-text available
Arsenic is a prominent environmental toxicant and carcinogen; however, its molecular mechanism of toxicity and carcinogenicity remains poorly understood. In this study, we performed microarray-based expression profiling on liver of zebrafish exposed to 15 parts/million (ppm) arsenic [As(V)] for 8-96 h to identify global transcriptional changes and biological networks involved in arsenic-induced adaptive responses in vivo. We found that there was an increase of transcriptional activity associated with metabolism, especially for biosyntheses, membrane transporter activities, cytoplasm, and endoplasmic reticulum in the 96 h of arsenic treatment, while transcriptional programs for proteins in catabolism, energy derivation, and stress response remained active throughout the arsenic treatment. Many differentially expressed genes encoding proteins involved in heat shock proteins, DNA damage/repair, antioxidant activity, hypoxia induction, iron homeostasis, arsenic metabolism, and ubiquitin-dependent protein degradation were identified, suggesting strongly that DNA and protein damage as a result of arsenic metabolism and oxidative stress caused major cellular injury. These findings were comparable with those reported in mammalian systems, suggesting that the zebrafish liver coupled with the available microarray technology present an excellent in vivo toxicogenomic model for investigating arsenic toxicity. We proposed an in vivo, acute arsenic-induced adaptive response model of the zebrafish liver illustrating the relevance of many transcriptional activities that provide both global and specific information of a coordinated adaptive response to arsenic in the liver.
Article
Full-text available
Lysosomal targeting is fundamental for the regulated disposal of ubiquitinated membrane proteins from the cell surface. To elucidate ubiquitin (Ub) configurations that are necessary and sufficient as multivesicular body (MVB)/lysosomal-sorting motifs, the intraendosomal destination and transport kinetics of model transmembrane cargo molecules bearing monoubiquitinated, multi-monoubiquitinated, or polyubiquitinated cytoplasmic tails were determined. Monomeric CD4 chimeras with K63-linked poly-Ub chains and tetrameric CD4-mono-Ub chimeras were rapidly targeted to the lysosome. In contrast, lysosomal delivery of CD4 chimeras exposing K48-linked Ub chains was delayed, whereas delivery of monoubiquitinated CD4 chimeras was undetectable. Similar difference was observed in the lysosomal targeting of mono- versus polyubiquitinated invariant chain and CD4 ubiquitinated by the MARCH (membrane-associated RING-CH) IV Ub ligase. Consistent with this, Hrs (hepatocyte growth factor regulated tyrosine kinase phosphorylated substrate), an endosomal sorting adaptor, binds preferentially to K63-Ub chain and negligibly to mono-Ub. These results highlight the plasticity of Ub as a sorting signal and its recognition by the endosomal sorting machinery, and together with previous data, suggest a regulatory role for assembly and disassembly of Ub chains of specific topology in lysosomal cargo sorting.
Article
Full-text available
Epidemiological studies have indicated that exposure of humans to inorganic arsenic in drinking water is associated with the occurrence of bladder cancer. The mechanisms by which arsenic induces this malignancy are still uncertain; however, arsenic metabolites are suspected to play a pivotal role. The aim of the present study was the investigation of uptake capabilities of human urothelial cells (UROtsa) compared with primary human hepatocytes (phH) as well as the intracellular distribution of the arsenic species. Additionally, we were interested in the cyto- and genotoxic potential (comet assay, radical generation) of the different arsenic compounds in these two cell types. Our results show that UROtsa cells accumulate higher amounts of the arsenic species than the phH. Differential centrifugation revealed that the arsenic compounds are preferentially distributed into nuclei and ribosomes. After 24-h exposure, arsenic is mainly found in the ribosomes of UROtsa cells and in the nuclei and mitochondria of phH. In contrast to the pentavalent arsenic species, the trivalent species induced a 4- to 5-fold increase of DNA damage in hepatocytes. Radical generation, measured by thiobarbituric acid reactive substances, was more pronounced in hepatocytes than in urothelial cells. In summary, the uptake of arsenic compounds appears to be highly dependent upon cell type and arsenic species. The nonmethylating urothelial cells accumulate higher amounts of arsenic species than the methylating hepatocytes. However, cyto- and genotoxic effects are more distinct in hepatocytes. Further studies are needed to define the implications of the observed accumulation in cellular organelles for the carcinogenic activity of arsenic.
