ArticlePDF AvailableLiterature Review

Abstract and Figures

The ethno-medicinal approach to drug discovery represents one of the most important sources of new and safe therapeutic agents to the challenges confronting modern medicine and daily life. Many of the traditionally important medicinal plants contain active molecules or ones that serve as precursors to biosynthesised secondary metabolites to which the biological activity could be attributed. Marrubiin is one such compound and is a potential valuable compound which exists in high concentrations in many traditionally important Lamiaceae species which have demonstrated excellent pharmacological properties with commendably high safety margins. Marrubiin's attributes include a low turnover, high stability and little catabolism, which are core characteristics required for therapeutic compounds and nutraceuticals of economic importance. In addition, marrubiin is considered a potential substrate for potent active compounds viz; marrubiinic acid, and marrubenol. The contribution of marrubiin to drug discovery thus needs to be put into prospective due to its ready availability, high potential applications and ease of modification. In this short review we highlight the most important chemical and pharmacological aspects reported on marrubiin since it was discovered.
Content may be subject to copyright.
Molecules 2013, 18, 9049-9060; doi:10.3390/molecules18089049
molecules
ISSN 1420-3049
www.mdpi.com/journal/molecules
Review
Marrubiin
Olugbenga K. Popoola, Abdulrahman M. Elbagory, Farouk Ameer and Ahmed A. Hussein *
Chemistry Department, University of Western Cape, Private Bag X17, Belleville 7535, South Africa;
E-Mails: 3318925@uwc.ac.za (O.K.P.); 3376881@uwc.ac.za (A.M.E.); fameer@uwc.ac.za (F.A.)
* Author to whom correspondence should be addressed; E-Mail: ahmohammed@uwc.ac.za;
Tel.: +27-21-959-2262.
Received: 25 June 2013; in revised form: 20 July 2013 / Accepted: 22 July 2013 /
Published: 29 July 2013
Abstract: The ethno-medicinal approach to drug discovery represents one of the most
important sources of new and safe therapeutic agents to the challenges confronting modern
medicine and daily life. Many of the traditionally important medicinal plants contain active
molecules or ones that serve as precursors to biosynthesised secondary metabolites to
which the biological activity could be attributed. Marrubiin is one such compound and is a
potential valuable compound which exists in high concentrations in many traditionally
important Lamiaceae species which have demonstrated excellent pharmacological
properties with commendably high safety margins. Marrubiin’s attributes include a low
turnover, high stability and little catabolism, which are core characteristics required for
therapeutic compounds and nutraceuticals of economic importance. In addition, marrubiin
is considered a potential substrate for potent active compounds viz; marrubiinic acid, and
marrubenol. The contribution of marrubiin to drug discovery thus needs to be put into
prospective due to its ready availability, high potential applications and ease of
modification. In this short review we highlight the most important chemical and
pharmacological aspects reported on marrubiin since it was discovered.
Keywords: marrubiin; Lamiaceae; biological activity; lead compound; anti-inflammatory
OPEN ACCESS
Molecules 2013, 18 9050
1. Introduction
Marrubiin is a widely known diterpenoid lactone that constitutes the bitter principle of the
horehound and many other medicinal plants of the family Lamiaceae. It is one of the main constituents
of Marrubium vulgare, Leonotis leonurus and Leonotis nepetifolia [1], which are used in several
countries to treat different pathologies [2]. According to SciFinder Scholar, there are recently 130
published articles on marrubiin and these cover the chemical and biological aspects associated with the
compound. It is a major constituent of many species of the genus Marrubium (Lamiaceae) and
includes about 97 species found along the Mediterranean and temperate regions of the Eurasian zone.
Subsequent research revealed that marrubiin is the most active diterpenoid responsible for the
therapeutic properties observed from the species Leonotis leonurus [3,4], Phlomis bracteosa [5],
Marrubium deserti de Noe [6], Marrubium vulgare [5,7–19], Marrubium alysson [20] and Marrubium
thessalum [21,22]. Extensive pharmacological studies have demonstrated that marrubiin displays a
suite of activities inclusing antinociceptive [12], antioxidant, antigenotoxic [3], cardioprotective [4],
vasorelaxant [11], gastroprotective [7], antispasmodic [6], immunomodulating [23], antioedematogenic [9],
analgesic [10,15], and antidiabetic properties [24].
2. Occurrence
Marrubiin was first isolated in Nature from Marrubium vulgare in 1842 and subsequently many
other plants belonging to the same genus as well as some other members of family Lamiaceae [24] viz;
Leonotis leonurus [4,5], Phlomis bracteosa [6], Marrubium deserti de Noe [3], M. vulgare [5,17–19],
M. velatinum [25,26], M. cylleneum [25,26], M. trachyticum [27], M. globosum [28], M. anisodon [29],
M. sericeum [20], M. supinum [20], M. alysson [20] and M. thassalum [21,22] have been reported to
contain marrubiin. Only a single report mentioned the isolation of marrubiin from Spiraea brahuica
belonging to the family Rosaceae [30].
3. Physical and Spectroscopic Data [31]
Synonyms: 6-[2-(3-Furanyl)ethyl]decahydro-6-hydroxy-2a,5a,7-trimethyl-2H-naphtho[1,8-bc]furan-
2-one, 6-[2-(3-furanyl)ethyl]deca-hydro- 6-hydroxy-2a,5a,7-trimethyl-(2aS,5aS,6R,7R,8aR,8bR)-2H-
naphtho[1,8-bc]furan-2-one, 15,16-epoxy-6β,9-dihydroxy-[2aS-(2aα,5aβ,6α,7α,8aα,8bα)]-8βH-labda-
13(16),14-dien-19-oic acid γ-lactone (8CI); marrubiin (6CI); 15,16-epoxy-6β,9-dihydroxy-8βH-labda-
13(16),14-dien-19-oic acid γ-lactone; NSC 36693. Physical properties and assignment of its
1
HNMR
signals are presented in Table 1.
4. Biosynthesis
Initially, the common mevalonic acid pathway was proposed for the biosynthesis of terpenoids
including marrubiin [15,32], however, the results of various
13
C-labelled glucose experiments by
Rohmer were shown to be inconsistent with the expectations based on the mevalonate pathway.
Consequently, the 1-deoxy-D-xylulose-5-phosphate/2-methyl-D-erythritol-4-phosphate (DOX/MEP)
pathway has been proposed as the source of this compound in Nature [32–34]. The experimental data
Molecules 2013, 18 9051
showed the production and accumulation of marrubiin in agreement with this newly discovered
pathway [a non-mevalonate pathway] like in Eubacteria and Gymnospermae [35,36].
