Networks (or graphs) appear as dominant structures in diverse domains,
including sociology, biology, neuroscience and computer science. In most of the
aforementioned cases graphs are directed - in the sense that there is
directionality on the edges, making the semantics of the edges non symmetric.
An interesting feature that real networks present is the clustering or
community structure property, under which the graph topology is organized into
modules commonly called communities or clusters. The essence here is that nodes
of the same community are highly similar while on the contrary, nodes across
communities present low similarity. Revealing the underlying community
structure of directed complex networks has become a crucial and
interdisciplinary topic with a plethora of applications. Therefore, naturally
there is a recent wealth of research production in the area of mining directed
graphs - with clustering being the primary method and tool for community
detection and evaluation. The goal of this paper is to offer an in-depth review
of the methods presented so far for clustering directed networks along with the
relevant necessary methodological background and also related applications. The
survey commences by offering a concise review of the fundamental concepts and
methodological base on which graph clustering algorithms capitalize on. Then we
present the relevant work along two orthogonal classifications. The first one
is mostly concerned with the methodological principles of the clustering
algorithms, while the second one approaches the methods from the viewpoint
regarding the properties of a good cluster in a directed network. Further, we
present methods and metrics for evaluating graph clustering results,
demonstrate interesting application domains and provide promising future
research directions.