Article
Full-text available
Agonist-stimulated β2-adrenergic receptor (β2AR) ubiquitination is a major factor that governs both lysosomal trafficking and degradation of internalized receptors, but the identity of the E3 ubiquitin ligase regulating this process was unknown. Among the various catalytically inactive E3 ubiquitin ligase mutants that we tested, a dominant negative Nedd4 specifically inhibited isoproterenol-induced ubiquitination and degradation of the β2AR in HEK-293 cells. Moreover, siRNA that down-regulates Nedd4 expression inhibited β2AR ubiquitination and lysosomal degradation, whereas siRNA targeting the closely related E3 ligases Nedd4-2 or AIP4 did not. Interestingly, β2AR as well as β-arrestin2, the endocytic and signaling adaptor for the β2AR, interact robustly with Nedd4 upon agonist stimulation. However, β2AR-Nedd4 interaction is ablated when β-arrestin2 expression is knocked down by siRNA transfection, implicating an essential E3 ubiquitin ligase adaptor role for β-arrestin2 in mediating β2AR ubiquitination. Notably, β-arrestin2 interacts with two different E3 ubiquitin ligases, namely, Mdm2 and Nedd4 to regulate distinct steps in β2AR trafficking. Collectively, our findings indicate that the degradative fate of the β2AR in the lysosomal compartments is dependent upon β-arrestin2-mediated recruitment of Nedd4 to the activated receptor and Nedd4-catalyzed ubiquitination.
Article
This review deals with environmental origin, occurrence, episodes, and impact on human health of arsenic. Arsenic, a metalloid occurs naturally, being the 20th most abundant element in the earth's crust, and is a component of more than 245 minerals. These are mostly ores containing sulfide, along with copper, nickel, lead, cobalt, or other metals. Arsenic and its compounds are mobile in the environment. Weathering of rocks converts arsenic sulfides to arsenic trioxide, which enters the arsenic cycle as dust or by dissolution in rain, rivers, or groundwater. So, groundwater contamination by arsenic is a serious threat to mankind all over the world. It can also enter food chain causing wide spread distribution throughout the plant and animal kingdoms. However, fish, fruits, and vegetables primarily contain organic arsenic, less than 10% of the arsenic in these foods exists in the inorganic form, although the arsenic content of many foods (i.e. milk and dairy products, beef and pork, poultry, and cereals) is mainly inorganic, typically 65-75%. A few recent studies report 85-95% inorganic arsenic in rice and vegetables, which suggest more studies for standardisation. Humans are exposed to this toxic arsenic primarily from air, food, and water. Thousands and thousands of people are suffering from the toxic effects of arsenicals in many countries all over the world due to natural groundwater contamination as well as industrial effluent and drainage problems. Arsenic, being a normal component of human body is transported by the blood to different organs in the body, mainly in the form of MMA after ingestion. It causes a variety of adverse health effects to humans after acute and chronic exposures such as dermal changes (pigmentation, hyperkeratoses, and ulceration), respiratory, pulmonary, cardiovascular, gastrointestinal, hematological, hepatic, renal, neurological, developmental, reproductive, immunologic, genotoxic, mutagenetic, and carcinogenic effects. Key research studies are needed for improving arsenic risk assessment at low exposure levels urgently among all the arsenic research groups.
Article
The presence of arsenic in marine samples was first reported over 100 years ago, and shortly thereafter it was shown that common seafood such as fish, crustaceans, and molluscs contained arsenic at exceedingly high concentrations. It was noted at the time that this seafood arsenic was probably present as an organically bound species because the concentrations were so high that if the arsenic had been present as an inorganic species it would certainly have been toxic to the humans consuming seafood. Investigations in the late 1970s identified the major form of seafood arsenic as arsenobetaine [(CH(3))(3)As(+)CH(2)COO(-)], a harmless organoarsenic compound which, following ingestion by humans, is rapidly excreted in the urine. Since that work, however, over 50 additional arsenic species have been identified in marine organisms, including many important food products. For most of these arsenic compounds, the human toxicology remains unknown. The current status of arsenic in seafood will be discussed in terms of the possible origin of these compounds and the implications of their presence in our foods.