Table 1. Physical properties and
1
H-NMR data of marrubiin [31].
Physical properties Value NMR data [37]
Molecular weight 332.43
O
O
O
OH
H
H
H
H
H
H
H
H
H
H
H
1.66*
1
.
3
0
d
t
,
J
=
1
4
.
4
,
3
.
6
1.49qt, J= 13.6, 13.2, 3.6
1.71*
2.10*
1.44ddd, J=14.4, 13.6, 3.6
2.22d, J=4.7
4
.
7
3
d
d
d
,
J
=
6
.
4
,
4
.
7
,
1
.
6
1.67*
2.15ddd, J=14.0, 6.4, 1.6
2.10*
HA
HB
1
.
8
9
d
d
d
,
J
=
1
4
.
6
,
1
0
.
4
,
7
.
2
1
.
7
5
d
d
d
,
J
=
1
4
.
6
,
1
0
.
4
7
.
2
HB
HA
2.52*
2.52*
H
6
.
2
2
d
d
,
J
=
1
.
7
,
0
.
8
H
7.35t, J=1.7
H 7.22ddt, J=1.7, 1.0, 0.8
28.6
18.2
28.4
43.8
44.9
76.2
31.5
32.3
75.8
39.7
35.1
21.0
125.0
110.7
143.1
138.6
183.8
0.96d J= 6.4 : 16.6
1.28s: 23.0
1.05s : 22.2
* Overlapped signals
Molecular formula C
20
H
28
O
4
CAS Registry Number 465-92-9
Molar volume 288 ± 3.0 cm
3
/mol(20 °C; 760 Torr)
Density 1.152±0.06 g/cm
3
(20 °C; 760 Torr)
Melting Point ~155–160 °C
Freely Rotatable Bonds 4
H Acceptors 4
H Donors 1
H Donor/ Acceptor sum 5
LogP 3.796±0.414 (at 25 °C)
[α]
D
: +45.68° (acetone, 24 °C), +35.8
(CHCl
3
, 24 °C)
Pre-furanic (e.g., premarrubiin) and furanic (e.g., marrubiin) labdanoids are widespread in the
family Lamiaceae [38–40]. There are some ambiguities about the natural origin of the furanic
labdanoids which possess a C-9 hydroxyl group and a furan ring in the side chain (like marrubiin)
which are considered by some authors to be the final products in the biosynthetic pathway, while some
others suggest that they are artefacts which arise from their corresponding prefuran labdanoids during
or after the extraction or isolation process, by cleavage of the 9,13-epoxide bridge [41–43].
According to the recent literature [38], the detection of marrubiin in fresh plant material has been
reported, together with the isolation of pre-furanic mixed with non-related furanic labdanoids [44–47],
and these data indicate the existence of marrubiin as a natural compound inside the living organism
and as an end product of a biosynthetic pathway. The transformation of premarrubiin into marrubiin is
indicative of the comparative instability of the former compound to the more stable furanic form.
Generally, under certain conditions the chemical treatment of 9,13–15,16-diepoxylabdane derivatives
can converted them into the more stable furanic form, and no work has been done to study the effect of
other substitution patterns in the C
11,12
and C
14-17
systems, however, many prefuranic structures have
been isolated without their corresponding furanic forms [44–47]. The relation between premarrubiin
and marrubiin needs to be investigated in the plant tissues using one of the available advanced
techniques like high field solid-state NMR.
Molecules 2013, 18 9052
5. Chemical Aspects
5.1. Synthesis
Marrubiin was isolated in pure form in 1932 by Mercier and Mercier in a yield of 0.4%. The
chemistry of marrubiin commenced in the last century and the molecular formula was established by
Gordin, and its synthesis completed in 1970.
The synthesis of marrubiin (1) was achieved starting from the keto lactone 5 (Figure 1) which was
prepared stereoselectively from the known keto ester 2 via 3 and 4 (Figure 1). Compound 5 on reaction
with Li acetylide followed by reduction gave 6, which gave 7 on treatment with PBr
3
in pyridine
(Figure 2). The bromide 7 was converted into the furanoepoxide 8 (Figure 2) by a reaction with
3-furanyl lithium followed by epoxidation. The final step, i.e., the conversion of 8 into marrubiin (1)
was achieved by reduction with lithium in ethylamine [48]. Its stereochemistry had been established by
chemical transformations and confirmed by X-ray crystallography in 1982 [6,49].
Figure 1. Synthesis intermediates of marrubiin (compounds 25).
O
CO
2
Me
O
O
MeO
2
C
O
O
OH
O
O
O
H
H
2
3
4
5
Figure 2. Synthesis intermediates of marrubiin (compounds 1, 68).
O
OH
O
H
O
O
H
O
O
H
CH=CH
2
Br
O
O
O
O
H
O
OH
6
7
8
1
1
4
8
12
14
5.2. Structure Modification
There have not been many extensive structure-activity relationship studies made on derivatives of
marrubiin despite its abundance and high pharmacological activity. Opening of the lactone ring using
refluxing potassium hydroxide solution afforded the active marrubiinic acid (9, Figure 3) in a yield of
~70%. Pharmacological studies have shown that marrubiinic acid possesses antinociceptive activity
against the writhing test, with an LD
50
value of 12 µM/kg, being about 11-fold more active than the
standard drugs (aspirin, paracetamol and morphine) [10]. Marrubenol (10, Figure 3) was obtained from
marrubiinic acid in a yield of 98% after reduction with lithium aluminium hydride. Marrubenol and
marrubiin were both found to elicit contractions evoked by high-KCl solutions in aortic segments
Molecules 2013, 18 9053
thereby showing promise as a vasorelaxant. It was found that blocking the free acidic group of
marrubiinic acid like in the esterified products 11 and 12 (Figure 3) reduced the biological activities,
which indicates the major role of the free carboxylic group in contributing to the observed
anti-inflammatory activities.
Figure 3. Different derivatives of marrubiin (compounds 912).
9
O
OH
OH
H
HO
10
O
OH
OH
H
HO
O
12
O
OH
OH
H
H
3
CO
O
11
O
OH
OH
H
PhH
2
CO
O
On the other hand, during the course of structural elucidations performed in earliest studies, many
derivatives have been prepared, e.g., compounds 1317 (Figure 4) without any tests being conducted
to determine their biological activities [50].
