Conference PaperPDF Available

Ambidexterity and getting trapped in the suppression of exploration: A simulation model


Abstract and Figures

The benefits of strategically balancing exploitation and exploration are well documented in the literature. However, many firms tend to overemphasize exploitation efforts, even in the face of the strong need to step up their exploration activities. We draw on system dynamics modeling and a case study to address this gap in the literature, and develop a theoretical framework of ambidexterity as a capacitated delay process. This framework describes how the interplay between cognitive processes and motivational factors at the top management level severely limits the formation of ambidextrous capability. As such, this paper provides a micro-level theory of how individual and interactional processes at the managerial level inhibit the development of ambidextrous capability.
Content may be subject to copyright.
Ambidexterity and getting trapped in the suppression of
exploration: a simulation model
Bob Walrave, Kim E. van Oorschot, A. Georges L. Romme
Beta Working Paper series 314
BETA publicatie WP 314 (working
ISBN 978-90-386-2250-7
Eindhoven April 2010
- 1 -
Ambidexterity and getting trapped in the suppression of
exploration: a simulation model
Bob Walrave
Eindhoven University of Technology
School of Industrial Engineering
P.O. Box 513, 5600 MB Eindhoven
The Netherlands
+31 40 247 2444 / +31 40 246 8054
Kim E. van Oorschot
Eindhoven University of Technology
School of Industrial Engineering
P.O. Box 513, 5600 MB Eindhoven
The Netherlands
+31 40 247 2444 / +31 40 246 8054
A. Georges L. Romme
Eindhoven University of Technology
School of Industrial Engineering
P.O. Box 513, 5600 MB Eindhoven
The Netherlands
- 2 -
Ambidexterity and getting trapped in the suppression of
exploration: a simulation model
The benefits of strategically balancing exploitation and exploration are well documented in the
literature. However, many firms tend to overemphasize exploitation efforts, even in the face of
the strong need to step up their exploration activities. We draw on system dynamics modeling
and a case study to address this gap in the literature, and develop a theoretical framework of
ambidexterity as a capacitated delay process. This framework describes how the interplay
between cognitive processes and motivational factors at the top management level severely limits
the formation of ambidextrous capability. As such, this paper provides a micro-level theory of
how individual and interactional processes at the managerial level inhibit the development of
ambidextrous capability.
Key-words: ambidexterity, firm failure, micro-level approach, organizational capability, process
theory, system dynamics modeling.
- 3 -
1. Introduction
In the 1990s Motorola‟s management failed to respond to the transition from analog to digital
mobile telephony, although the rise of GSM technology had been evident since the year 1990.
The Motorola case is by no means an exception (e.g. Adams and Boike, 2004; Tripsas and
Gavetti, 2000). In today‟s economy, product life cycles are becoming increasingly shorter while
product complexity continues to increase. In many industries, this has resulted in a fierce
competitive landscape where business performance largely depends on the organizational ability
to change and innovate, combined with a talent for generating healthy returns on the investments
made (Damanpour et al., 2009; Leonard-Barton, 1992; Schumpeter, 1942; Simsek, 2009). This
implies that firms should create and keep a balance between exploration and exploitation
initiatives (March, 1991). In this respect, a balance between exploration and exploitation
activities that fit the market and competitive conditions positively influences financial
performance (He and Wong, 2004; Jansen et al., 2006; Uotila et al., 2009). Organizational
ambidexterity, therefore, is a key competitive advantage (He and Wong, 2004; March, 1991;
Raisch and Birkinshaw, 2008).
However, exploration and exploitation require fundamentally different and often
competing strategic acts, to be conducted at the same time (Simsek et al., 2009). Firms, therefore,
face a dilemma (Atuahene-Gima, 2005; He and Wong, 2004). On the one hand, they need to
adapt to environmental imperatives by means of exploitation efforts, particularly in the form of
incremental innovation. Although this is likely to bring short-term success, it tends to reduce the
flexibility of a firm to adjust to future environmental changes since it may lead to an
underinvestment in exploration (Atuahene-Gima, 2005). This compromises the long-term
viability of the firm. On the other hand, too much focus on the long-term future by investing
- 4 -
heavily in exploration (i.e. radical innovation efforts) will reduce the speed at which existing
competencies are improved and refined, and thus tends to undermine short-term business success
(He and Wong, 2004).
Firms often fail to achieve and maintain a balance between exploitation and exploration
that is viable in the long run. To understand this phenomenon, we need to focus on individual
behavior, notably that of top managers. Individuals constitute a central antecedent of
organizational capabilities, and as such play an important role in strategy development (e.g.
Argote, 1999; Cho and Hambrick, 2006; Felin and Foss, 2005). This paper, therefore, explores
how individual and interactional processes for example, between top management and the
firm‟s shareholders – may inhibit the development of ambidextrous capability.
Most studies investigating this type of failure have focused on the myopic tendencies of
top management that limit their ability to adapt their strategy in time (Hannan and Freeman,
1984; Porac and Thomas, 1990; Tripsas and Gavetti, 2000; Tushman et al., 2004). The key
argument in these studies is that strategists often do not „see‟ the upcoming exogenous change,
because managerial cognitive representations tend to constrain organizational behavior and
inhibit the ability to bring about strategic change in a timely fashion. However, changes in the
external environment are seldom so unexpected that they cannot be foreseen at all. Top managers
in these cases (cf. Motorola) are thus often aware of the shifting external context, which
contradicts the hypothesis that strategists often do not see change coming (cf. Helfat et al., 2007).
This suggests a theoretical perspective implying a more complex sequence of events and
behavioral (cognitive and motivational) patterns that inhibits the timely change toward an
improved balance between exploitation and exploration. In this respect, Helfat et al. (2007, p. 46)
argue more work needs to be done on how capabilities develop over time to understand “how
strategists can sometimes hinder (…) organizational change and the development of dynamic
- 5 -
capabilities in the organization.” In this paper we, therefore, explore why and how top managers
respond to environmental changes that evidently imply the need to step up exploration activities,
by enhancing their firm’s exploitation focus? As such, this paper responds to calls for researching
the micro-level foundations of institutions, organizational capabilities, and strategic change (e.g.
George et al. 2006; Felin and Foss, 2005).
To answer the above question, a process theory was developed by means of a simulation
model that was calibrated with data gathered during an in-depth case study. Longitudinal studies
of how organizational change occurs are rare (cf. Van de Ven, 2007). This is also the case for
process studies of ambidextrous capabilities. Simulation modeling is an important research tool to
address research questions that unfold over time and are non-linear in nature (e.g. Davis et al.,
2007; Romme, 2004; Romme, Zollo and Berends, 2010; Sterman, 2000). This makes simulation
modeling very suitable for the development of process theories.
The model developed in this paper will demonstrate how a firm can get trapped in a
vicious feedback loop, in which environmental disruptions that dramatically decrease
organizational performance (and thus constitute a crisis-like situation) are counteracted with
exploitation efforts, resulting in a further decline of organizational performance. More
specifically, the interplay between cognitive processes and motivational factors appears to distort
the perceived balance needed to successfully engage the new environmental imperatives. We coin
this process „the suppression mechanism‟. The main contribution of this paper to the
ambidexterity literature is the definition and codification of the suppression mechanism in a
(system dynamics) process theory.
The structure of this paper is as follows. The next section reviews the theoretical
background of the model. Subsequently, we outline the simulation model, which is then
calibrated and tested by means of a case study and historical analysis. The calibrated model
- 6 -
serves to provide a deeper understanding of the system dynamics in this case study. Finally, in
the last section we discuss the theoretical and practical implications of our findings and also
explore opportunities for future research.
2. Theoretical Background
Ambidexterity refers to the organizational ability to do two different things at the same time,
notably exploitation and exploration (Simsek, 2009). Exploitation refers to learning through
processes of incrementally improving existing knowledge, while exploration involves the pursuit
and acquisition of new knowledge (He and Wong, 2004). We assume that exploitation aims to
exploit present opportunities with incremental innovation, while exploration creates adaptability
by exploiting future opportunities with radical innovation (e.g. Benner and Tushman, 2003).
Innovation is defined here as the successful introduction of an invention (knowledge) to the
market (Roberts, 1988). This implies that, in order to become ambidextrous, top management
needs to create a particular balance between exploitation and exploration in the firm that serves to
create, extend, and modify its resource base in alignment with the market and competitive
environment it is exposed to (Helfat et al., 2007; Winter, 2000).