Article
The major route of human exposure to arsenic is via ingestion. Seafoods contain large amounts of various arsenic compounds. Recently, people have been advised not to eat Hijiki seaweed (Hijikia fusiforme) in the UK because of its high content of inorganic arsenic (iAs). To clarify the risks of Hijiki ingestion, a 42-year-old male volunteer ingested 825 µg of iAs compounds contained in eight servings of commercial Hijiki food, after refraining from eating seafood for 3 months. In order to determine the distribution of arsenic species in his urine, arsenic compounds were analyzed using HPLC-ICP-MS. The maximum concentrations of arsenate (AsV), arsenite (AsIII), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) were found at 4, 6.5, 13 and 17.5 h after ingestion, respectively. Arsenobetaine concentration was very low, and almost constant throughout the observation period. A total of 28% of ingested arsenic was excreted in urine. The total amounts of AsV, AsIII, MMA and DMA excreted in urine over 50 h were 11.2, 31.8, 40.9 and 104.0 µg, respectively. After eating one serving of Hijiki, arsenic intake and urinary excretion were at levels similar to those in individuals affected by arsenic poisoning. Long-term ingestion of Hijiki might thus have the potential to cause arsenic poisoning. Copyright © 2006 John Wiley & Sons, Ltd.
Article
The growing importance of arsenic speciation analysis has led to the development of a wide range of high-performance liquid chromatographic based hyphenated techniques. During the present study a method was developed for the high-speed separation of several biologically and environmentally important arsenic compounds. The method is based on the use of an octadecyldimethylsilyl reversed-phase narrow-bore HPLC column. Separation of anionic arsenic species [arsenite (Aite), dimethylarsinic acid (DMAA), monomethylarsonic acid (MMAA), and arsenate (Aate)] can be achieved using a mobile phase containing 5 mM tetrabutylammonium hydroxide as the ion-pairing reagent, at pH 6.0, in less than 2 min, when employing a ¯ow rate of 0.7 ml min 21 . Adding 4-hydroxyphenylarsonic acid as the internal standard prolongs the total separation time by 30 s. On-line coupling with inductively coupled plasma mass spectrometry affords high sensitivity, as well as low limits of detection (low ppb or pg of arsenic). The in¯uence of mobile phase pH and ion-pairing reagent concentration on the separation ef®ciency was studied. A loss of resolution occurs with increasing ion-pairing reagent concentration; the optimum pH is between 6.0 and 6.2. The ion-pair reversed-phase narrow-bore HPLC-ICP-MS method was subsequently applied to the speciation of arsenic in wine and kelp samples. Aite at trace levels was found to be the only arsenic species present in several wines. Average spike recoveries for Aite, Aate, MMAA and DMAA were 95¡3, 94¡5, 98¡1 and 92¡1%, respectively, for all wines examined. The method was also used for the speciation of four arsenosugars and DMAA in a kelp powder extract.
Article
The dynamics of interactions between rat liver cytosolic proteins and arsenicals were examined in anin vitromethylation system that contained cytosol, glutathione,S-adenosylmethionine, and 1 μm[73As]arsenite. After incubation at 37°C for up to 90 min, low-molecular-weight components of the assay system (<10 kDa) were removed by ultrafiltration and cytosolic proteins were separated by size-exclusion chromatography on Sephacryl S-300 gel. Five73As-labeled protein peaks were found in chromatographic profiles. The estimated molecular masses of73As-labeled proteins eluting in the three earliest peaks were as follows:Vo, ≥1000 kDa; A, 135 kDa; and B, 38 kDa. Peak C eluted immediately before the total volume (VT) of the chromatographic column; peak D eluted after theVT.73As bound to proteins was released by CuCl treatment and speciated by thin-layer chromatography. Amounts and ratios of inorganic As, methyl As, and dimethyl As associated with cytosolic proteins depended upon the incubation interval. Inorganic As was present in all protein peaks. Methyl As was primarily associated with peaks A and C; dimethyl As was associated with peaks B and C. To examine the effect of valence on the binding of methylarsenicals to cytosolic proteins, trivalent or pentavalent14C-labeled methyl As or dimethyl As was incubated in anin vitrosystem designed to minimize the enzymatically catalyzed production of methylated arsenicals. Proteins in peaks A, B, and C bound preferentially trivalent methyl and dimethyl As. Peak D bound either trivalent or pentavalent methyl and dimethyl As. Protein-bound inorganic and methyl As were substrates for the production of dimethyl As in anin vitromethylation system, suggesting a role for protein-bound arsenicals in the biomethylation of this metalloid.
Article
Ubiquitin is a common demoninator in the targeting of substrates to all three major protein degradation pathways in mammalian cells: the proteasome, the lysosome, and the autophagosome. The factors that direct a substrate toward a particular route of degradation likely include ubiquitin chain length and linkage type, which may favor interaction with particular receptors or confer differential susceptibility to deubiquitinase activities associated with each pathway.