Figure 4. Different derivatives of marrubiin (compounds 1317).
O
OH
H
O
OH
OH
H
HO
O
O
O
H
O
O
O
H
O
O
O
H
O
O
O
13
14
15
16
17
6. Pharmacological Aspects of Marrubiin
6.1. Toxicity Studies
According to the NIH PubMed website [50] marrubiin doesn’t demonstrate any cytotoxicity against
66 cancer cell lines, however on the other hand; in vivo experimental studies have documented a LD
50
of 370 mg/kg body weight, for marrubiin [51]. Recent studies have showed a safety limit up to 100 mg/kg
body weight when injected into mice [9].
6.2. Antinociceptive Activity
De Jesus et al. have reported on the antinociceptive effects of marrubiin and these were found to be
dose-related. The antinociceptive properties were observed using both the systemic and oral routes and
its action has sustained over a long period. The high potencies observed in the writhing test and
Molecules 2013, 18 9054
formalin induced pain test suggest that marrubiin is acting by some peripheral mechanism. The
antinociception induced by marrubiin was not reversed by naloxone when analyzed in the writhing
test. In the hot-plate test, marrubiin did not increase the latency period of pain induced by the thermal
stimuli [12].
6.3. Cardioprotective Activity
Although beneficial for cardiomyocyte salvage and to limit myocardial damage and cardiac
dysfunction, the restoration of blood flow after prolonged ischemia exacerbates myocardial injuries.
Several deleterious processes that contribute to cardiomyocyte death have been proposed, including
massive release of reactive oxygen species, calcium overload and hypercontracture development or
leukocyte infiltration within the damaged myocardium. Chemokines are known to enhance leukocyte
diapedesis at the inflammatory sites. The diterpenoid marrubiin from Leonotis leonurus extracts was
found to dampen the hypercoagulable and inflammatory state associated with obesity, therefore
providing a cardioprotective role. It is clear that marrubiin has been reported to manifest its effects as
an anti-inflammatory agent through the suppression of NF-κB signalling pathway. Chemokines recruit
leukocytes to inflammatory sites; an agent that inhibits RANTES possesses cardioprotective action
through its anti-inflammatory property [11]. The marrubiin extract from L. leonurus inhibited the
secretion of RANTES, therefore marrubiin has the potential of being a cardioprotective agent as it
inhibited platelet aggregation, hypercoagulation and the inflammation in vivo. This provided the first
evidence that inhibition of CCL5/RANTES exerts cardioprotective effects during early myocardial
reperfusion, through its anti-inflammatory properties. It was found to dampen the hypercoagulable and
the inflammatory state associated with obesity, thereby providing a cardioprotective role.
6.4. Gastroprotective (Anti Ulcer) Activity
The treatment of gastric ulcers includes antacids and antisecretory drugs, mainly antagonists of
histamine-2 receptors and proton pump inhibitors, which block the secretion of gastric acid. These
treatments are effective, but may have many adverse effects, such as hypersensitivity, arrhythmia,
impotence, gynecomastia and hematopoietic disorders. The search for new antiulcer therapies that can
combine efficacy and lower toxicity like M. vulgare a plant used for treating various diseases,
including gastric ulcers [10] becomes justifiable and warrants examination. The antiulcer activity of
the methanolic extract obtained from leaves of M. vulgare and its main compound, the diterpene
marrubiin, was examined by Paula de Oliveira A. et al. (2011). The gastroprotective activity of
marrubiin was established through in vivo analysis on assays using different protocols (ulcers induced
by ethanol/HCl and indomethacin/bethanecol) in mice [7]. In both models, marrubiin (25 mg/kg)
produced a significant reduction when compared with the control group (p < 0.01). Marrubiin was
found to contribute to an increase in the defensive mechanisms of the stomach through the production
of prostaglandin synthesis [10] and the stimulation of the bronchial mucosa [6]. It is reported to have
antiarrhythmic properties and may induce the cardiac irregularities. The results also demonstrated that
the gastroprotection by marrubiin is related to the activity of NO and endogenous sulfhydryls, which are
important gastroprotective factors that have vasodilator effects, thereby inhibiting gastric acid secretion.
Pre-treatment with L-NAME revealed that the gastroprotective effect of marrubiin is strongly related to
Molecules 2013, 18 9055
NO synthesis, an important endogenous transmitter released by the endothelial cells when mucosa is
exposed to damaging agents.
6.5. Anti-Diabetic Activity
Leonotis leonurus an indigenous South African plant has been reported to be traditionally used to
cure hypertension [12]. Jao evaluated the aqueous extract for its cardiovascular and hypotensive effects
in rats and observed that the arterial blood pressures and heart rates of normal, anaesthetized
spontaneously hypertensive rats were significantly reduced [52]. It was confirmed that the ethanolic
extract of L. leonurus reduced plasma protein uptake and that marrubiin is responsible for the
stimulation of insulin secretion in 1NS-1 cells of obese rat model. The anti-diabetic activity of
marrubiin was studied in vivo using an obese rat model [4], which resulted in an increase in respiratory
rate and mitochondrial membrane potential under hyperglycemic conditions. Marrubiin was found to
increase insulin secretion and LDL-cholesterol in this study. In vitro analysis carried out on marrubiin
confirmed the stimulatory index of INS-1 cells cultured under hyperglycemic conditions, and this was
significantly increased in cells exposed to them. Furthermore the insulin and glucose transporter-2
gene expressions were significantly increased by marrubiin [9]. INS-1 cells cultured under
hyperglycaemic conditions increased chronic insulin secretion by 1.5-fold relative to the
normoglycaemic control (NGC) cells (p < 0.05).
6.6. Antispasmodic and Ca
2+
Antagonist Potential
Hussain et al. have demonstrated the antispasmodic potential of marrubiin when administered to
rabbit jejunum. It caused concentration-dependent relaxation and high K (80 mM)-induced
contractions, very similar to that caused by verapamil, indicating that marrubiin exhibits spasmolytic
activity possibly mediated through the Ca
2+
channel blocking action [6].
