Article

Post-flare coronal activity of the star AU MIC recorded by the EUVE satellite

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Data on a prolonged period of EUV emission after a sudden rise in brightness recorded by the Extreme Ultraviolet Explorer (EUVE) for the star AU Mic are discussed. Intense emission was observed for roughly 12 hours after each of two impulses, which exceeds by 10 times the radiation cooling time of coronal loops with typical flare plasma densities. Difficulties are pointed out for two explanations for this phenomena suggested earlier: emission by dense loops in the main phase of the flare, and emission of rarified plasma in coronal transients. Joint analysis of observations of the 65-190 A band and the 93.9 A Fe XVIII line showed a temporary change in the emission measure of the source. The total energy emitted during approximately 12 hours was 3 x 10 exp 35 erg. The concept of post-eruptive energy release is used to explain the prolonged emission in the EUV. The source of the emission is a system of high coronal loops with size exceeding the radius of the star. Such loop systems of already-cooled plasma have been observed on the sun in H-alpha during powerful flares (for example, June 15, 1991) after the transient has gone. Some additional energy input into the loop system from vertical current layers is possible, which prolongs the emission. The proposed phenomenon is a new type of surface activity on late stars, which is intermediate between impulsive flares on red dwarfs and prolonged and powerful events on the subgiant components of RS CVn double systems.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Full-text available
Article
We analyze X-ray images and spectra of a coronal structure which extended to altitudes over 130 000 km above an eruptive flare located 20° behind the western solar limb. The images were obtained by the Flat Crystal Spectrometer (FCS) and the spectra were obtained by the Bent Crystal Spectrometer (BCS) aboard the SMM spacecraft. Images in Oviii and Mgxi lines cover the period from before the flare onset (which occurred at 22:31 UT on 16 February, 1986) through 17 UT on 17 February and were used for determination of temperature and emission measure within the structure. BCS obtained Caxix spectra of the coronal event, benefiting from the occultation of the active region behind the solar limb. The BCS data show, and FCS data confirm, that the temperature, after an initial rise and decline, stayed almost constant for many hours after 04:30 UT on 17 February. This may indicate that initially we observed the rise and decay of post-flare loops, but later the X-ray emission came predominantly from a post-flare giant arch that formed above them. This has been observed in many previous cases. However, a comparison with other events characterized by very high post-flare loops, such as those that occurred on 29 July, 1973 (Skylab data) and on 14 February, 1986 (from this same region), suggests that we may be observing the same system of slowly growing groups all the time. Therefore, we suggest a third possibility, i.e., that such anomalously high loop systems first behave like post-flare loops but gradually take over some characteristics of a post-flare giant arch. The Soft X-ray Telescope aboardYohkoh, with spatial resolution improved by nearly an order of magnitude, might be able to check up on the development of such large-scale coronal structures if proper observational modes are applied after the occurrence of major eruptive flares.
Full-text available
Article
The magnetic reconnection theory for two-ribbon flares and flare loops hypothesizes that the gradual energy release during the decay phase is a direct result of dissipative relaxation of the open coronal magnetic configuration created by an eruptive prominence/coronal transient precursor. This scenario is here developed quantitatively to the point where a realistic comparison with observational data can be attempted. Our major refinements are (i) to use an analytical description of the reconnecting field geometry specifically chosen to characterize the spatial scale of the active region where a flare occurs, and (ii) to take account of the fact that the volume occupied by X-ray-emitting plasma (hot loops) generally increases with time during the flare. As a test of the modified theory we have undertaken a new representation of the Skylab observations of the large two-ribbon flare of 29 July, 1973. It is hereby found that the simultaneous inclusion of the above two factors yields an excellent agreement between the theoretical prediction and observations of the time variation of flare-plasma energy density; such was not possible within the framework of previous work along these lines. The agreement extends, moreover, to rather early times in the flare history, where the short-comings of earlier studies became especially noticeable. This result constitutes strong evidence to support previous speculations that magnetic reconnection may provide the sole energy source throughout nearly the entire flare lifetime.
Full-text available
Article
An ordinary differential equation describing the evolution of a coronal loop subjected to a spatially uniform but time-varying heating rate is discussed. It is assumed that the duration of heating is long compared to the sound transit time through the loop, which is assumed to have uniform cross section area. The form of the equation changes as the loop evolves through three states: 'strong evaporation', 'scaling law behavior', and 'strong condensation'. Solutions to the equation may be used to compute the time dependence of the average coronal temperature and emission measure for an assumed temporal variation of the flare heating rate. The results computed from the model agree reasonably well with recent published numerical simulations and may be obtained with far less computational effort. The model is then used to study the May 21, 1980, solar flare observed by SMM and the giant April 12, 1985, flare observed on the star AD Leo.
