Influence of ambient air pollution on global DNA methylation in healthy adults: A seasonal follow-up

Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium. Electronic address: .
Environment international (Impact Factor: 5.56). 08/2013; 59C:418-424. DOI: 10.1016/j.envint.2013.07.007
Source: PubMed


DNA methylation changes are potential pathways of environmentally induced health effects. We investigated whether exposure to ambient concentrations of NO2, PM10, PM2.5 and O3 and traffic parameters were associated with global DNA methylation in blood of healthy adults.
48 non-smoking adults (25 males) with a median age of 39years were sampled in winter and summer. Global DNA methylation in whole blood (% 5-methyl-2'-deoxycytidine, %5mdC) was analyzed with HPLC. Exposure to air pollutants at the home address was assessed using interpolated NO2, PM10, PM2.5 and O3 concentrations for various exposure windows (60- to 1-day moving average exposures and yearly averages) and GIS-based traffic parameters. Associations between pollutants and %5mdC were tested with multiple mixed effects regression models.
Average %5mdC (SD) was 4.30 (0.08) in winter and 4.29 (0.08) in summer. Men had higher %5mdC compared to women both in winter (4.32 vs. 4.26) and summer (4.31 vs. 4.27). When winter and summer data were analyzed together, various NO2, PM10 and PM2.5 moving average exposures were associated with changes in %5mdC (95% CI) ranging from -0.04 (-0.09 to 0.00) to -0.14 (-0.28 to 0.00) per IQR increase in pollutant. NO2, PM10, PM2.5 and O3 moving average exposures were associated with decreased %5mdC (95% CI) varying between -0.01 (-0.03 to 0.00) and -0.17 (-0.27 to -0.06) per IQR increase in pollutant in summer but not in winter.
Decreased global DNA methylation in whole blood was associated with exposure to NO2, PM10, PM2.5 and O3 at the home addresses of non- adults. Most effects were observed for the 5- to 30-day moving average exposures.