6.7. Antioedematogenic Activity
Marrubiin was evaluated against carregeenan-induced oedema because it is known to be involved in
the release of different inflammatory agents. Its test is highly sensitive to non-steroidal anti-inflammation
drugs, and it has long been accepted as a useful phlogistic tool for investigating new anti-inflammatory
drugs. Marrubiin has significant inhibitory effects on ear oedema. It has been established that kinins
are pro-inflammatory peptides that mediate a variety of pathophysiological responses. These actions
occur through the stimulation of two pharmacologically distinct receptor subtypes viz; B1 and B2. The
fact that there is strong kinin participation in oedematogenic components of the formalin test indicated
that marrubiin reinforces the hypothesis of the role of kinins in the marrubiin anti-inflammatory
actions. However, the inhibitory activity of marrubiin on pro-allergic agents such as serotonin and
histamine was tested with the compound 4880, which has significant inhibitory effects on compound
4880-induced ear oedema, indicating the possible existence of stabilizing mastocyte membranes,
analogous to an allergic status. Marrubiin showed a dose-dependent effect when the oedema was
induced by these agents, suggesting non-specific receptor actions, following the release of serotonin
and histamine. Various pro-inflammatory agonists were tested against marrubiin in oedema
Molecules 2013, 18 9056
development using microvascular extravasation of Evans blue dye. The results demonstrated that
marrubiin presents global inhibitory effects on different phlogistic agents, including histamine, and to
a lesser extent, substance P, participating to a greater or lesser degree in the inflammatory process.
Antioedematogenic activity of marrubiin was analyzed in a model of microvascular leakage in mice
ears. The results as reported by Stulzer show that it exhibits significant and dose-related
antioedematogenic effects. The other phlogistic agonists, such as prostaglandin E2 (PGE2), caused
inhibition of less than 50%. In addition, marrubiin (100 mg/kg) significantly inhibited the
OVO-induced allergic oedema in actively sensitized animals (maximal inhibition 67.6 ± 4%) [2,9].
6.8. Analgesic Activity
Success was obtained in reducing the lactone ring of marrubiin which led to the formation of
marrubiinic acid (9) and two esterified derivatives exhibited significant analgesic effect using the
writhing test in mice. Marrubiinic acid showed higher activity and excellent yield, and its analgesic
effect was confirmed in other experimental models of pain, suggesting its possible use as a new and
useful analgesic agent [10].
6.9. Anticoagulant and Antiplatelet Activities
Anticoagulant and antiplatelet activities of marrubiin have also been detected. According to
Mnonopi et al. marrubiin was found to significantly prolong activated partial thromboplastin time
(APTT) with fibrin and D-dimer formation being drastically decreased TNF-α and RANTES secretion
were also reduced by the extract and marrubiin when measured in the obese rat model relative to the
controls. Calcium mobilization and TXB2 synthesis were also suppressed [4]. Several diterpenoids
from M. cylleneum and M. velutinum were tested for their cytotoxic effects against various cancer cell
lines and their immunomodulating potential in human peripheral blood mononuclear cells were
standardized. The results showed a differential cytotoxicity of compounds as well as their ability to
improve selected lymphocyte functions [22].
6.10. Vasorelaxant Potential
The result of Khan et al. revealed that marrubiin present among other constituents from Phlomis
bracteosa exhibited vasodilator action via a combination of endothelium-independent Ca
2+
antagonism
and endothelium dependent Nù-nitro-L-arginine methyl ester-sensitive nitric oxide-modulating
mechanisms [53]. The crude extracts of the aerial parts of M. vulgare showed appreciable potently in
vitro inhibition of KCl-induced contraction of rat aorta [11] thereby indicating vasorelaxant properties
in this medicinal plant extract.
7. Conclusions
Marrubiin exists in high concentrations in many traditionally important Lamiaceae species and has
demonstrated excellent pharmacological properties with high safety margins in different inflammation
models. The low turnover, high stability and little catabolism further indicate its importance and it
Molecules 2013, 18 9057
comparatively, little has been done concerning its chemical modifications and the examination of the
associated bioassay data merits continued chemical investigation.
Acknowledgements
The authors are grateful to Benjamin Rodriguez (Madrid, Spain) for his valuable discussions during
the preparation of the manuscript.
Conflict of Interests
The authors declare no conflict of interest.
References
1. Abbondanza, A.A.; Breccia, A. Crespi. Biosynthesis of labeled molecules: mechanism of
biosynthetic reactions of precursors of furanicterpenes and phytosterol. Prepn. Bio-Med. Appl.
Labeled Mol. Proc. Symp. Venice 1964, 67, 95–101.
2. Marrelli, M.; Conforti, F.; Rigano, D.; Formisano, C.; Bruno, M.; Senatore, F.; Menichini, F.
Cytotoxic properties of Marrubium globosum ssp. libanoticum and its bioactive components.
Nat. Prod. Comm. 2013, 8, 567–569.
3. Mnonopi, N.; Levendal, R.A.; Davies-Coleman, R.T.; Frost, C.L. The cardioprotective effects of
marrubiin, a diterpenoid found in Leonotis leonurus extracts. J. Ethnopharmacol. 2011, 138, 67–75.
4. Laonigro, G.; Lanzetta, R.; Parrilli, M.; Adinolfi, M.; Mangoni, L. The configuration of the
diterpene spiro ethers from Marrubium vulgare and from Leonotis leonurus. Gazz. Chim. Ital.
1979, 109, 145–150.
5. Hussain, J.; Ullah, R.; Khan, A.; Mabood, F.; Shah, M.R.; Al-Harrasi, A.; Gilani, A.H.
Antispasmodic and Ca
++
antagonist potential of marrubiin, a labdane type diterpene from
Phlomis bracteosa. J. Pharmacy Res. 2011, 4, 178–180.
6. Zaabat, N.; Hay, A.E.; Michalet, S.; Darbour, N.; Bayet, C.; Skandrani, I.; Chekir-Ghedira, L.;
Akkal, S.; Dijoux-Franca, M.G. Antioxidant and antigenotoxic properties of compounds isolated
from Marrubium deserti de Noe. J. Food Chem. Toxicol. 2011, 49, 3328–3335.
7. Paula de Olivera, A.; Santin, J.R.; Lemos, M.; Klein, L.C.J.; Couto, A.G.; Bittencourt, C.M.S.;
Cechinel, F.; Valdir, F.A. Gastroprotective activity of methanol extract and marrubiin obtained
from leaves of Marrubium vulgare L. (Lamiaceae). J. Pharm. Pharmacol. 2011, 63, 1230–1237.
8. Piccoli, P.N.; Bottini, R. Accumulation of the labdane diterpene marrubiin in glandular trichome
cells along the ontogeny of Marrubium vulgare plants. Plant Growth Regul. 2008, 56, 71–76.
9. Hellen, K.; Stulzer, H.K.; Tagliari, M.P.; Zampirolo, J.A.; Cechinel-Filho, V.; Schlemper, V.
Antioedematogenic effect of marrubiin obtained from Marrubium vulgare. J. Ethnopharmacol.