The literature has treated the relation between exploitation and exploration either as a zero
sum game or as two different orthogonal aspects (Gupta et al., 2006). This raises an important
issue: should exploitation and exploration be treated as two ends of a continuum, implying that
exploitation efforts will restrict the amount of exploration efforts possible (and vice versa); or can
exploitation and exploration better be understood as two different, orthogonal aspects of
organizational behavior where both are likely to be infinite? Authors in favor of the former
position argue that exploitation and exploration compete for the same scarce resources within the
firm, in the form of a zero-sum game (e.g. Madsen et al., 2002; March, 1991). Those in favor of
- 7 -
the second perspective refer to the context of learning: that is, in a learning setting the
opportunities for both exploratory and exploitative learning can be potentially unlimited (e.g.
Rothaermel, 2001).
As such, the assumption with regard to the relationship between exploitation and
exploration depends on the specific context studied. In this paper, we will focus on publically
held manufacturing-oriented firms that have been emphasizing exploitation and are highly
constrained in their resources (incl. financial reserves). Despite the fact that learning
opportunities might be widely available, these firms have to decide in which (exploitation and/or
exploration) opportunities they will actively invest. Top management therefore has to create a
strategic balance between exploiting their current portfolio of products and technologies and
exploring new opportunities outside the current portfolio. Since this balancing act needs to be
conducted with a limited set of resources, an increase in exploitation activities will decrease
resources available for exploration, and vice versa. We therefore assume that exploitation and
exploration initiatives are two ends of one continuum, constrained by a shared set of resources
(Gupta et al., 2006; March, 1991; Simsek et al., 2009).
Many empirical studies have observed that the alignment between the dynamics of the
environment and the balance between exploitation and exploration positively influences the
financial results of the firm (Gupta et al., 2006; He and Wong, 2004; Jansen et al., 2006; March,
1991; Tushman and O'Reilly III, 1999; Uotila et al., 2009). This key conclusion arises from
studies that assume exploration and exploitation are orthogonal aspects (e.g. Jansen et al., 2006)
as well as from studies assuming these are two ends of the same continuum (e.g. Uotila et al.,
2009). The available body of evidence implies that the higher the environmental moderator, the
greater the returns on exploration efforts and the smaller the returns on exploitation; and vice
versa (Jansen et al., 2006; Uotila et al., 2009). In this respect, high levels of environmental
- 8 -
instability are likely to increase the depreciation rate of existing products. In turn, this creates the
need to develop new products, and organizations pursuing exploration in these settings are more
likely to meet the needs arising from new competitive conditions and new emerging markets.
Environmental instability can have many sources and may, for instance, arise from
competence-destroying changes (Tushman and Anderson, 1986), periodic shifts in market
preferences (Christensen et al., 1998), or newly emerging dominant designs that change
competitive dimensions (Henderson and Clark, 1990). In that sense even the most stable
environment is bound to (somewhat) change. This implies that the optimal balance between
exploitation and exploration will shift due to environmental dynamism, and top management
therefore has to make decisions on how to adapt to the current environmental imperatives and
anticipate future dynamics (cf. Romme et al., 2010).
The success of a company therefore resides to a large extent in the capabilities of top
management to sense environmental changes and translate these into a balanced portfolio of
exploitation and exploration projects (Christensen and Bower, 1996; O'Reilly III and Tushman,
2008; Zollo and Winter, 2002). Many studies have confirmed the influence of top managers on
their firm‟s performance, reporting large and statistically significant effects of corporate decision
making on the strategic direction and overall profitability. Direct effects have been observed in
terms of the strategic allocation of resources (Adner and Helfat, 2003; Christensen and Bower,
1996; Osborne et al., 2001). Indirect effects have also been reported, for example, in the form of
signaling value (e.g. the announcement of a long-term plan leading to favorable stock market
reactions) (Higgins and Gulati, 2006; Westphal and Zajac, 1998). The impact of senior
executives on firm performance has also been called a „dynamic managerial capability‟ (Adner
and Helfat, 2003).
- 9 -
To formally capture ambidexterity as a dynamic managerial capability, we adopt ideas
from the seminal work of Lewin (1951). Lewin argued that the interaction of forces both within
and outside an individual determine his or her actual behavior. His „person-situation field theory‟
implies that, to understand behavior, one must understand the psychological field in which an
agent is operating. A psychological field is a configuration of forces and is determined by
cognition and motivation processes, which is a function of the „person in the situation‟ (Fiske and
Taylor, 2007). In this respect, cognition is a process tied to the person; it provides a personal
interpretation of the world, that is, a mental model; it determines what a person would do and in
which direction his/her behavior should go. Motivation is a process related to the environment;
this process serves to predict whether the behavior, which would follow from individual
cognition, will occur at all and if it does, to what degree. Ever since the work of Lewin (1951),
social psychologists have been considering the situation as well as the person as critical for
predicting behavior (e.g. Fiske and Taylor, 2007). In that sense, strategic decisions are
determined by both top managements‟ cognitive structures and processes and their motivation
when labeling and making sense of the environment (e.g. Daft and Weick, 1984; Cho and
Hambrick, 2006). For example, top managers might sense the need to change the balance
between exploitation and exploration, but may be constrained by shareholder pressure and the
financial performance perceived to be acceptable to most shareholders (cf. Burgelman et al.,
2004). The environment and person are thus interdependent.
From a cognitive perspective, top management acts on a shared mental model (Porac and
Thomas, 1990; Sengupta et al., 2008). In general, a mental model constitutes simplified
representations of the world that facilitate the processing of perceived information and serve as
the basis for top management to ground decision-making (Porac and Thomas, 1990; Tripsas and
Gavetti, 2000; Winter, 2000). We adopt the definition of a mental model developed by Doyle and
- 10 -
Ford (1998, p. 17) on the basis of a comprehensive literature review in the research domains of
psychology, cognitive psychology, cognitive science, and system dynamics: “a mental model of a
dynamic system is a relatively enduring and accessible, but limited, internal conceptual
representation of an external system whose structure maintains the perceived structure of that
Formally modeling a mental model implies creating a „cognitive map‟, an external
representation of a mental model (Doyle and Ford, 1998). The cognitive map captures a
conceptual representation of the mental model, the structure that stores information. Following
the definition given earlier, cognitive maps should depict a structure of how the knowledge is
organized and inter-connected within the mental model. Given the sheer complexity of the human
mind and brain, this is simply not feasible. However, it has been argued that a limited cognitive
map, which can be as small as two variables and two causal relationships, provides a sufficient
means of capturing the structure of a mental model concerning a specific external system (e.g.
how to balance exploitation-exploration investments in view of certain changes in the
environment) (Doyle and Ford, 1998).
An important limitation to the cognitive process arises from organizational inertia
(Biyalogorsky et al., 2006; Hannan and Freeman, 1984). Inertia develops as a result of historical
experience and limits the extent to which the cognitive map of top management can change
(Tripsas and Gavetti, 2000). In this respect, managers publicly committed to a course of action
tend to remain faithful to it even when new information implies the need to take action
(Biyalogorsky et al., 2006; Schmidt and Calantone, 2002). This type of inertia thus influences the
speed at which top management can respond and adjust to environmental dynamism and
opportunities and therefore compromises the chances of success (Hannan and Freeman, 1984;
Tripsas and Gavetti, 2000).
- 11 -
Regarding motivational processes, we argue that the owners of the firm constitute the
main motivational factor in publicly owned manufacturing firms. Top managers of publicly held
firms do typically not own a major part of the firm‟s equity (if any at all). Walsh and Seward
(1990) argue most firm owners such as institutional and private investors diversify their
holdings across a variety of firms in order to prevent financial losses in case a particular firm
fails. Because the owners have little interest in managing the firm on a day to day basis, they hire
top managers (executives) to direct and coordinate activities within the firm. Berle and Means
(1932) observed, already a long time ago, that owners (who are not involved in managing the
firm) have a primary interest in earning a maximum profit with a reasonable degree of risk. When
top management fails to achieve acceptable financial returns, this will thus result in pressure from
the owners on top management to generate short-term financial results (Judge and Zeithaml,
1992). On the contrary, when owners perceive the financial performance to be adequate, top
management will have the discretion to exploit as well as explore. In that sense, owners are
probably the most powerful external force affecting the firms‟ strategy (cf. Chaganti and
Damanpour, 1991).