Article
While the metal(loid)s arsenic, bismuth, and selenium (probably also tellurium) have been shown to be enzymatically methylated in the human body, this has not yet been demonstrated for antimony, cadmium, germanium, indium, lead, mercury, thallium, and tin, although the latter elements can be biomethylated in the environment. Methylated metal(loid)s exhibit increased mobility, thus leading to a more efficient metal(loid) transport within the body and, in particular, opening chances for passing membrane barriers (blood-brain barrier, placental barrier). As a consequence human health may be affected. In this review, relevant data from the literature are compiled, and are discussed with respect to the evaluation of assumed and proven health effects caused by alkylated metal(loid) species.
Article
Arsenobetaine has always been referred to as a non-toxic but readily bioavailable compound and the available data would suggest that it is neither metabolised by nor accumulated in humans. Here this study investigates the urine of five volunteers on an arsenobetaine exclusive diet for twelve days and shows that arsenobetaine was consistently excreted by three of the five volunteers. From the expected elimination pattern of arsenobetaine in rodents, no significant amount of arsenobetaine should have been detectable after 5 days of the trial period. The arsenobetaine concentration found in the urine was constant after 5 days and varied between 0.2 and 12.2 microg As per L for three of the volunteers. Contrary to the established belief that arsenobetaine is neither accumulated nor generated by humans, the presented results would suggest that either accumulated arsenobetaine in the tissues is slowly released over time or that arsenobetaine is a human metabolite of dimethylarsinic acid or inorganic arsenic from the trial food, or both. Either possibility is intriguing and raises fundamental questions about human arsenic metabolism and the toxicological and environmental inertness of arsenobetaine.
Article
Exposure to high levels of arsenic can cause a wide range of health effects, including cancers of the bladder, lung, skin, and kidney. However, the mechanism(s) of action underlying these deleterious effects of arsenic remains unclear. Arsenic binding to cellular proteins is a possible mechanism of toxicity, and identifying such binding is analytically challenging because of the large concentration range and variety of proteins. We describe here an affinity selection technique, coupled with mass spectrometry, to select and identify specific arsenic-binding proteins from a large pool of cellular proteins. Controlled experiments using proteins either containing free cysteine(s) or having cysteine blocked showed that the arsenic affinity column specifically captured the proteins containing free cysteine(s) available to bind to arsenic. The technique was able to capture and identify trace amounts of bovine biliverdin reductase B present as a minor impurity in the commercial preparation of carbonic anhydrase II, demonstrating the ability to identify arsenic-binding proteins in the presence of a large excess of non-specific proteins. Application of the technique to the analysis of subcellular fractions of A549 human lung carcinoma cells identified 50 proteins in the nuclear fraction, and 24 proteins in the membrane/organelle fraction that could bind to arsenic, adding to the current list of only a few known arsenic-binding proteins.
Article
Glutathione (GSH; gamma-glutamylcysteinylglycine) is ubiquitous in mammalian and other living cells. It has several important functions, including protection against oxidative stress. It is synthesized from its constituent amino acids by the consecutive actions of gamma-glutamylcysteine synthetase and GSH synthetase. gamma-Glutamylcysteine synthetase activity is modulated by its light subunit and by feedback inhibition of the end product, GSH. Treatment with an inhibitor, buthionine sulfoximine (BSO), of gamma-glutamylcysteine synthetase leads to decreased cellular GSH levels, and its application can provide a useful experimental model of GSH deficiency. Cellular levels of GSH may be increased by supplying substrates and GSH delivery compounds. Increasing cellular GSH may be therapeutically useful.
Article
Biomethylation is the major human metabolic pathway for inorganic arsenic, and the speciation of arsenic metabolites is essential to a better understanding of arsenic metabolism and health effects. Here we describe a technique for the speciation of arsenic in human urine and demonstrate its application to the discovery of key arsenic metabolic intermediates, monomethylarsonous acid (MMAIII) and dimethylarsinous acid (DMAIII), in human urine. The study provides a direct evidence in support of the proposed arsenic methylation pathway in the human. The finding of MMAIII and DMAIII in human urine, along with recent studies showing the high toxicity of these arsenicals, suggests that the usual belief of arsenic detoxification by methylation needs to be reconsidered. The arsenic speciation technique is based on ion pair chromatographic separation of arsenic species on a 3-micron particle size column at 50 degrees C followed by hydride generation atomic fluorescence detection. Speciation of MMAIII, DMAIII, arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMAV), and dimethylarsinic acid (DMAV) in urine samples is complete in 6 min with detection limits of 0.5-2 micrograms/L. There is no need for any sample pretreatment. The capability of rapid analysis of trace levels of arsenic species, which resulted in the findings of the key metabolic intermediates, makes the technique useful for routine arsenic speciation analysis required for toxicological and epidemiological studies.