2006, 108, 379–384.
10. Meyre-Silva, C.; Yunes, R.A.; Schlemper, V.; Campos-Buzzi, F.; Cechinel-Filho, V. Analgesic
potential of marrubiin derivatives, a bioactive diterpene present in Marrubium vulgare
(Lamiaceae). Farmaco 2005, 60, 321–326.
Molecules 2013, 18 9058
11. El Bardai, S.; Morel, N.; Wibo, M.; Fabre, N.; Llabres, G.; Lyoussi, B.; Quetin-Leclercq, J.
The vasorelaxant activity of marrubenol and marrubiin from Marrubium vulgare. Planta Med.
2003, 69, 75–77.
12. De Jesus, R.A.P.; Cechinel-Filho, V.; Oliveira, A.E.; Schlemper, V. Analysis of the
antinociceptive properties of marrubiin isolated from Marrubium vulgare. Phytomedicine 2000, 7,
111–115.
13. Knoess, W.; Zapp, J. Accumulation of furan labdane diterpenes in Marrubium vulgare and
Leonurus cardiaca. Planta Med. 1998, 64, 357–361.
14. Rodrigues, C.A.; Savi, A.O.S.; Schlemper, V.; Reynaud, F.; Cechinel-Filho, V. An improved
extraction of marrubiin from Marrubium vulgare. Chromatographia 1998, 47, 449–450.
15. De Souza, M.M.; De Jesus, R.A.P.; Cechinel-Filho, V.; Schlemper, V. Analgesic profile of
hydroalcoholic extract obtained from Marrubium vulgare. Phytomedicine 1998, 5, 103–107.
16. Taboada, J.; Camino, M.; Gil, N.M.; Campos, E.; Guerrero, C. Antifeedant activity of marrubiin
and reduced marrubiin. Rev. Lat. Am. Quim. 1995, 23, 120–125.
17. Knoess, W. Furaniclabdane diterpenes in differentiated and undifferentiated cultures of
Marrubium vulgare and Leonurus cardiac. Plant Physiol. Biochem. 1994, 32, 785–789.
18. Mohamed, A.M.A. Constituents of the aerial parts of Marrubium vulgare L. J. Pharm. Sci. 1993,
9, 92–98.
19. Rey, J.P.; Levesque, J.; Pousset, J.L. Extraction and high-performance liquid chromatographic
methods for the γ-lactones parthenolide (Chrysanthemum parthenium Bernh.), marrubiin
(Marrubium vulgare L.) and artemisinin (Artemisia annua L.). J. Chromatogr. A 1992, 605, 124–128.
20. Savona, G.; Piozzi, F.; Aranguez, L.M.; Rodriguez, B. Diterpenes from Marrubium sericeum,
Marrubium supinum and Marrubium alysson. Phytomedicine 1979, 18, 859–860.
21. Argyropoulou, C.; Karioti, A.; Skaltsa, H. Labdane Diterpenes from Marrubium thessalum.
Phytochemistry 2009, 70, 635–640.
22. Argyropoulou, C.; Karioti, A.; Skaltsa, H. Minor labdane diterpenes from Marrubium thessalum.
Chem. Biodivers. 2011, 8, 1880–1890.
23. Karioti, A.; Skopeliti, M.; Tsitsilonis, O.; Heilmann, J.; Skaltsa, H. Cytotoxicity and
immunomodulating characteristics of labdane diterpenes from Marrubium cylleneum and
Marrubium velutinum. Phytochemistry 2007, 68, 1587–1594.
24. Mnonopi, N.; Levendal, R.A.; Mzilikezi, N.; Frost, C.L. Marrubiin, a constituent of Leonotus
leonurus, alleviates diabetic symptoms. Phytomedicine 2012, 19, 488–493.
25. Meyre-Silva, C.; Cechinel-Filho, V. A review of the chemical and pharmacological aspects of the
genus Marrubium. Curr. Pharm. Design 2010, 16, 3503–3518.
26. Karioti, A.; Heilmann, J.; Skaltsa, H. Labdane diterpenes from Marrubium velutinum and
Marrubium cylleneum. Phytochemistry. 2005, 66, 1060–1066.
27. Citoglu, G.S.; Aksit, F. Occurrence of marrubiin and ladanein in Marrubium trachyticumboiss.
Biochem. Syst. Ecol. 2002, 30, 885–886.
28. Takeda, Y.; Yanagihara, K.; Masuda, T.; Otsuka, H.; Honda, G.; Takaishi, Y.; Sezik, E.; Yesilada, E.
Labdane diterpenoids from Marrubium globosum ssp. Globosum. Chem. Pharmaceut. Bull. 2000,
48, 1234–1235.
Molecules 2013, 18 9059
29. Sagitdinova, G.V.; Makhmudov, M.K.; Tashkhozhaev, B.; Mal'tsev, I.I. Labdanoids of
Marrubium anisodon. Khim.Prir.Soedin. 1996, 1, 54–58.
30. Uzma R.M.; Rashad, M.; Abdul, M.; Bakhat, A.; Muhammad, S.; Rasool, B.T. Spiraeamide,
New sphingolipid from Spiraea brahuica. J. Asian. Nat. Prod. Res. 2012, 14, 601–606.
31. The data collected without correction from SciFinder (https://scifinder.cas.org) (accessed on 17
May 2012).
32. Lichtenthaler, H.K.; Rohmer, M.; Schwender, J. Two independent biochemical pathways for
isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol. Plant. 1997, 101,
643–652.
33. Rohmer, M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in
bacteria, algae and higher plants. Nat. Prod. Rep. 1999, 16, 565–574.
34. Knoss, W.; Reuter, B.; Zapp, J. Biosynthesis of the labdane diterpene marrubiin in Marrubium
vulgare via a non-mevalonate pathway. Biochem. J. 1997, 326, 449–454.
35. Paseshnichenko, V.A. A new alternative non-mevalonate pathway for isoprenoid biosynthesis
ineubacteria and plants. Biochemistry (Mosc.) 1998, 63, 139–148.
36. Cunningham F.X.; Lafond, T.P.; Gantt, E. Evidence of a role for LytB in the non-mevalonate
pathway of isoprenoid biosynthesis. J. Bacteriol. 2000, 118, 5841–5848.
37. Hussein, A.A.; Meyer, M.J.J.; Rodriguez, B. Complete
1
H and
13
C NMR assignments of three
labdane diterpenoids isolated from Leonotis ocymifolia and six other related compounds.