Helfat et al. (2007) distinguish between a firm‟s technical and evolutionary capability, or
fitness, to anticipate and respond to changing market, competitive and other external conditions.
Given the research question outlined in the previous section, we will assume that the firm in our
model is „technically fit‟ (cf. Helfat et al., 2007), and thus able to develop the technologies and
products needed in the markets it wishes to serve. This assumption is not unreasonable in view of
the findings of Christensen and Bower (1996), who observed that large established firms were
highly successful at developing technologies of every sort. We will therefore focus on the
„evolutionary fitness‟ of the incumbent firm (Helfat et al., 2007; Winter, 2000). This implies a
particular capability can only be assessed meaningfully in relation to a particular competitive
- 12 -
context and point in time. For example, in the 1990s the value of Motorola‟s business proposition
(i.e. focus on analog telephony) shrunk, as digital mobile telephony gradually became the new
standard. Interestingly, this had little to do with its technical fitness: Motorola was the first firm
in the world that introduced a working prototype of the digital cellular system using the GSM
standard (in 1991). Motorola thus proved technically fit but, because its top management
apparently did not have the capability to effectively manage the transition, it lacked evolutionary
fitness. In this respect, Motorola did not posses organizational ambidexterity.
3. Model Description and Calibration
We draw on system dynamics modeling to build and simulate a model of the causes and
consequences of the suppression mechanism. System dynamics (SD) models particularly serve to
investigate multiple interacting processes, time delays, and other nonlinear effects (e.g. Davis et
al., 2007; Oliva and Sterman, 2001; Van Oorschot et al., 2010; Repenning, 2001; Romme, 2004;
Rudolph and Repenning, 2002). SD is therefore instrumental in understanding processes that are
characterized by dynamic complexity and unfold over time (Sterman, 2000). As such, this makes
system dynamics very appropriate for the development of a process theory (Repenning and
Sterman, 2002; Rudolph and Repenning, 2002). Moreover, system dynamics has been
successfully applied to corporate strategy issues before (Risch et al., 1995; Sterman, 2000). The
model in this paper is characterized by a so-called capacitated delay structure (Sterman, 2000).
This type of structure arises when the impact of a set of related stocks (e.g. exploration and
exploitation) depends on the level of flows in and out of these stocks and in turn each of these
flows are influenced and constrained by external conditions as well as the levels of multiple
- 13 -
In this section we present the most important equations of the model. A full description of
the model, including all equations and settings (and sensitivity of the settings), is given in a
separate document. The main ingredients of system dynamic models are stocks and flows. In the
diagramming notation, flow variables are depicted as pipes with valves. Stocks, represented by
rectangles, denote a particular level of a variable (e.g. investment in exploitation). The clouds
represent infinite sources or outcomes of particular flows that are beyond the scope of the model.
Figure 1 provides a stylized overview of the model.
The model in Figure 1 captures the essence of the suppression mechanism in three
feedback loops. First, the reinforcing „Stick to exploitation‟ loop denotes the situation in which
top management does not perceive a need to explore. Investments in exploitation in combination
with a stable environment (and hence positive financial returns) decrease the need to explore and
therefore no investments will be made in exploration. In an unstable environment, however,
exclusively investing in exploitation will lead to an increasing misalignment with the
environment, and hence an increasing need to explore. This cognitive feedback loop thus shapes
top management‟s mental model.
Second, the balancing loop „Limits to change‟ represents the potentially limiting
motivational process. This loop determines to what extent the cognitive need to explore will
result in investments in exploration activities. Shareholders are mainly driven by financial returns
(see previous section), and this loop therefore influences the level of investment in exploration
that the shareholders would allow given the perceived trend in the operational result. A positive
trend creates discretional space for both exploitation and exploration, while a negative trend will
increase the pressure to exploit.
- 14 -
The third loop „Attempt to explore‟ is reinforcing in nature and involves the motivation
for and effects of investments in exploration. After a particular time delay, investments in
exploration will pay off, resulting in increasing operational results. This tends to reduce the
external pressure to exploit, making a higher level of investments in exploration possible.
Capabilities are often a matter of a degree (Winter, 2000), and can therefore be modeled
as continuous variables. In our model, the balance between exploration and exploitation
(comprising organizational ambidexterity) is determined by the distribution of the available
resources (AR) over the two ends. Following our assumption described in the previous section,
the amount of resources available is finite: it is calculated as a certain percentage of the operating
result. The percentage of the AR invested in exploration is captured by the variable „Resource
investment in exploration‟ (RIE). The stock „Investment in exploitation‟ (Inv_Exploit) refers to
the amount of resources invested in exploitation, that is, incremental improvements. On the other
end of the continuum, the stock „Investment in exploration‟ (Inv_Explore) denotes the level of
resources allocated to exploration, that is, radical innovation. Recent studies have shown that
implementing new innovation strategies and thus routines at the business unit level takes
considerable time and effort (e.g. Durmusoglu et al., 2008). The desired resource adjustment is
therefore subject to an adjustment time (AT). The AT is longer for exploration, since it requires
more radical changes of the routines. This implies the following equations:
Change in investment exploration:
(1) d (Inv_Explore) / dt = (RIE * AR Inv_Explore) / AT_Explore
Change in investment exploitation:
(2) d (Inv_Exploit) / dt = (1 RIE) * AR - Inv_Exploit)) / AT_Exploit
- 15 -
The exogenous variable „Environmental stability‟ represents the level of volatility in the
market. As outlined in the former section, the alignment between the environment and the
relative investments in exploitation and exploration influence the financial results, and thus the
operating result of the firm. (This reflects our assumption regarding evolutionary fitness.) This
sequence of events takes place with a certain delay because initial investments have to be
transformed into (money generating) innovation. This delay is smaller for returns related to
exploitation than it is for exploration processes since the latter requires significantly more
resources to generate market success. Nevertheless, investments in exploration, when successful,
yield a higher return on investment (Burgelman et al., 2004).
The alignment between the environment and the relative investments is also the basis for
both the reinforcing „Stick to exploitation‟ and the balancing „Limits to change‟ loop. With
regard to the „Stick to exploitation‟ loop, investments in exploitation in an increasingly dynamic
environment will undermine the „Alignment with environment‟, triggering managerial action –
denoted in the variable „Need to explore‟ (NE). This variable constitutes the cognitive aspect of
the behavior of top management. In general, perceptions tend to adjust to new circumstances with
a certain delay, which can be modeled in terms of the behavior of a first-order adaptive system
(Sterman, 2000). Not only the perception of the environment is subject to such a delay;
managerial cognition (NE) also requires a particular time to adjust mental models, due to inertial
With respect to the latter, the perceived operating result determines the amount of
pressure from stakeholders to generate short-term financial results. (The operating result is a
function of the combined returns of both exploitation and exploration investments minus the
operating costs.) Stakeholders also perceive the operating results with a certain delay, implying
the use of a first-order adaptive system regarding the trend (derivative) of the operating result.
- 16 -
This is captured by the variable „External pressure to exploit‟ (EP). This variable constitutes the
motivational aspect of the behavior of top management.
The subsequent interaction between cognition and motivation determines the value of RIE
(and reflects top managements behavior regarding the development of organizational
ambidexterity). This variable can range from 0 to 1. Because this variable depends on both
motivation and cognition, it is calculated by multiplying top management‟s desired and the
stakeholder‟s allowed investment in exploration activities. In that sense RIE can be called the
„cognition-motivation interaction‟. The result of the cognitive process is an actual investment
level in exploration as well as in exploitation.