Article
Although arsenic can be poisonous, and chronic arsenic exposure from industrial or natural sources can cause serious toxicity, arsenic has been used therapeutically for more than 2,400 years. Thomas Fowler's potassium bicarbonate-based solution of arsenic trioxide (As(2)O(3)) was used empirically to treat a variety of disorders, and in 1878, was reported to reduce white blood cell counts in two normal individuals and one with "leucocythemia." Salvarsan, an organic arsenical for treating syphilis and trypanosomiasis, was developed in 1910 by Paul EHRLICH: In the 1930s, arsenic was reported to be effective in chronic myelogenous leukemia. After a decline in the use of arsenic during the mid-20th century, reports from China described a high proportion of hematologic responses in patients with acute promyelocytic leukemia (APL) who were treated with arsenic trioxide. Randomized clinical trials in the U.S. led to FDA approval of arsenic trioxide for relapsed or refractory APL in September 2000.
Article
Chronic arsenic exposure increases risk for the development of diabetes, vascular disease, and cancers of the skin, lung, kidney, and bladder. This study investigates the effects of arsenite [As(III)] on human urothelial cells (UROtsa). As(III) toxicity was determined by exposing confluent UROtsa cells to As(III) (0.5-200 microM). Depleting cellular glutathione levels with buthionine sulfoximine (BSO) potentiated the toxicity of As(III). Cell viability was assessed with the (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. UROtsa cell ability to biotransform As(III) was determined by dosing cells with environmentally relevant concentrations of As(III) followed by HPLC/ICP-MS analysis of cell media and lysate. Both pentavalent and trivalent monomethylated products were detected. Although cytotoxicity was observed at high doses of As(III) (approximately 100 microM) in UROtsa cells, perturbations of a variety of molecular processes occurred at much lower doses. Exposure to low-level As(III) (0.5-25 microM) causes an accumulation of ubiquitin (Ub)-conjugated proteins. This effect is enhanced when cellular glutathione levels have been reduced with BSO treatment. Because As(III) has many effects on UROtsa cells, a greater understanding of how As(III) is affecting cellular proteins in a target tissue will lead to a better understanding of the mechanism of toxicity and pathogenesis for low-level As(III).
Article
Inorganic arsenic is converted to methylated metabolites, and most is excreted in urine as dimethylarsinic acid in humans and animals. The present study was conducted to investigate the metabolism of arsenic and identify hepatic and renal metabolites of arsenic after an intravenous injection of arsenite (0.5 mg As/kg body weight) in rats. Similar levels of arsenic were found in the soluble (SUP) and nonsoluble sediment (SED) fractions of both organs after 1 h. More than 80% of the SUP arsenic was bound to high molecular weight (HMW) proteins in both organs. Arsenic bound to the HMW and SED proteins were oxidized with H(2)O(2) and released in the pentavalent forms (arsenate, monomethylarsonic, and dimethylarsinic acids). The relative ratios of the three arsenicals changed depending on organ, fraction (HMW and SED), and time. Since the arsenic metabolites/intermediates were liberated from proteins by oxidation with H(2)O(2) and recovered in the pentavalent forms, and only tri- but not pentavalent arsenicals were bound to proteins in vitro, it was deduced that arsenic metabolites bound to proteins during the successive methylation pathway are in the trivalent forms; that is, successive methylation reaction takes place with simultaneous reductive rather than stepwise oxidative methylation. Thus, on the basis of the present observations, it was proposed that inorganic arsenic was successively methylated reductively in the presence of glutathione, rather than a stepwise oxidative methylation, and pentavalent arsenicals (MMA(V) and DMA(V)) were present as end products of metabolism, rather than intermediates. We also discussed the in vitro formation of dimethylthioarsenicals after incubating dimethylarsinous acid with liver homogenate.
Article
The lysosomal compartment is the place for cellular degradation of endocytosed and autophagocytosed material and a center for normal turnover of organelles as well as most long-lived proteins. Lysosomes were long considered stable structures that broke and released their many hydrolytic enzymes only following necrotic cell death. It is now realized that lysosomes instead are quite vulnerable, although in a heterogeneous way. Their exposure to a number of events, such as oxidative stress, lysosomotropic detergents and aldhydes, as well as overexpression of the p53 protein, causes time-and-dose-dependent lysosomal rupture that is followed by apoptosis or necrosis. Partial lysosomal rupture has often been found to be an early upstream event in apoptosis, while necrosis results from fulminant lysosomal rupture. Consequently, factors influencing the stability of lysosomes, for instance their content of labile and redox-active iron, seem to be essential for the survival of cells.