Magn. Reson. Chem. 2003, 41, 147–151.
38. Bergeron, C.; Charbonneau, J.; Desriches, B.; Gosselin, A. Influence of supplemental lighting and
irrigation on mineral composition growth and premarrubin content of horehound, Marrubium
vulgare L. J. Herbs, Spices Med. Plants 1995, 3, 3–15.
39. Hon, P.M.; Wang, E.S.; Lam, S.K.M.; Choy, Y.M.; Lee, C.M.; Wong, H.N.C. Preleoheterin and
leoheterin, two labdane diterpenes from Leonurus heterophyllus. Phytochemistry 1993, 33,
639–641.
40. Rustaiyan, A.; Mosslemin, K.M.H.; Zdero, C. Furanolabdanes and related compounds from
Ballota aucheri. Phytochemistry 1992, 31, 344–346.
41. Henderson, M.S.; McCrindle, R. Premarrubiin. A diterpenoid from Marrubium vulgare. J. Chem.
Soc. C 1969, 15, 2014–2015.
42. Tasdemir, D.; Wright, A.D.; Sticher, O.; Çalıs, I.; Linden, A. Detailed
1
H- and
13
C-NMR
investigations of some diterpenes isolated from Leonurus persicus. J. Nat. Prod. 1995, 58,
1543–1554.
43. Tasdemir, D.; Sticher, O.; Çalıs, I.; Linden. A. Further Labdane diterpenoids isolated from
Leonurus persicus. J. Nat. Prod. 1997, 60, 874–879.
44. Govindasamy, L.; Rajakannan, V.; Velmurugan, D.; Banumathi, S.; Vasanth, S. Structural studies
on three plant diterpenoids from Leonotis nepetaefolia. Cryst. Res. Tech. 2002, 37, 896–909.
45. He, F.; Lindqvist, C.; Harding, W.W. Leonurenones A–C: Labdane diterpenes from Leonotis
leonurus. Phytochemistry 2012, 83, 168–172.
46. Wu, H.; Li, J.; Fronczek, F.R.; Ferreira, D.; Burandt, C.L.; Setola, V.; Roth, B.L.;
Zjawiony, J.K.L. Diterpenoids from Leonotis leonurus. Phytochemistry 2013, 91, 229–235.
Molecules 2013, 18 9060
47. Naidoo, D.; Maharaj, V.; Crouch, N.R.; Ngwane, A. New labdane-type diterpenoids from
Leonotis leonurus support circumscription of Lamiaceae. Biochem. Syst. Ecol. 2011, 39, 216–219.
48. Ruzicka, L. The isoprene rule and the biogenesis of terpenic compounds. Experientia 1953, 9,
357–367.
49. Busby, M.C.; Day, V.W.; Day, R.O.; Wheeler, D.M.S.; Wheeler, M.M.; Day, C.S. The
stereochemistry and conformation of marrubiin: An X-Ray Study. Proc. R. Ir. Acad. 1983, 83B,
21–31.
50. Marrubiin-Compound Summary (CID 73401). Available online: http://pubchem.ncbi.nlm.
nih.gov/summary/summary.cgi?cid=73401 (accessed on 17 May 2012).
51. Krejci, I.; Zadina R. Die Gallentreiben de wirkung von marrubiin und marrabinsäure. Planta Med.
1959, 7, 1–7.
52. Ojewole, J.A.O. Hypotensive effect of Leonotis leonurus. Amer. J. Hypertens. 2003, 16, 213–225.
53. Khan, A.; Ullah, R.; Mustafa, M.R.; Hussain, J.; Murugan, D.D.; Hadi, A.H.B.A. Vasodilator
effect of phlomis bracteosa constituents is mediated through dual endothelium-dependent and
endothelium-independent pathways. Clin. Exp. Hypertension 2012, 34, 132–139.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).
... e hydroalcoholic extract of selected medicinal herbs was reported to possess significant pharmacological properties by inhibiting the action of neurotransmitters such as acetylcholine, prostaglandin E, histamine, and bradykinin [16][17][18][19]. e various secondary metabolites of different categories such as marrubiin (diterpene), arenarioside, acteoside, forsythoside B, and ballotetroside (phenylpropanoids esters) have been isolated and identified from the plant extracts [20][21][22][23][24]. e pharmacological potential of marrubiin as anti-inflammatory, vasorelaxant, antioxidant, and calcium channel (L-type) blocker has been well established [25]. e other diterpenes present in the plant extract like marrubinic acid and marrubenol also exhibited analgesic and antiedematogenic activities [23]. ...
... e selected medicinal plant, Marrubium vulgare L., and its active constituent, marrubiin, are reported to possess numerous pharmacological properties such as vasorelaxant, antioxidant, antihypertensive, antispasmodic, anti-inflammatory, antiedematogenic, and antidiabetic properties [17,25]. Hence, in the present study, the plant active and hydroalcoholic extract of the herb is explored for its neuroprotective potential against TBI. ...
Article
Full-text available
Traumatic brain injuries due to sudden accidents cause major physical and mental health problems and are one of the main reasons behind the mortality and disability of patients. Research on alternate natural sources could be a boon for the rehabilitation of poor TBI patients. The literature indicates the Marrubium vulgare Linn. and its secondary metabolite marrubiin (furan labdane diterpene) possess various pharmacological properties such as vasorelaxant, calcium channel blocker, antioxidant, and antiedematogenic activities. Hence, in the present research, both marrubiin and hydroalcoholic extracts of the plant were evaluated for their neuroprotective effect after TBI. The neurological severity score and oxidative stress parameters are significantly altered by the test samples. Moreover, the neurotransmitter analysis indicated a significant change in GABA and glutamate. The histopathological study also supported the observed results. The improved neuroprotective potential of the extract could be attributed to the presence of a large number of secondary metabolites including marrubiin.
... Although plants have bitter taste because of terpenes (POPOOLA et al., 2013), in our study, there was no meat taste alteration when comparing the MV-or LS-treated animals to control group. A combined administration of powdered clove (Syzygium aromaticum) and agrimony (Agrimonia eupatoria) or lemon balm (Melissa officinalis) added to poultry drinking water demonstrated a fairly positive effect on meat sensory evaluation when compared to control group (MARCINČAK et al. 2011). ...