(3) RIE = NE * (1 EP)
Calibration of the system: Case study
In order to test and build confidence in the model, we calibrated it with data obtained during a
case study. The research site is a large Dutch multi-business firm that manufactures and sells a
diverse range of textile related products. This firm involves six business units that are closely
monitored and controlled by the executive board of the firm. The company achieved substantial
growth until 2007 by pursuing an exploitation strategy for an extended period of time under the
lead of the two-headed executive board. In recent years competitive dynamics have been growing
and, in order to remain competitive, the firm restructured. In an attempt to realize new growth,
the executive board changed the firm‟s strategy toward innovation and entrepreneurship. At the
same time, however, sales were decreasing and combined with the restructuring costs,
significantly negative (quarterly) operating results were obtained in early 2008 and the stock-
listed firm declined in value by around 50 percent. The subsequent pressure for short-term
improvements in financial results resulted in the abandonment of the new growth strategy by the
- 17 -
end of 2008. In the same period, the value of the firm on the stock exchange continued to decline
rapidly until it reached the lowest value ever, a reduction of more than 96 percent within two
years. Undoubtedly, the global crisis in the financial sector, which had a dramatic impact on the
industrial sector, reinforced the breakdown of the firm‟s stock market value. In the midst of this
turbulence, the board of directors appointed a new CFO in the beginning of 2009 to enforce and
facilitate a strategy with an enhanced focus on exploitation. The new strategic direction as of
2009 was announced in an official press release: „Under the current economic circumstances, [we
have] decided not to pursue the growth strategy as set earlier. The company's management will
concentrate on recovery of the financial position.‟
The data collected in this case study include time series for key variables (e.g. data on net
income in annual reports) over the period 1994-2008 and interviews with top managers within the
firm and staff within the different business units. These data were used to estimate key
parameters and relationships.
The cognitive balance between exploitation and exploration (NE) was established by
means of content analysis of the annual reports (cf. Uotila et al., 2009). This served to estimate
the level of exploitation and exploration efforts by this firm over an extended period of time. The
operational definition of these two concepts in the content analysis was based on March‟s (1991)
original definition of the two terms. That is, exploration was captured by keywords as: search,
variation, risk taking, experimentation, play, flexibility, discovery, innovation; and exploitation
is operationalized as: “refinement, choice, production, efficiency, selection, implementation,
execution”. Several additional keywords were added for exploitation after studying the annual
reports, namely: “cost and process”. The value for the variable „Need to explore‟ was
subsequently calculated as the total number of matched keywords for exploration divided by the
total number of matched keywords for both exploitation and exploration (per year).
- 18 -
Subsequently, the central moving average was calculated over three years. As such, we sample
one point in the past (t 52) and one in the future (t + 52), plus of course the current time. This
approach allows for capturing the structural trend in cognitive development of the top
management team, rather than the mere state of NE at the end of each year. The biggest threat to
the validity for this type of analysis arises from the accuracy of the vocabulary employed. In this
respect, Uotila et al. (2009) statistically validated that the vocabularies proposed by March (1991)
accurately differentiate between exploitation and exploration.
The investigated firm at large is sensitive to changes in the world economy, rather than to
sectoral dynamics. In this respect, this multi-business firm includes divisions that produce fast-
moving consumer products as well as divisions that produce industrial B2B products (e.g.
technical textiles for OEMs); as such, sectoral dynamics other than the dynamics of the world
economy tend to average out at the corporate level. Therefore, the Standard & Poor (S&P) 500
index was used as a proxy for environmental stability. The Standard & Poor (S&P) 500 index is a
market-value weighted index of 500 U.S. based firms and is widely considered to effectively
represent the state of the dynamic global economy. The S&P 500 index for the period 1994-2008
was scaled and adapted to fit the corresponding variable in our simulation model a continuous
variable ranging from 0 (extremely instable) till 60 (very stable). Interestingly, the resulting time
series for „Environmental stability‟ includes two major crises: 9/11 and the more recent financial
crisis. Figure 2 gives a graphical representation of the data for environmental stability used in the
Subsequently, we ran the simulation model to produce a (simulated) operating result and a
(simulated) need to explore, with the environmental stability as primary input. The simulated
- 19 -
operating result can thus be compared to the real operating results (corrected for the inflation
rate). Figure 3 denotes the result of this calibration exercise for the operating result. We achieved
a R
of 0.7169 for the correlation between the real and simulated operating result, which can be
considered a good fit. Figure 4 gives the calibration results for the need to explore. Here, a R
was achieved of 0.7288, which can also be considered a good fit.
Another indication of model fit (by observing the source of error) is Theil‟s Inequality
statistic, which gives a decomposition of the error by dividing the mean square error into the
unequal means (bias), unequal variances, and imperfect correlation (Sterman, 2000). This statistic
helps in localizing the source of error (e.g. poor model fit versus random noise in the data). In this
respect, low bias and variance fractions combined with a high unequal co-variation indicates that
the error is unsystematic if phasing is unimportant (Sterman, 2000). The calibrated NE variable
contains more unequal variation than unequal covariation. Combined with the low bias value,
however, this indicates that the variable has the same mean and trend but differs from data point
by point (Sterman, 2000). As such, it will have little influence on the theory developed. This
suggests that the model settings are correct and the total error is mainly due to random variation
4. From process theory to case narrative
The calibrated base model of the process theory outlined in Figure 1 now serves to uncover the
actual conditions and consequences of the suppression mechanism in our case study. That is, the
calibrated model is used in this section to identify the generative mechanisms and temporal
- 20 -
patterns in this case. Our case study implies that five major time periods (demarcated by t = A, B,
C, D, and E) can be distinguished in how the suppression mechanism evolves: see Figure 5A, B,
and C for an overview. In the remainder of this section, we provide a case narrative structured in
these five periods.
Initially (t < A), an alignment exists between the firm‟s investment in exploitation and the
environment resulting in positive financial returns. In this setting, the „Stick to exploitation‟
feedback loop is dominant (see Figure 1). Hence, hardly any attempts to explore are undertaken
(relative investment in exploitation remains 100%, see Figure 5C). This feedback loop causes
successful companies to „wisely stick to what works well‟, (Tushman et al., 2004, p. 586). The
executive board describes this behavior also in the 1998 annual report as the cornerstone of their
strategy: „The first matter of importance concerning the expansion of our business is a healthy
autonomous growth and cost control. This will increase the cost-effectiveness of our current
activities.‟ This behavior can be explained in terms of a mental model that is shaped on the basis
of prior experience (Doyle and Ford, 1998). Interestingly, during this period of increasing
operating results (see Figure 5A), the perceived pressure from stakeholders to exploit is
decreasing (Figure 5B) and more exploration initiatives would be supported. In that sense, the
environment would very likely accept change, but the firm‟s top management fails to initiate it
(as a result of lack of cognition, see Figure 5B).
As a result of the environment becoming more and more unstable (A < t < B), the
exclusive focus on exploitation becomes increasingly suboptimal. The need to explore therefore
grows. The following excerpt from the annual report of 2001 illustrates the increased awareness:
„A healthy, autonomous growth is being sought in the existing (core)-activities where product
- 21 -
innovation will take place continuously.‟ Because financial performance continues to grow, the
pressure to exploit remains relatively low. For that reason, some level of investment in
exploration would in principle be allowed by the stakeholders. However, during the time delay
needed to significantly adjust top management‟s mental model (this slow increase in awareness is
clearly illustrated in Figure 4) and during the time (delay) needed to effectively start exploring,
the financial performance of the firm starts to decline as a result of environmental dynamics. This
subsequently increases the pressure from the owners, which redirects the business once more
toward a short-term orientation on financial performance. The board of directors stated in both
2002 and 2003: „[…] as a result of restructuring measures, cost savings and new acquisitions, the
outlook for the future is positive.‟ As such, top management is increasingly getting aware of the
need to explore, but the firm‟s environment starts to severely limit the amount of change possible.
In 2004, the strategy was directed to one that advocated the constant search for ways to become
more cost-efficient, to work more effectively, and optimize the management of current
An enhanced investment in exploitation efforts generally does not come without (some)
short-term results, as is the case here (B < t < C). Although exploration efforts have the potential
of leading to superior performance, the resulting (initial generation of) new products generally
underperform at the moment of their market introduction (Burgelman et al., 2004). In addition,
even if the new product is superior at the moment of market introduction, its performance
increase tends to start slow as technological progress has been shown to follow an S-curve
(Burgelman et al., 2004). This implies that „old‟ technologies, products and routines may
(temporarily) outperform the new. The declining trend in financial performance therefore tends to
come to a halt as a result of the increased focus on exploitation. The executive board wrote in
their annual report over 2007: „The results achieved during the year under review give good
- 22 -
reason for the group as a whole to be pleased with the way the transformation process has gone.‟
If the expected comeback does not occur at all, the firm is likely to leap to t > D.