Article
Cells from patients with t(15;17) acute promyelocytic leukemia (APL) express the fusion protein between the promyelocytic leukemia protein and retinoic acid receptor alpha (PML/RAR alpha). Patients with APL respond to differentiation therapy with all-trans-retinoic acid, which induces PML/RAR alpha degradation. When resistance to all-trans-retinoic acid develops, an effective treatment is arsenic trioxide (arsenite), which also induces this degradation. We investigated the mechanism of arsenite-induced PML/RAR alpha degradation. NB4-S1 APL cells were treated with clinically relevant concentrations of arsenite. Lysosomes were visualized with a lysosome-specific dye. Lysosomal protein esterase was measured by immunoblot analysis. Lysosomal cathepsin L was detected by immunogold labeling and transmission electron microscopy, and its activity was measured in cytosolic cellular fractions. In vitro degradation assays of PML/RAR alpha in cell lysates were performed with and without protease inhibitors and assessed by immunoblot analysis. Only nonparametric two-sided statistical analyses were used. The nonparametric Wilcoxon test was used for group comparison, and the nonlinear regression technique was used for analysis of dose-response relationship as a function of arsenite concentration. Arsenite treatment destabilized lysosomes in APL cells. Lysosomal proteases, including cathepsin L, were released from lysosomes 5 minutes to 6 hours after arsenite treatment. PML/RAR alpha was degraded by lysate from arsenite-treated APL cells, and the degradation was inhibited by protease inhibitors. At both 6 and 24 hours, substantially fewer arsenite-treated APL cells, than untreated cells, contained cathepsin L clusters, a reflection of cathepsin L delocalization. Cells with cathepsin L clusters decreased as a function of arsenite concentration at rates of -2.03% (95% confidence interval [CI] = -4.01 to -.045; P = .045) and -2.39% (95% CI = -4.54 to -.024; P = .029) in 6- and 24-hour treatment groups, respectively, per 1.0 microM increase in arsenite concentration. Statistically significantly higher cytosolic cathepsin L activity was detected in lysates of arsenite-treated APL cells than in control lysates. For example, the mean increase in cathepsin activity at 6 hours and 1.0 microM arsenite was 26.3% (95% CI = 3.3% to 33%; P < .001), compared with untreated cells. In APL cells, arsenite may cause rapid destabilization of lysosomes.
Article
Traditional Chinese medicines (TCMs) often contain significant levels of potentially toxic elements, including arsenic. Niu Huang Jie Du Pian pills were analyzed to determine the concentration, bioaccessibility (arsenic fraction soluble in the human gastrointestinal system) and chemical form (speciation) of arsenic. Arsenic excretion in urine (including speciation) and facial hair were studied after a one-time ingestion. The pills contained arsenic in the form of realgar, and although the total arsenic that was present in a single pill was high (28 mg), the low bioaccessibility of this form of arsenic predicted that only 4% of it was available for absorption into the bloodstream (1 mg of arsenic per pill). The species of arsenic that were solubilized were inorganic arsenate (As(V)) and arsenite (As(III)) but DMAA and MMAA were detected in urine. Two urinary arsenic excretion peaks were observed: an initial peak several (4-8) hours after ingestion corresponding to the excretion of predominantly As(III), and a larger peak at 14 h corresponding predominantly to DMAA and MMAA. No methylated As(III) species were observed. Facial hair analysis revealed that arsenic concentrations did not increase significantly as a result of the ingestion. Arsenic is incompletely soluble under human gastrointestinal conditions, and is metabolized from the inorganic to organic forms found in urine. Bioaccessible arsenic is comparable to the quantity excreted. Facial hair as a bio-indicator should be further tested.