Article
Full-text available
The food industry is in a continuous search for strategies of reducing of antibiotic residues in livestock production, given the development of antibiotic-resistant bacteria. In that context, there is a consistent increasing in the usage of alternative feed phytogenic additives. Due to the pharmacological, the plants Marrubium vulgare and Leonurus sibiricus, are both potential replacements for growth-promoting antibiotics. This study evaluated the productive performance and analyze the sensory qualities in the meat of broiler that were administered M. vulgare and L. sibiricus infusions. A total of 320 chicks from an poultry farm were distributed in 8 groups groups according treatments by 28 days: Control Group (Saline); Positive control (tylosin 1%, 50 ppm); Groups of M. vulgare (MV) infusion: 2% (MV2), 4% (MV4) and 6% (MV6); and groups treated with L. sibiricus (LS) infusion: 2% (LS2), 4% (LS4) and 6% (LS6), all of them received relative doses corresponding to the live weight percentage in milliliter. There was weght gain in MV6 and LS6 group and a better food conversion in MV4, MV6, LS4, and LS6. In addition, weight gain and enhancement of the pectoral muscles were observed in these groups. The sensory analysis revealed that the broilers’ meat of MV had a more intense flavor. For marketing purposes the meat from birds that received LS had a better demand. Improvement of productive performance and sensory qualities of the broilers meat might be associated with the phytobiotic activity in it. Therefore, MV and LS can be used as natural growth promoter in broilers.
... Furthermore, the presence of marrubiin in several Lamiaceae species and the pharmacological efficacy of this terpenoid has been well documented. Several studies and reviews illustrated the effect of L. leonurus extracts as cardioprotective, antidiabetic, gastroprotective, antispasmodic and analgesic agents [10,[356][357][358]. Leonotis nepetifolia has been used to treat influenza, chest conditions, insect stings and snake bites, whereas L. ocymifolia and its varieties have documented uses to treat high blood pressure, poor blood circulation, rheumatism, diabetes, nerve weakness and snakebites [359][360][361]. ...
Article
Full-text available
The Lamiaceae is undoubtedly an important plant family, having a rich history of use that spans the globe with many species being used in folk medicine and modern industries alike. Their ability to produce aromatic volatile oils has made them valuable sources of materials in the cosmetic, culinary, and pharmaceutical industries. A thorough account of the taxonomic diversity, chemistry and ethnobotany is lacking for southern African Lamiaceae, which feature some of the region’s most notable medicinal and edible plant species. We provide a comprehensive insight into the Lamiaceae flora of southern Africa, comprising 297 species in 42 genera, 105 of which are endemic to the subcontinent. We further explore the medicinal and traditional uses, where all genera with documented uses are covered for the region. A broad review of the chemistry of southern African Lamiaceae is presented, noting that only 101 species (34%) have been investigated chemically (either their volatile oils or phytochemical characterization of secondary metabolites), thus presenting many and varied opportunities for further studies. The main aim of our study was therefore to present an up-to-date account of the botany, chemistry and traditional uses of the family in southern Africa, and to identify obvious knowledge gaps.
Chapter
This book provides an update on heterocyclic compounds that serve as key components of anti-cancer agents administered in pre-clinical settings. Many of the compounds highlighted in the book are being actively investigated for the bioactive properties against a range of cancer cell lines. There is potential for heterocyclic compounds to design agents that can target specific molecules to treat different types of cancers. Chapters are contributed by experts in pharmaceutical chemistry and are written to give a general overview of the topic to readers involved in all levels of research and decision-making in pharmaceutical chemistry and anti-cancer drug design. Part 1 of the book set covers these topics: - Heterocyclic anticancer compounds derived from natural sources with their mechanism of action - The role of terpenoids as anticancer compounds: an insight into prevention and treatment - Recent advances in synthesis and anticancer activity of benzothiazole hybrids as anticancer agents - Structure-activity relationship studies of novel hybrid quinoline and quinolone derivatives as anticancer agents - Tetrazoles: structure and activity relationship as anticancer agents - Progress in nitrogen and oxygen-based heterocyclic compounds for their anticancer activity: an update (2017-2020)
Article
Introduction: There is growing concern that co-administered herbal medicines may alter the pharmacokinetics and, therefore, the efficacy and toxicity of Western drugs. The aim of this study was to investigate the potential membrane permeation modulating effects of four herbal extracts, i.e., Harpagophytum procumbens, Hoodia gordonii, Leonotis leonurus, and Vitis vinifera on a model compound, Rhodamine 123 (RH-123). Methods: An in vitro permeation model, i.e., excised pig intestinal tissue, mounted to test chambers in a Sweetana-Grass diffusion apparatus, was used to measure the bi-directional transport of RH-123 in the presence and in the absence of four herbal extracts. The concentration of transported RH-123 in each sample was determined by means of fluorescence spectroscopic analysis. The integrity of the mounted jejunum tissue during experimentation was confirmed by measuring the permeation of Lucifer Yellow through these membranes. Trans-epithelial electrical resistance (TEER) of the mounted membranes was also measured at the onset and termination of each experiment to monitor whether tight junction modulation occurred. Results: H. procumbens extract increased the secretory transport of RH-123, indicative of the induction of P-glycoprotein (P-gp) mediated efflux. H. gordonii extract also increased RH-123’s absorptive transport, coupled with a subsequent decrease in its secretory transport, indicating the P-gp related efflux inhibition. Contrary, L. leonurus extract reduced RH-123’s absorptive transport, accompanied by an increase in its secretory transport. V. vinifera seed extract, however, increased both the absorptive and secretory transport of RH-123. A reduction in TEER was observed in the presence of V. vinifera extract, indicating the modulation of tight junction integrity. Conclusion: The ex vivo pharmacokinetics interactions recorded in the current study suggest that the co-administration of herbal medicines could alter the extent of membrane permeation of Western drugs.