Subsequently, the situation arises where there is both substantial awareness of the need to
explore and a decreasing pressure to exploit; after all, financial performance is increasing
somewhat (C < t < D). As one of the executives said during a meeting in which the status of
several innovation projects was discussed (early 2008): „We say product innovation is important,
so we better do something with it‟. Moreover, later in the meeting he stated: „[We] can and want
to facilitate innovation initiatives with money, FTE‟s and commitment.‟ Since these new
exploration efforts require capabilities that are new to the firm, it is very likely that early trials
will have unsatisfactory results (cf. Winter, 2000). The new activities have to cross the
boundaries of organizational units that need to adopt and implement the new strategy, which
tends to be a cumbersome process (Durmusoglu et al., 2008). This was also the case for this firm,
as of the business unit managers observed halfway 2008: „Compared with [our] meeting in
January [2008], little progress has been made given the fact that support (money) has been
offered by the board. Do we recognize this? Is it organization? People? Priorities?‟ However, as
the operating result turns negative, the commitment to exploration activities drops and the
pressure to (exclusively) exploit grows.
From here on (t > D), top management is aware of the need to explore, but due to strong
pressures from shareholders to improve the operating result as soon as possible, the motivation
and incentive to invest in exploration breaks down. The firm is now entirely locked into the
suppression mechanism, and responds to the instable environment with more exploitation efforts;
thereby further decreasing its financial performance (the „Limits to change‟ loop in Figure 1 is
now dominant). As stated by the board of directors in the beginning of 2009: „Under the current
economic circumstances, [we have] decided not to pursue the growth strategy as set earlier. The
- 23 -
company's management will concentrate on recovery of the financial position.‟ After a certain
amount of time (t > E) this situation is likely to result in a radical turnaround (possibly as part of
an acquisition by another firm) or even bankruptcy. In the summer of 2009, the board of directors
replaced the CEO; the new CEO has a track record in financial control and turnaround
management. At the time of writing the current version of this paper (last quarter of 2009), the
incumbent firm was thus going through a major turnaround.
5. Discussion and Conclusion
This paper has explored why and how managers of firms with an established focus on
exploitation activities fail to develop an ambidextrous capability, even when the market and
competitive conditions are this. We studied key impediments to successful ambidexterity, by
adopting a micro-level focus on how individual and interactional processes impact or hinder the
development of ambidexterity. More specifically, the interplay of cognition and motivation in the
context of the exploitation-exploration dilemma was modeled in a system dynamics model. The
model developed in this paper incorporates the main positive and negative feedback loops with
regard to the managerial decision on whether to invest in exploitation and/or exploration.
This paper contributes to the ambidexterity literature by identifying and modeling the
suppression mechanism. The current literature on ambidexterity tends to adopt a macro-level
perspective (e.g. He and Wong, 2004; Raisch and Birkinshaw, 2008) to explain the causal links
between exploration/exploitation and firm performance. The model developed in this paper
provides a process theory of the micro-level origins of (the failure to develop) ambidexterity at
the level of top management. Our results suggest that firms can get seriously trapped in a
reinforcing loop, in which top management counteracts environmental disruptions by mere
incremental improvements of the current portfolio of routines, technologies and products, which
- 24 -
further decreases firm performance. In this respect, the interplay between cognitive processes and
motivational factors over time may severely distort top management‟s capability to successfully
align the organization to a changing environment, particularly by suppressing (investments in)
exploration. Our findings also imply that external economic shocks, like the recent financial
crisis, can have long-term effects on firms which go far beyond the initial shock.
While studies investigating the effect of ambidexterity have traditionally been cross-
sectional (e.g. Jansen et al., 2006; Uotila et al., 2009), we argue that a longitudinal process-
oriented approach might create a more complete understanding of the dynamic interaction at the
top management level that causes firms to get trapped in the suppression mechanism.
Longitudinal studies of how organizational change occurs are rare. Our study contributes to the
ambidexterity literature by adopting a systems thinking and modeling approach that focuses on
the micro-level origins of ambidextrous capability. The process theory of change developed in
this paper serves to facilitate an understanding of the sequence of (seemingly ad hoc) events
leading to the suppression of exploration activities, even when the latter are critical to the future
viability of the firm.
With respect to the above, our findings also contribute to an understanding of the
importance of sustained investments in both exploitation and exploration. Exploration has been
considered to be less important in low-tech industries than in high-tech environments (cf. Uotila
et al., 2009). Although the financial returns on investments in exploration (e.g. new product
development) might indeed be smaller in low-tech environments, the consequences of getting
trapped in the suppression mechanism are nonetheless severe. Furthermore, during long periods
of incremental improvements (cf. exploitation), top management generally becomes less
receptive to environmental changes. This makes these firms more prone to getting trapped in the
suppression mechanism. In this respect, aligning a balanced portfolio of exploration and
- 25 -
exploitation efforts to the level of environmental dynamism is important for low-tech as well as
high-tech industries.
Our findings also have important managerial implications. The suppression mechanism
can be observed in many enterprises that favor incremental improvements over exploring new
horizons, products and processes (Helfat et al., 2007; Teece et al., 1997). By understanding the
generative processes constituting the suppression mechanism, management can attempt to avoid
getting trapped. Moreover, top managers and owners of the incumbent firms should tolerate (a
minimum number of) early investments in exploration and possess the stamina to carry these
efforts through. As such, it is paramount that the (ambidexterity) strategies and interests of top
management and external stakeholders are carefully aligned.
The use of a dynamic simulation model inherently limits the research, as the biases of the
modelers might be included in the model. That is why simulations should be used to elaborate on
emerging theories by deductive logic and empirical evidence, and subsequently used for other
empirical studies (Davis et al., 2007). As such, the process theory presented in this paper should
be subjected to further empirical analysis. We therefore hope this investigation will motivate
other researchers to study how ambidextrous firms can be created.
Several interesting avenues for future research can be pointed out. It is well known that
early investments in exploration may prevent firms from getting trapped in the suppression
mechanism. However, little is known on how to escape the suppression mechanism once a firm
finds itself in this situation. Previous case studies merely illustrated that drastic turnarounds were
necessary to escape the suppression trap (cf. Helfat et al., 2007; Tushman et al., 2004). In that
sense, future work in this area should attempt to identify key processes and tools that can help
firms create ambidexterity in a proactive manner.
- 26 -
Second, March (1991) and more recently Gupta et al. (2006) pointed out that exploration
often leads to more exploration. They argue that exploration often leads to failure because of the
many underdeveloped ideas with too little distinctive competence. This subsequently increases
the need to search for other ideas implying more exploration. Future research can address
whether complex interactions at the top management level cause this reinforcing loop in a
similar way as we modeled the reinforcement of exploitation in this paper.
Third, future research should extend the model presented in this paper to address the
question as to when to strategically pursue ambidexterity versus a punctuated equilibrium (Gupta
et al., 2006). Both strategies may be viable ways to create organizational vitality by balancing
exploitation with exploration. The ongoing debate on these two strategies is also referred to as the
simultaneous-sequential question (Gupta et al., 2006; O'Reilly III and Tushman, 2008).
Simultaneity refers to synchronous pursuit of both incremental and radical innovation via
dedicated subunits or individuals. Sequentiality is about iterating between exploration and
exploitation, rather than organizational differentiation. Although both approaches serve the same
goal, they are radically different and likely to have different outcomes.
6. References
Adams, M. and Boike, D. (2004). 'The PDMA foundation 2004 comparative performance
assessment study'. Visions, 28, 26-29.
Adner, R. and Helfat, C.E. (2003). 'Corporate effects and dynamic managerial capabilities'.
Strategic Management Journal, 24, 1011-1025.
Argote, L. (1999). Organizational Learning: Creating, Retaining and Transferring Knowledge.
Dordrecht: Kluwer Academic Publishers.
Atuahene-Gima, K. (2005). 'Resolving the capability-rigidity paradox in new product innovation'.
Journal of Marketing, 69, 61-83.
Benner, M.J. and Tushman, M.L. (2003). 'Exploitation, exploration, and process management:
The productivity dilemma revisited'. Academy of Management Review, 28, 238-256.
- 27 -
Berle, A. and Means, G. (1932). The Modern Corporation and Private Property. New York:
Biyalogorsky, E., Boulding, W. and Staelin, R. (2006). 'Stuck in the past: Why managers persist
with new product failures'. Journal of Marketing, 70, 108-121.