Full-text available
Article
It is shown that, in the current sheet at the top of the arcade of postflare loops in a two-ribbon solar flare, particle beams are generated by direct electric-field acceleration. The acceleration process is completely collisionless and is limited only by the gyromotion along the component of the magnetic field perpendicular to the sheet. This mechanism is similar to the particle acceleration in the geomagnetic tail. Neutral beams emanate from the sheet with almost zero pitch angle, making protons the main carriers of the beam energy. Approximately 10 to the 35th protons/sec are generated with a typical energy of 200 keV. Their energy distribution is a single power law, with an upper and lower energy cut-off. Such a population is capable of simultaneously generating the observed impulsive-phase hard X-rays and the gamma rays.
Full-text available
Article
We have made the first extended observation of a stellar flare in the EUV with 100 s time resolution. The flare was detected on AU Mic by the Extreme Ultraviolet Explorer satellite at 12:38 UT on 1992 July 15 during a 4 d observation from 1992 July 14 to 18. This was a large flare detected in the Lexan/boron (65-190 A) band with an observed peak count rate of 7.0 +/- 0.5 counts/s, corresponding to a peak luminosity of 10 exp 30 erg/s in the Lexan/boron bandpass. This is significantly above the measured quiescent level of 0.4 +/- 0.2 counts/s. The flare consisted of a sharp peak lasting about 2 hr, followed by a decaying tail that lasted more than a day. The total EUV energy of the event is estimated to be 3 x 10 exp 34 ergs. A second, smaller flare was also observed and is described. We conclude that the large emission measures on order of 6 x 10 exp 53/cu cm are due to large volumes with characteristic length scales of order the stellar radius. We compare these EUV observations with stellar flare observations in other bandpasses and estimate the likelihood of seeing similar flares in future observations.
Full-text available
Article
The dM1e flare star AU Microscopii (AU Mic) was observed by the EUVE Deep Survey Instrument on 1992 July 14-18. A large flare was detected in the Deep Survey Lexan/Boron (DS Lex/B)(65-190 A) band and the SW (70-190 A) and MW (140-380 A) spectrometers. The flare consisted of a sharp impulsive peak lasting approximately 2 hours followed by a decaying tail lasting about a day. We present a simple, single temperature, dynamic model for the flare decay which is consistent with the DS Lex/B light curve and reproduces the strongest, high-temperature spectral lines in the released EUVE spectra. In this model, we assume the long decay time is due to an ejected, magnetically confined, low beta plasmoid expanding self similarly in the ambient medium in a manner reminiscent of solar coronal mass ejections. We demonstrate that the long tail of the DS Lex/B light curve can be explained by rapid expansion, causing the plasma to become tenuous sufficiently quickly that it avoids catastrophic radiative cooling. From this model, we estimate the mass of the plasmoid to be approximately = 10(exp 20) g and the total energy of the event to be approximately = 10(exp 36) ergs. These values are approximately 10(exp 4) times as large as those seen during the largest solar coronal mass ejection (CME) events. We argue that the results of our model are consistent with other measurements of stellar flare parameters. We also estimate a mass-loss rate of a few times 10(exp -13) Solar mass/yr and discuss the role of mass loss from dMe stars in the mass balance of the interstellar medium. We estimate the rotational braking timescale from these events to be less than 500 million years and suggest that CME's may be an important source of angular momentum loss from late-type stars.
Article
We present observational data on stellar flares from a range of wavelength regimes, many of which were obtained simultaneously. Physical parameters of these flares are derived and discussed in the frame-work of the general solar flare model. It is found that flares on dMe stars are solar-like, except in mean energy. The parameters of flares on RS CVn stars are more extreme, however, and may require new models for their interpretation.
Article
White-light coronagraph, H-alpha and radio data are presented as well as hard X-ray data for a sample of 10 gradual hard X-ray bursts (GHBs) in an attempt to better understand the nature of these events. It is found that: (1) the hard X-ray photon energy spectrum began to harden near the onset of the GHBs and continued in this fashion during the decay phase; (2) a coronal mass ejection (CME) occurred in association with at least nine of the GHBs; (3) the GHBs occurred in the late phase of major flares; (4) the centimeter wavelength bursts associated with the GHBs had relatively low frequency spectral maxima, and in relation to the observed hard X-ray emission, they were microwave-rich; (5) the associated decimetric bursts showed significant intensity variations on time scales ranging from 0.1 to approximately greater than 1 minute; and (6) the GHBs were most strongly associated with type IV events. It is concluded that the acceleration and trapping of radiating electrons occurs in the postflare loop systems following CMEs.