Article
Spiro-9,13-epoxy-labdane diterpenoids are commonly found in Leonurus species, particularly in Leonurus japonicus Houtt., which is a medicinal herb of long-standing use in Asia and in which such spiro-heterocycles are present in at least 38 diterpenoid natural products. Here, through generation of a transcriptome and functional characterization of six diterpene synthases (diTPSs) from L. japonicus, including three class II diTPSs (LjTPS1, LjTPS3, and LjTPS4) and three class I diTPSs (LjTPS5, LjTPS6, and LjTPS7), formation of the spiro-9,13-epoxy-labdane backbone was elucidated, along with identification of the relevant diTPSs for production of other labdane-related diterpenes. Similar to what has been found with diTPSs from other plant species, while LjTPS3 specifically produces the carbon-9 (C9) hydroxylated bicycle peregrinol diphosphate (PPP), the subsequently acting LjTPS6 yields a mixture of four products, largely labda-13(16),14-dien-9-ol, but with substantial amounts of viteagnusin D and the C13-S/R epimers of 9,13-epoxy-labda-14-ene. Notably, structure-function analysis identified a critical residue in LjTPS6 (I420) in which single site mutations enable specific production of the 13S epimer. Indeed, extensive mutagenesis demonstrated that LjTPS6:I420G reacts with PPP to both specifically and efficiently produce 9,13S-epoxy-labda-14-ene, providing a specialized synthase for further investigation of derived diterpenoid biosynthesis. The results reported here provide a strong foundation for future studies of the intriguing spiro-9,13-epoxy-labdane diterpenoid metabolism found in L. japonicus.
Article
Full-text available
The genus Hyssopus is widespread in central Asia, East Mediterranean, and Mongolian areas. It has six main species which are used as herbal remedies, such as Hyssopus officinalis which is used as a condiment and flavoring agent in food industry. The other five species are H. ambiguus, H. cuspidatus, H. latilabiatus, H. macranthus, and H. seravschanicus. Its species are used in the treatment of various ailments such as cold, cough, loss of appetite, fungal infection, and spasmodic condition. Its constituents especially essential oils are popularly used as an additive in beverages, foods, and cosmetics. The volatile constituents are used for aroma in the food industry, cosmetic industry, and household products. The important active constituents in its essential oils are β-pinene, pinocamphone, isopinocamphone, and other terpenoids. Hyssopus genus is also bundled with other secondary metabolites including flavonoids luteolin, quercetin, apigenin, and their glucosides, as well as phenolic compounds including ferulic, p-hydroxy-benzoic acid, protocatechuic acid, chlorogenic, and caffeic acid. Combinedly, the extracts of Hyssopus are reported to have potential antiviral and antifungal activities proven using in vitro studies, whereas in vivo investigations have reported the crucial role of Hyssopus extracts in plasma membrane relaxation, cytotoxic, and sedative effects. This plant is believed to be relatively safe at levels commonly used in foods; nevertheless, more studies are needed to determine the safety profile.
Article
Here, I describe a part of our efforts to develop synthetic strategies to construct bioactive natural products having a fused ring system. We have designed four chiral building blocks bearing contiguous quaternary stereocenters for the syntheses of bioactive C17-oxygenated steroids/triterpenoids and C9-oxygenated labdane diterpenoids. The compounds were stereoselectively synthesized from α-substituted glycolic acid (R)-3-methylcyclohex-2-enyl esters through Ireland-Claisen rearrangement to construct the stereocenters simultaneously. Synthetic utility of a β-type building block is highlighted by total syntheses of marrubiin (11 steps, 22%) and related seven labdane diterpene lactones, cyllenine C (12 steps, 29%), marrulactone (13 steps, 11%), marrulanic acid (14 steps, 10%), marrubasch F (12 steps, 14%), marrulibacetal (14 steps, 4%), marrulibacetal A (14 steps, 2%), and desertine (15 steps, 0.5%). These syntheses feature the construction of the [6.6.5]-tricyclic ring portion via a Pauson-Khand reaction, cleavage of the resultant cyclopentenone ring and an elongation of the C9 side chain by an epoxide opening reaction. The relative stereochemistry of desertine was determined to be 13R, 14S, 15S, 16R by some chemical conversions and NMR analysis. Further efforts toward total syntheses of oxygenated terpenoids using three other chiral building blocks and structure-activity relationship study of synthesized labdane diterpene lactones are currently underway in our laboratory and will be reported in due course.
Article
Supercritical CO 2 extraction is adequate for efficient exploitation of white horehound.
Article
Full-text available
Marrubium globosum Montbr. et Auch. ex Benth. ssp. libanoticum Boiss. (Lamiaceae) is a medicinal plant used in Lebanon for the treatment of inflammatory diseases, asthma, coughs and other pulmonary and urinary problems. The goal of our study was to assess the biological activity of M. globosum by testing different extracts of the aerial parts for their antiproliferative activity against human melanoma cells using the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The chloroform fraction showed the greatest activity. The compounds isolated from the extracts were also tested: the mixture of (13S)-9α,13α-epoxylabda-6β(19),16(15)-diol dilactone and (13R)-9α,13α-epoxylabda-6β(19),16(15)-diol dilactone was the most active fraction, with an IC50 value of 29.2 ± 0.06 μg/mL.
Article
From some Marrubium species endemic in the Iberian Peninsula, four new diterpenoids, 6-acetyl-marrubenol, 19-acetyl-marrubenol, premarrubenol and 6-acetyl-premarrubenol, have been isolated. The previously known diterpenes marrubiin and marrubenol have also been obtained from the same sources.
Article
Horehound plants were grown under 3 levels of aupplemental photosynthetic photon flux (PPF) (0, 50, and 100 μmol ms) and 2 irrigation regimes (continuous and intermittent) to determine if supplemental light and irrigation with constant fertilization could be used to optimize productivity. Increasing the PPF from 0 to 100 μmol ms (HPS lamps) led to significant linear, curvilinear, and quadratic effects of nitrogen, boron, and manganese, respectively, in aerial parts. Dry matter yield was not influenced by light level, but the premarrin level was lower in April (a higher total light level) as compared with February (a lower total light level). The irrigation regime modified both phosphate and active principle concentration in tissue. Intermittent nutrient solution supply decreased premarrubin concentration under the high natural light levels received by plants harvested in April.
Article
Two novel labdane-type diterpenoids were isolated from the leaves of Leonotis leonurus (Lamiaceae): 9,13-Epoxy-6-hydroxy-labdan-16,15-olide and 9,13:15,16-Diepoxy-6,16-labdanediol. Their occurrence supports recent phylogenetic reassessments of the Lamiaceae and Verbenaceae, which reflect in a more broadly circumscribed Lamiaceae.Figure optionsView in workspace Highlights ► Two new labdane-type diterpenoids isolated from the leaves of Leonotis leonurus. ► Compounds currently isolated possess the lactone between C-4 and C-6. ► Chemotaxonomic support provided for a broader recircumscribed Lamiaceae. ► Findings assist in focussing bioprospecting for forskolin-type compounds.
Article
A new diterpenoid (II) has been isolated from Marrubium vulgare L. It appears to be the major substrate from which marrubiin is generated as an artefact. Biogenetic implications are discussed.