Burgelman, R.A., Christensen, C.M. and Wheelwright, S.C. (2004). Strategic Management of
Technology and Innovation. New York: McGraw-Hill.
Chaganti, R. and Damanpour, F. (1991). 'Institutional ownership, capital structure, and firm
performance'. Strategic Management Journal, 12, 479-491.
Christensen, C.M. and Bower, J.L. (1996). 'Customer power, strategic investment, and the failure
of leading firms'. Strategic Management Journal, 17, 197-218.
Christensen, C.M., Suarez, F.F. and Utterback, J.M. (1998). 'Strategies for survival in fast-
changing industries'. Management Science, 44, 207-221.
Cho, T.S. and Hambrick, D.C. (2006). 'Attention as the mediator between top management team
characteristics and strategic change: The case of airline deregulation.' Organization
Science, 17, 453-469
Daft, R.L. and Weick, K.E. (1984). 'Toward a model of organizations as interpretation systems'.
Academy of Management Review, 9, 284-295.
Damanpour, F., Walker, R.M. and Avellaneda, C.N. (2009). 'Combinative effects of innovation
types and organizational performance: A longitudinal study of service organizations'.
Journal of Management Studies, 46, 650-675.
Davis, J.P., Eisenhardt, K.M. and Bingham, C.B. (2007). 'Developing theory through simulation
methods'. Academy of Management Review, 32, 480-499.
Doyle, J.K. and Ford, D.N. (1998). 'Mental models concepts for system dynamics research'.
System Dynamics Review, 14, 3-29.
Durmusoglu, S.S., McNally, R.C., Calantone, R.J. and Harmancioglu, N. (2008). 'How elephants
learn the new dance when headquarters changes the music: Three case studies on
innovation strategy change'. Journal of Product Innovation Management, 25, 386-403.
Felin, T. and Foss, N.J. (2005). 'Strategic organization: A field in search of micro-foundations'.
Strategic Organization, 3, 441-455.
Fiske, S.T. and Taylor, S.E. (2007). Social Cognition, from Brains to Culture. New York:
George, E., Chattopadhyay, P., Sitkin, S.B. and Barden, J. (2006). 'Cognitive underpinnings of
- 28 -
institutional persistence and change: a framing perspective.' Academy of Management
Review, 31, 347-65.
Gupta, A.K., Smith, K.G. and Shalley, C.E. (2006). 'The interplay between exploration and
exploitation'. Academy of Management Journal, 49, 693-706.
Hannan, M.T. and Freeman, J. (1984). 'Structural inertia and organizational change'. American
Sociological Review, 49, 149-164.
He, Z. and Wong, P. (2004). 'Exploration vs. exploitation: An empirical test of the ambidexterity
hypothesis'. Organization Science, 15, 481-494.
Helfat, C.E., Finkelstein, S., Mitchell, W., Peteraf, M., Singh, H., Teece, D. and Winter, S.G.
(2007). Dynamic Capabilities: Understanding Strategic Change in Organizations.
Oxford: Blackwell Publishing.
Henderson, R.M. and Clark, K.B. (1990). 'Architectural innovation: The reconfiguration of
existing product technologies and the failure of established firms'. Administrative Science
Quarterly, 35, 9-30.
Higgins, M.C. and Gulati, R. (2006). 'Stacking the deck: The effects of top management
backgrounds on investor decisions'. Strategic Management Journal, 27, 1-25.
Jansen, J.J.P., van den Bosch, F.A.J. and Volberda, H.W. (2006). 'Exploratory innovation,
exploitative innovation, and performance: Effects of organizational antecedents and
environmental moderators'. Management Science, 52, 1661-1675.
Judge, W.Q. and Zeithaml, C.P. (1992). 'Institutional and strategic choice perspectives on board
involvement in the strategic decision process'. Academy of Management Journal, 35, 766-
Leonard-Barton, D. (1992). 'Core capabilities and core rigidities: A paradox in managing new
product development'. Strategic Management Journal, 13, 111-125.
Lewin, K. (1951). Field Theory in Social Psychology. New York: Harper & Row.
Madsen, T.L., Mosakowski, E. and Zaheer, S. (2002). 'The dynamics of knowledge flows:
Human capital mobility, knowledge retention and change'. Journal of Knowledge
Management, 6, 164-176.
March, J.G. (1991). 'Exploration and exploitation in organizational learning'. Organization
Science, 2, 71-87.
Oliva, R. and Sterman, J.D. (2001). 'Cutting corners and working overtime: Quality erosion in the
service industry'. Management Science, 47, 894-914.
O'Reilly III, C.A. and Tushman, M.L. (2008). 'Ambidexterity as a dynamic capability: Resolving
- 29 -
the innovator's dilemma'. Research in Organizational Behavior, 28, 185-206.
Osborne, J.D., Stubbart, C.I. and Ramaprasad, A. (2001). 'Strategic groups and competitive
enactment: A study of dynamic relationships between mental models and performance'.
Strategic Management Journal, 22, 435-454.
Porac, J.F. and Thomas, H. (1990). 'Taxonomic mental models in competitor definition'.
Academy of Management Review, 15, 224-240.
Raisch, S. and Birkinshaw, J. (2008). 'Organizational ambidexterity: Antecedents, outcomes, and
moderators'. Journal of Management, 34, 375-409.
Repenning, N.P. (2001). 'Understanding fire fighting in new product development'. Journal of
Product Innovation Management, 18, 285-300.
Repenning, N.P. and Sterman, J.P. (2002) 'Capability traps and self-confirming attribution errors
in the dynamics of process improvement'. Administrative Science Quaterly, 47, 265-295.
Risch, J.D., Sterman, J.D. and Troyano-Bermúdez, L. (1995). 'Designing corporate strategy with
system dynamics: A case study in the pulp and paper industry'. System Dynamics Review,
11, 249-274.
Roberts, E.B. (1988). 'Managing invention and innovation'. Research Technology Management,
31, 11-29.
Romme, A.G.L. (2004). 'Unanimity rule and organizational decision making: A simulation
model'. Organization Science, 15, 704-718.
Romme, A.G.L., Zollo, M. and Berends, P. (2010). 'Dynamic capability, deliberate learning and
environmental dynamism: a simulation model.' Industrial and Corporate Change, 19,
special issue Dynamic Capabilities and Beyond, forthcoming.
Rothaermel, F.T. (2001). 'Incumbant's advantage through exploiting complementary assets via
interfirm cooperation'. Strategic Management Journal, 22, 687-699.
Rudolph, J.W. and Repenning, N.P. (2002). 'Disaster dynamics: Understanding the role of
quantity in organizational collapse'. Administrative Science Quarterly, 47, 1-30.
Schmidt, J. and Calantone, R. (2002). 'Escalation of commitment during new product
development'. Journal of the Academy of Marketing Science, 30, 103-118.
Schumpeter, J.A. (1942). Capitalism, Socialism, and Democracy. New York: Harper & Row.
Sengupta, K., Abdel-Hamid, T.K. and Van Wassenhove, L.N. (2008). 'The experience trap'.
Harvard Business Review, 86, 94-104.
Simsek, Z. (2009). 'Organizational ambidexterity: Towards a multilevel understanding'. Journal
- 30 -
of Management Studies, 46, 597-624.
Simsek, Z., Heavey, C., Veiga, J.F. and Souder, D. (2009). 'A typology for aligning
organizational ambidexterity's conceptualizations, antecedents, and outcomes'. Journal of
Management Studies, 46, 864-894.
Sterman, J.D. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World.
New York: McGraw Hill.
Teece, D.J., Pisano, G. and Shuen, A. (1997). 'Dynamic capabilities and strategic management'.
Strategic Management Journal, 18, 1319-1350.
Tripsas, M. and Gavetti, G. (2000). 'Capabilities, cognition, and inertia: Evidence from digital
imaging'. Strategic Management Journal, 21, 1147-1161.
Tushman, M.L. and Anderson, P. (1986). 'Technological discontinuities and organizational
environments'. Administrative Science Quarterly, 31, 439-466.
Tushman, M.L., Newman, W.H. and Romanelli, E. (2004). 'Convergence and upheaval:
Managing the unsteady pace of organizational evolution', in Tushman, M.L. and
Anderson, P. (Eds), Managing Strategic Innovation and Change: A Collection of
Readings. New York: Oxford University Press.