Article
The tissue distribution and chemical forms of arsenic were compared in two animal species with different metabolic capacity and toxicity to arsenic. Hamsters and rats were given a single oral dose of arsenite (iAsIII) at 5.0 mg As/kg body weight, and then the concentrations of arsenic were determined; more than 75% of the dose accumulated in rat red blood cells (RBCs) in the form of dimethylarsinous acid (DMAIII), whereas less than 0.8% of the dose accumulated in hamster RBCs, mostly in the form of monomethylarsonous acid (MMAIII). Reflecting the low accumulation in RBCs, more than 63% of the dose was recovered in hamster urine within one week (7.8-fold higher than that in rat urine). The quantity of arsenic distributed in the liver and kidneys was significantly higher in hamsters than in rats, and arsenic in livers stayed much longer in hamsters than in rats. Arsenic accumulated more and was retained longer in the kidneys than in the livers in both animals, and in hamster kidneys, it accumulated at levels higher than those in rat kidneys in the form of MMAIII bound to proteins. In the first 24 h urine, dimethylmonothioarsinic (DMMTAV) and dimethyldithioarsinic (DMDTAV) acids were detected in hamsters, but only DMMTAV was found in rats, together with an unknown arsenic metabolite in both animals. The unknown urinary arsenic metabolite was identified as monomethylmonothioarsonic acid (MMMTAV; CH3As(=S)(OH)2). The present results indicate that in hamsters, arsenic does not accumulate in RBCs, and therefore, hamsters exhibit a more uniform tissue distribution and faster urinary excretion of arsenic than rats. In addition, arsenic was thiolated more in hamsters than in rats excreting mono and dimethylated thioarsenicals in urine.
Article
Autophagy is a process by which cytoplasmic components are sequestered in double membrane vesicles and degraded upon fusion with lysosomal compartments. In yeast, autophagy is activated in response to changes in the extracellular milieu. Depending upon the stimulus, autophagy can degrade cytoplasmic contents nonspecifically or can target the degradation of specific cellular components. Both of these have been adopted in higher eukaryotes and account for the expanding role of autophagy in various cellular processes, as well as contribute to the variation in cellular outcomes after induction of autophagy. In some cases, autophagy appears to be an adaptive response, whereas under other circumstances it is involved in cell death. In mammals, autophagy has been implicated in either the pathogenesis or response to a wide variety of diseases, including neurodegenerative disease, chronic bacterial and viral infections, atherosclerosis, and cancer. As the basic molecular pathways that regulate autophagy are elucidated, the relationship of autophagy to the pathogenesis of various disease states emerges.
Article
The bladder and skin are the primary targets for arsenic-induced carcinogenicity in mammals. Thioarsenicals dimethylmonothioarsinic (DMMTA(V)) and dimethyldithioarsinic (DMDTA(V)) acids are common urinary metabolites, the former being much more toxic than non-thiolated dimethylarsinic acid (DMA(V)) and comparable to dimethylarsinous acid (DMAIII) in epidermoid cells, suggesting that the metabolic production of thioarsenicals may be a risk factor for the development of cancer in these organs. To reveal their production sites (tissues/body fluids), we examined the uptake and transformation of the four dimethylated arsenicals by incubation with rat and human red blood cells (RBCs). Although DMA(V) and DMDTA(V) were not taken up by either type of RBCs, DMAIII and DMMTA(V) were taken up by both (more efficiently by rat ones), though DMMTA(V) was taken up slowly, and then the arsenic transformed into DMDTA(V) was excreted from both types of animal RBCs. On the other hand, although DMA(III) taken up rapidly by rat RBCs was retained in the RBCs, that taken up by human RBCs was immediately transformed into DMMTA(V) and then excreted into the incubation medium without being retained in the RBCs. In a separate experiment, arsenic remaining in primary rat hepatocytes after incubation with 1.5 microM DMAIII was recovered from the incubation medium in the forms of DMA(V) and DMMTA(V) in the presence of human RBCs, but not in the presence of rat RBCs (in which the arsenic was bound to hemoglobin). Thus, DMMTA(V) was detected in the medium only in the presence of human RBCs and increased with incubation time. It was proposed that arsenic is excreted from hepatocytes into the bloodstream in the form of DMAIII and then taken up by RBCs in humans, where it is transformed into DMMTA(V) and then excreted again into the bloodstream.
Article
To evaluate the contribution of an autophagic mechanism to the As2O3- induced death of human acute myeloid leukaemia cell line HL60 cells. The growth inhibition of HL60 cells induced by As2O3 was assessed with 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. The activation of autophagy was determined with monodansylcadaverine labeling and transmission electron microscope. The role of autophagy in the As2O3-induced death of HL60 cells was assessed using autophagic and lysosomal inhibitors. Immunofluorescence, flow cytometry, and Western blot analysis were used to study the apoptotic and autophagic mechanisms. After treatment with As2O3, the proliferation of HL60 cells was significantly inhibited and the formation of autophagosomes increased. The blockade of autophagy maturation with the autophagy-specific inhibitor 3-methyladenine (3-MA) or the lysosome-neutralizing agent NH4Cl 1 h before As2O3 potentiated the As2O3-induced death of HL60 cells. In contrast, 3-MA attenuated As2O3-induced death when administered 30 min after As2O3. 3-MA and NH4Cl also inhibited As2O3-induced upregulation of microtubule-associated protein 1 light chain 3, the protein required for autophagy in mammalian cells. Following As2O3, lysosomes were activated as indicated by increased levels of cathepsins B and L. The apoptotic response of HL60 cells to As2O3 was suggested by the collapse of mitochondrial membrane potential, release of cytochrome c from mitochondria, and the activation of caspase-3. Pretreatment with 3-MA prior to As2O3 amplified these apoptotic signals, while posttreatment with 3-MA 30 min after As2O3 attenuated the apoptotic pathways. Autophagy plays complex roles in the As2O3-induced death of HL60 cells; it inhibits As2O3-induced apoptosis in the initiation stage, but amplifies the As2O3-mediated apoptotic program if it is persistently activated.