Download full-text


Available from: Patrick De Boever
  • Source
    • "In this elderly population, decreased level of LINE-1 and Alu methylation was associated with both short-term (r7days) and long-term (4 1 month) exposures to PM 2.5 , black carbon and sulfate (SO 4 ) (Baccarelli et al., 2009; Madrigano et al., 2011). Consistently, another recent study with healthy adults reported associations between decreased global DNA methylation in whole blood and long-term (Z7days) exposure to ambient air pollution of PM 2.5, PM 10, ozone, and nitric oxide (De Prins et al., 2013). To our knowledge, only a few studies have explored the association between indoor air pollution and DNA methylation (Zhang et al., 2007; Lu et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation is a potential mechanism linking indoor air pollution to adverse health effects. Fetal and early-life environmental exposures have been associated with altered DNA methylation and play a critical role in progress of diseases in adulthood. We investigated whether exposure to indoor air pollution from solid fuels at different lifetime periods was associated with global DNA methylation and methylation at the IFG2/H19 imprinting control region (ICR) in a population-based sample of non-smoking women from Warsaw, Poland. Global methylation and IFG2/H19 ICR methylation were assessed in peripheral blood DNA from 42 non-smoking women with Luminometric Methylation Assay (LUMA) and quantitative pyrosequencing, respectively. Linear regression models were applied to estimate associations between indoor air pollution and DNA methylation in the blood. Compared to women without exposure, the levels of LUMA methylation for women who had ever exposed to both coal and wood were reduced 6.70% (95% CI: −13.36, −0.04). Using both coal and wood before age 20 was associated with 6.95% decreased LUMA methylation (95% CI: −13.79, −0.11). Further, the negative correlations were more significant with exposure to solid fuels for cooking before age 20. There were no clear associations between indoor solid fuels exposure before age 20 and through the lifetime and IFG2/H19 ICR methylation. Our study of non-smoking women supports the hypothesis that exposure to indoor air pollution from solid fuels, even early-life exposure, has the capacity to modify DNA methylation that can be detected in peripheral blood.
    Full-text · Article · Oct 2014 · Environmental Research
  • Source
    • "In addition , the sensitivity of peripheral blood DNA methylation profile after PM exposure suggests that blood DNA could serves as an appropriate biomarker to monitor effects of PM on the epigenome [ Baccarelli et al . , 2009 ; De Prins et al . , 2013 ; Kile et al . , 2013 ] . Tandem repeats are a distinct family of repetitive ele - ments that , although extensively present in the human genome and involved in cancer etiology , have not yet been studied in human investigations of environmental carcinogens . Relative to most regions of the genome , tan - dem repeats display a greater p"
    [Show abstract] [Hide abstract]
    ABSTRACT: There is compelling evidence that particulate matter (PM) increases lung cancer risk by triggering systemic inflammation, and leukocyte DNA hypomethylation. However, previous investigations focused on repeated element sequences from LINE-1 and Alu families. Tandem repeats, which display a greater propensity to mutate, and are often hypomethylated in cancer patients, have never been investigated in individuals exposed to PM. We measured methylation of three tandem repeats (SATα, NBL2, and D4Z4) by polymerase chain reaction-pyrosequencing on blood samples from truck drivers and office workers (60 per group) in Beijing, China. We used lightweight monitors to measure personal PM2.5 (PM with aerodynamic diameter ≤2.5 µm) and elemental carbon (a tracer of PM from vehicular traffic). Ambient PM10 data were obtained from air quality measuring stations. Overall, an interquartile increase in personal PM2.5 and ambient PM10 levels was associated with a significant covariate-adjusted decrease in SATα methylation (-1.35% 5-methyl cytosine [5mC], P = 0.01; and -1.33%5mC; P = 0.01, respectively). Effects from personal PM2.5 and ambient PM10 on SATα methylation were stronger in truck drivers (-2.34%5mC, P = 0.02; -1.44%5mC, P = 0.06) than office workers (-0.95%5mC, P = 0.26; -1.25%5mC, P = 0.12, respectively). Ambient PM10 was negatively correlated with NBL2 methylation in truck drivers (-1.38%5mC, P = 0.03) but not in office workers (1.04%5mC, P = 0.13). Our result suggests that PM exposure is associated with hypomethylation of selected tandem repeats. Measuring tandem-repeat hypomethylation in easy-to-obtain blood specimens might identify individuals with biological effects and potential cancer risk from PM exposure. Environ. Mol. Mutagen., 2014. © 2014 Wiley Periodicals, Inc.
    Full-text · Article · May 2014 · Environmental and Molecular Mutagenesis
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation is a key epigenetic modification which, in mammals, occurs mainly at CpG dinucleotides. Most of the CpG methylation in the genome is found in repetitive regions, rich in dormant transposons and endogenous retroviruses. Global DNA hypomethylation, which is a common feature of several conditions such as ageing and cancer, can cause the undesirable activation of dormant repeat elements and lead to altered expression of associated genes. DNA hypomethylation can cause genomic instability and may contribute to mutations and chromosomal recombinations. Various approaches for quantification of global DNA methylation are widely used. Several of these approaches measure a surrogate for total genomic methyl cytosine and there is uncertainty about the comparability of these methods. Here we have applied 3 different approaches (luminometric methylation assay, pyrosequencing of the methylation status of the Alu repeat element and of the LINE1 repeat element) for estimating global DNA methylation in the same human cell and tissue samples and have compared these estimates with the "gold standard" of methyl cytosine quantification by HPLC. Next to HPLC, the LINE1 approach shows the smallest variation between samples, followed by Alu. Pearson correlations and Bland-Altman analyses confirmed that global DNA methylation estimates obtained via the LINE1 approach corresponded best with HPLC-based measurements. Although, we did not find compelling evidence that the gold standard measurement by HPLC could be substituted with confidence by any of the surrogate assays for detecting global DNA methylation investigated here, the LINE1 assay seems likely to be an acceptable surrogate in many cases.
    Full-text · Article · Nov 2013 · PLoS ONE
Show more