Tushman, M.L. and O'Reilly III, C.A. (1999). 'Building ambidextrous organizations: Forming
your own "skunk works"'. Health Forum Journal, 42, 20-24.
Uotila, J., Maula, M., Keil, T. and Zahra, S.A. (2009). 'Exploration, exploitation, and financial
performance: analysis of S&P 500 corporations'. Strategic Management Journal, 30, 221-
Van de Ven, A.H. (2007). Engaged Scholarship: A Guide for Organizational and Social
Research. Oxford: Oxford University Press.
Van Oorschot, K.E., Sengupta, K. and Akkermans, H.A. (2010). 'Get fast fast: surviving stage-
gates in NPD'. Journal of Product Innovation Management, in press.
Walsh, J.P. and Seward, J.K. (1990). 'On the efficiency of internal and external corporate control
mechanisms'. Academy of Management Review, 15, 421-458.
Westphal, J.D. and Zajac, E.J. (1998). 'The symbolic management of stockholders: Corporate
governance reform and shareholder reactions'. Administrative Science Quarterly, 43, 127-
Winter, S.G. (2000). 'The satisficing principle in capability learning'. Strategic Management
Journal, 21, 981-996.
Zollo, M. and Winter, S.G. (2002). 'Deliberate learning and the evolution of dynamic
- 31 -
capabilities'. Organization Science, 13, 339-353.
7. Figures
Figure 1: Stylized stock and flow diagram of the formal model.
Figure 2: Graph for environmental stability (based on S&P 500).
- 32 -
Summary Statistics
Historical Fit - Real and
Simulated Operating Result
n = 16
R2 0.7169
Mean Absolute Percent Error -0.0330
Root Mean Square Error 22.2385
Theil's Inequality Statistics
Bias 0.0000
Unequal Variation 0.0004
Unequal Covariation 0.9995
Figure 3: The real versus simulated operating result.
Summary Statistics
Historical Fit - Real and
Simulated Need to Explore
n = 12
R2 0.7288
Mean Absolute Percent Error 0.2689
Root Mean Square Error 0.0622
Theil's Inequality Statistics 0.0000
Bias 0.1090
Unequal Variation 0.5636
Unequal Covariation 0.3274
Figure 4: The real versus simulated need to explore (the real NE is based on content analysis of annual
- 33 -
Figure 5C: Simulated relative investment in exploitation (balance).
Figure 5B: Simulated need to explore and pressure to exploit.
Figure 5A: Simulated operating result and environmental stability.
Working Papers Beta 2009 - 2010
nr. Year Title Author(s)
A Dynamic Programming Approach to Multi-
Objective Time-Dependent Capacitated Single
Vehicle Routing Problems with Time Windows
S. Dabia, T. van Woensel, A.G. de Kok
Tales of a So(u)rcerer: Optimal Sourcing
Decisions Under Alternative Capacitated
Suppliers and General Cost Structures
Osman Alp, Tarkan Tan
store replenishment procedures for perishable
inventory in a retail environment with handling
costs and storage constraints
R.A.C.M. Broekmeulen, C.H.M. Bakx
The state of the art of innovation-
driven business
models in the financial services industry
E. Lüftenegger, S. Angelov, E. van der
Linden, P. Grefen
Design of Complex Architectures Using a Three
Dimension Approach: the CrossWork Case
R. Seguel, P. Grefen, R. Eshuis
Effect of carbon emission regulations on
transport mode selection in supply chains
K.M.R. Hoen, T. Tan, J.C. Fransoo, G.J.
van Houtum
Interaction between intelligent agent strategies
for real-time transportation planning
Martijn Mes, Matthieu van der Heijden,
Peter Schuur
Internal Slackening Scoring Methods
Marco Slikker, Peter Borm, René van den
Vehicle Routing with Traffic Congestion and
Drivers' Driving and Working Rules
A.L. Kok, E.W. Hans, J.M.J. Schutten,
W.H.M. Zijm
Practical extensions to the level of repair
R.J.I. Basten, M.C. van der Heijden,
J.M.J. Schutten
Ocean Container Transport: An Underestimated
and Critical Link in Global Supply Chain
Jan C. Fransoo, Chung-Yee Lee
Capacity reservation and utilization for a
manufacturer with uncertain capacity and
Y. Boulaksil; J.C. Fransoo; T. Tan
Spare parts inventory pooling games
F.J.P. Karsten; M. Slikker; G.J. van
Capacity flexibility allocation in an outsourced
supply chain with reservation
Y. Boulaksil, M. Grunow, J.C. Fransoo
An optimal approach for the joint problem of
level of repair analysis and spare parts stocking
R.J.I. Basten, M.C. van der Heijden,
J.M.J. Schutten
Responding to the Lehman Wave: Sales
Forecasting and Supply Management during the
Credit Crisis
Robert Peels, Maximiliano Udenio, Jan C.
Fransoo, Marcel Wolfs, Tom Hendrikx
An exact approach for relating recovering
surgical patient workload to the master surgical
Peter T. Vanberkel, Richard J. Boucherie,
Erwin W. Hans, Johann L. Hurink, Wineke
A.M. van Lent, Wim H. van Harten
An iterative method for the simultaneous
optimization of repair decisions and spare parts
R.J.I. Basten, M.C. van der Heijden,
J.M.J. Schutten
Fujaba hits the Wall(-e)
Pieter van Gorp, Ruben Jubeh, Bernhard
Grusie, Anne Keller
Implementation of a Healthcare Process in Four
Different Workflow Systems
R.S. Mans, W.M.P. van der Aalst, N.C.
Russell, P.J.M. Bakker
Business Process Model Repositories -
Framework and Survey
Zhiqiang Yan, Remco Dijkman, Paul
Efficient Optimization of the Dual-Index Policy
Using Markov Chains
Joachim Arts, Marcel van Vuuren, Gudrun
Hierarchical Knowledge-Gradient for Sequential
Martijn R.K. Mes; Warren B. Powell; Peter
I. Frazier
Analyzing combined vehicle routing and break
scheduling from a distributed decision making
C.M. Meyer; A.L. Kok; H. Kopfer; J.M.J.
Anticipation of lead time performance in Supply
Chain Operations Planning
Michiel Jansen; Ton G. de Kok; Jan C.
Inventory Models with Lateral Transshipments: A
Colin Paterson; Gudrun Kiesmuller; Ruud
Teunter; Kevin Glazebrook
Efficiency evaluation for pooling resources in
health care
P.T. Vanberkel; R.J. Boucherie; E.W.
Hans; J.L. Hurink; N. Litvak
A Survey of Health Care Models that
Encompass Multiple Departments
P.T. Vanberkel; R.J. Boucherie; E.W.
Hans; J.L. Hurink; N. Litvak
Supporting Process Control in Business
S. Angelov; K. Vidyasankar; J. Vonk; P.
Inventory Control with Partial Batch Ordering
O. Alp; W.T. Huh; T. Tan
Translating Safe Petri Nets to Statecharts in a
Structure-Preserving Way
R. Eshuis
The link between product data model and
process model
J.J.C.L. Vogelaar; H.A. Reijers
Inventory planning for spare parts networks with
delivery time requirements
I.C. Reijnen; T. Tan; G.J. van Houtum
Co-Evolution of Demand and Supply under
B. Vermeulen; A.G. de Kok
An Efficient Method to Construct Minimal
Protocol Adaptors
R. Seguel, R. Eshuis, P. Grefen
Coordinating Supply Chains: a Bilevel
Programming Approach
Ton G. de Kok, Gabriella Muratore
Inventory redistribution for fashion products
under demand parameter update
G.P. Kiesmuller, S. Minner
Comparing Markov chains: Combining
aggregation and precedence relations applied to
sets of states
A. Busic, I.M.H. Vliegen, A. Scheller-Wolf
Separate tools or tool kits: an exploratory study
of engineers' preferences
I.M.H. Vliegen, P.A.M. Kleingeld, G.J. van
An Exact Solution Procedure for Multi-Item Two-
Echelon Spare Parts Inventory Control Problem
with Batch Ordering
Engin Topan, Z. Pelin Bayindir, Tarkan
Distributed Decision Making in Combined
Vehicle Routing and Break Scheduling
C.M. Meyer, H. Kopfer, A.L. Kok, M.