  • Y Nakajima
  • Y Endo
  • Y Inoue
  • K Yamanaka
  • K Kato
  • H Wanibuchi
  • G Endo
Y. Nakajima, Y. Endo, Y. Inoue, K. Yamanaka, K. Kato, H. Wanibuchi and G. Endo, Appl. Organomet. Chem., 2006, 20, 557-564.
  • C Newcombe
  • A Raab
  • P N Williams
  • C Deacon
  • P I Haris
  • A A Meharg
  • J Feldmann
C. Newcombe, A. Raab, P. N. Williams, C. Deacon, P. I. Haris, A. A. Meharg and J. Feldmann, J. Environ. Monit., 2010, 12, 832-837.
  • B K Mandal
  • K T Suzuki
B. K. Mandal and K. T. Suzuki, Talanta, 2002, 58, 201-235.
  • A H Smith
  • C Hopenhaynrich
  • M N Bates
  • H M Goeden
  • I Hertzpicciotto
  • H M Duggan
  • R Wood
  • M J Kosnett
  • M T Smith
A. H. Smith, C. Hopenhaynrich, M. N. Bates, H. M. Goeden, I. Hertzpicciotto, H. M. Duggan, R. Wood, M. J. Kosnett and M. T. Smith, Environ. Health Perspect., 1992, 97, 259-267.
  • G Hanrahan
  • T K Fan
  • M Kantor
  • K Clark
  • S Cardenas
  • D W Guillaume
  • C S Khachikian
G. Hanrahan, T. K. Fan, M. Kantor, K. Clark, S. Cardenas, D. W. Guillaume and C. S. Khachikian, Rev. Sci. Instrum., 2009, 80, 104101/1.
  • K H Antmann
K. H. Antmann, Oncologist, 2001, 6, 1-2.
  • S Wangkarn
  • S A Pergantis
S. Wangkarn and S. A. Pergantis, J. Anal. At. Spectrom., 2000, 15, 627-633.
  • E Dopp
  • U Von Recklinghausen
  • R Diaz-Bone
  • A V Hirner
  • A W Rettenmeier
E. Dopp, U. von Recklinghausen, R. Diaz-Bone, A. V. Hirner and A. W. Rettenmeier, Environ. Res., 2010, 110, 435-442.
  • H Yan
  • N Wang
  • M Weinfeld
  • W R Cullen
  • X C Le
H. Yan, N. Wang, M. Weinfeld, W. R. Cullen and X. C. Le, Anal. Chem., 2009, 81, 4144-4152.
  • S H Lam
  • C L Winata
  • Y Tong
  • S Korzh
  • W S Lim
  • V Korzh
  • J Spitsbergen
  • S Mathavan
  • L D Miller
  • E T Liu
  • Z Gong
S. H. Lam, C. L. Winata, Y. Tong, S. Korzh, W. S. Lim, V. Korzh, J. Spitsbergen, S. Mathavan, L. D. Miller, E. T. Liu and Z. Gong, Physiol. Genomics, 2006, 27, 351-361.
  • C Marques
  • P Pereira
  • A Taylor
  • J N Liang
  • V N Reddy
  • L I Szweda
  • F Shang
C. Marques, P. Pereira, A. Taylor, J. N. Liang, V. N. Reddy, L. I. Szweda and F. Shang, Faseb. J., 2004, 18, 1424-1426.
  • I L Arancibia-C Arcamo
  • E Y Youen
  • J Muir
  • M J Lumb
  • G Michels
  • R S Saliba
  • T G Smart
  • Z Yan
  • J T Kittler
  • S J Moss
I. L. Arancibia-C arcamo, E. Y. Youen, J. Muir, M. J. Lumb, G. Michels, R. S. Saliba, T. G. Smart, Z. Yan, J. T. Kittler and S. J. Moss, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 17552-17557.