Dynamic Programming Algorithm for the Vehicle
Routing Problem with Time Windows and EC
Social Legislation
A.L. Kok, C.M. Meyer, H. Kopfer, J.M.J.
Similarity of Business Process Models: Metics
and Evaluation
Remco Dijkman, Marlon Dumas,
Boudewijn van Dongen, Reina Kaarik,
Jan Mendling
Vehicle routing under time-dependent travel
times: the impact of congestion avoidance
A.L. Kok, E.W. Hans, J.M.J. Schutten
Restricted dynamic programming: a flexible
framework for solving realistic VRPs
J. Gromicho; J.J. van Hoorn; A.L. Kok;
J.M.J. Schutten;
Working Papers published before 2009 see:
... The main idea of organizational ambidexterity is based on the ability to deal simultaneously with the organization's various activities, ability to adapt with the changes taking place to achieve efficiency and flexibility in all administrative levels. Organizational ambidexterity has been mention as "the organization's ability to exploit the competencies available, in addition to their ability to explore new opportunities" (Danzinger & Dumbach, 2011), also considered as "the organization's ability to work two different things at the same time" (Walrave et al., 2010) and initiate that it is "the organization's endeavor to achieve simultaneous exploration and exploitation systems for the market opportunity". ...
Full-text available
This study aimed to explore the role of employees empowerment strategy (employee training, organizational confidence, job enrichment, and delegation of authority) in achieving organizational Ambidexterity (exploratory innovation, exploitative innovation, and flexible organizational structure), with the existence of creative behavior as a mediating variable at Jordanian telecom company's environment. The descriptive analytical method has been used through data collection by means of a questionnaire distributed to Jordanian telecom company's After the statistical analysis of the questionnaire, appeared several key findings most important of which are creative behavior mediates the relationship between strategy of delegation of authority and flexible organizational structure although did not mediate the relationship between (employee training, organizational confidence, and job enrichment) and flexible organizational structure. Initially this study recommended that Theoretical and practical implication are considered.
Full-text available
Abstract The aim of the research is to diagnose the reality of the application of the faculties of the University of Baghdad to the research variables and to identify the extent of their ability to practice their activities and operations skillfully to meet the great challenges they face by taking advantage of the consensual state between the research variables, as well as measuring the correlation and influence between those variables. To come up with a set of recommendations that contribute to improving its practice and adoption of these variables, and based on the importance of the urgent variables for the researched colleges and their members on the one hand, and society on the other hand, the research adopted the descriptive analytical method in the completion of its chapters and investigations, and the research was applied in (19) colleges of the University of Baghdad, relying on On the method of a comprehensive survey of community members represented by members of college councils (deans, assistant deans, heads of departments) and their number reached (204) people. The main research tool (the questionnaire) was distributed to them, which was designed based on solid measures that singled out the three research variables (Top Management Team behavioral integration, dynamic capabilities, and Organizational Ambidexterity) to survey opinions about the variables investigated., while the research used statistical programs (AMOS V.23- SPSS V.25) to analyze the primary data, with the adoption of descriptive and inferential statistics methods represented in (standard distribution test,, confirmatory factor analysis, test of validity and reliability, arithmetic mean, standard deviation, relative variance coefficient, relative importance, Pearson correlation coefficient, Regression analysis using structural equation modeling, And Path Analysis.) to test the seven research hypotheses emanating from the main questions, The statistical analysis showed a number of results, the most prominent of which was that all the correlations between the research variables were significant in addition to the presence of a significant effect of the behavioral integration of the senior management team in organizational prowess mediated by the dynamic capabilities through its dimensions (sensing ability, learning ability, integration ability , coordination ability, reconfiguration ability).
Full-text available
This study aims to determine the correlation and effect between organizational ambidexterity and organizational burnout in the sample of faculties of Dohuk University; to achieve this goal, the research designs a questionnaire that contains (57) questions in order to measure the dimensions and variables. This study contains two hypotheses; the first one is there is a significant correlation between organizational ambidexterity and organizational burnout in the considered faculties, the second hypothesis is there is a significant effect of the organizational ambidexterity on organizational burnout in the considered faculties. The questionnaire had given out to managerial leaders only in the faculties of Dohuk University. The study chooses non-random sample, and its number reaches to (60) questionnaires, (48) of them were suitable for analyzing, and then the percentage of response was (80%). The study uses many statistical tools to process and analyze data by using (SPSS) package. Accordingly, the research has come to the group of findings, that are most important: 1. Descriptive analysis results showed that the respondents' answers were agreed that the dimensions of organizational ambidexterity are available in the considered faculties, but they are weak. 2. Descriptive analysis results indicated that the most of the respondents' answers were in agreement that the sources of organizational burnout are unavailable in the considered faculties, except the source of organizational conflict. 3. There is a significant correlation and effect of the organizational ambidexterity on the organizational burnout in the considered faculties. Finally, the study presents a set of proposals that have been extracted in the light of the results of the study, from these proposals: 1. Because of lack of the dimensions organizational in the considered faculties, especially, the dimension of the search for new opportunities, the researchers recommends that evoke this dimension because of its impact on the sources of organizational burnout. 2. The study recommends the considered faculties to work to provide the necessary resources, because they are considered as the main causes of organizational conflict.
Full-text available
This study aimed to introduce an intellectual and practical framework about the possibility of employing behavioral integration of top management team that reflects the level of interaction among team members in connection with exchange of information, collective behavior and participation in decision-making in achieving contextual ambidexterity of the team, which is based on concurrent practicing of two types of contradictory activities (exploration activities and exploiting activities).The study used a descriptive and analytical approach to the opinions of (229) of the heads and members (50) college's councils opinions in the Middle Euphrates universities. it used a number of statistical methods to test hypotheses such as simple correlation Pearson, regression analysis gradual .The results showed a significant correlation between top management team behavioral integration with its various dimensions and contextual ambidexterity which indicates the possibility of employing that relationship to ensure an ambidexterity behavior of team members in dealing with contradictory activities in a synchronized manner. The study came up with a set of recommendations and proposals for future studies relevant to its subject. Among them is the encouragement of employees in educational foundations to practice activities that are characterized by reasonable risks to enhance their explorative activities and securing effective responsiveness to environment demands.
Full-text available
To better understand the factors that support or inhibit internally focused change, we conducted an inductive 's attempt to improve two of its core study of one firm business processes. Our data suggest that the critical determinants of success in efforts to learn and improve are the interactions between managers' attributions about the cause of poor organizational performance and the physical structure of the workplace, particularly delays between investing in improvement and recognizing the rewards. Building on this observation, we propose a dynamic model capturing the mutual evolution of those attributions, managers' and workers' actions, and the production technology. We use the model to show how managers' beliefs about those who work for them, workers' beliefs about those who manage them, and the physical structure of the environment can coevolve to yield an organization characterized by conflict, mistrust, and control structures that prevent useful change of any type.
Managers of contemporary publicly held organisations typically are not the owners. Rather, a specialisation of responsibilities has evolved whereby managers coordinate activities within the firm and position it appropriately in its competitive environment; the owners of the firm bear financial risk in the hope of retaining the difference between the firm’s productive cash-flows and the outflows of its promised payments (Fama and Jensen 1983a, 1983b). As the firm’s owners would suffer tremendous financial losses if the firm failed, they tend to diversify their holdings across a variety of firms as a hedge against such a possibility. As a result, the individual owner has little interest in conducting, or even closely monitoring, the day-to-day activities in all of the firms in which he or she has a financial interest (Fama 1980). The owners hire boards of directors who, in turn, hire managers to perform these duties.
Technological innovation can alter the competitive status of firms and nations, but its purposeful management is complex, involving the effective integration of people, organizational processes, and plans.
This paper examines the nature of the core capabilities of a firm, focusing in particular on their interaction with new product and process development projects. Two new concepts about core capabilities are explored here. First, while core capabilities are traditionally treated as clusters of distinct technical systems, skills, and managerial systems, these dimensions of capabilities are deeply rooted in values, which constitute an often overlooked but critical fourth dimension. Second, traditional core capabilities have a down side that inhibits innovation, here called core rigidities. Managers of new product and process development projects thus face a paradox: how to take advantage of core capabilities without being hampered by their dysfunctional flip side. Such projects play an important role in emerging strategies by highlighting the need for change and leading the way. Twenty case studies of new product and process development projects in five firms provide illustrative data.