ArticlePDF Available

Abstract

Student learning depends on the teacher's actions, which are, in turn, dependent on the teacher's knowledge base—defined here by three components: knowledge of mathematics content, knowledge of student epistemology, and knowledge of pedagogy. The purpose of this study is to construct models for teachers' knowledge base and for their development in an on-site professional development project. THEORETICAL FRAMEWORK Building on Shulman's (1986, 1987) work and consistent with current views (e.g., Cohen & Ball, 1999, 2000), Harel (1993) suggested that three interrelated critical components define teachers' knowledge base: (a) knowledge of mathematics content, (b) knowledge of student epistemology, and (c) knowledge of pedagogy: Knowledge of mathematics content refers to the breadth and, more importantly, the depth of the mathematics knowledge possessed by the teacher, particularly, their ways of understanding and ways of thinking—terms to be defined in the sequel. The content knowledge is the cornerstone of teaching for it affects both what the teachers teach and how they teach it.
Proceedings of the 28th Conference of the International
Group for the Psychology of Mathematics Education, 2004 Vol 3 pp 25–32
MATHEMATICS TEACHERS’ KNOWLEDGE BASE:
PRELIMINARY RESULTS
Guershon Harel
Kien H. Lim
University of California, San Diego UCSD & San Diego State Univ.
Student learning depends on the teacher’s actions, which are, in turn, dependent on
the teacher’s knowledge base—defined here by three components: knowledge of
mathematics content, knowledge of student epistemology, and knowledge of
pedagogy. The purpose of this study is to construct models for teachers’ knowledge
base and for their development in an on-site professional development project.
THEORETICAL FRAMEWORK
Building on Shulman’s (1986, 1987) work and consistent with current views (e.g.,
Cohen & Ball, 1999, 2000), Harel (1993) suggested that three interrelated critical
components define teachers’ knowledge base: (a) knowledge of mathematics content,
(b) knowledge of student epistemology, and (c) knowledge of pedagogy:
Knowledge of mathematics content refers to the breadth and, more importantly, the
depth of the mathematics knowledge possessed by the teacher, particularly, their
ways of understanding and ways of thinking—terms to be defined in the sequel. The
content knowledge is the cornerstone of teaching for it affects both what the teachers
teach and how they teach it.
Knowledge of student epistemology refers to teachers’ understanding of fundamental
psychological principles of learning. This includes knowledge on the construction of
new concepts.
Knowledge of pedagogy refers to teachers’ understanding of how to teach in
accordance with these principles. This includes an understanding of how to assess
both students’ existing and potential knowledge, how to utilize assessment to pose
problems that stimulate students’ intellectual curiosity, how to promote desirable
ways of understanding and ways of thinking, and how to help students solidify the
knowledge they have constructed.
Ways of Understanding and Ways of Thinking
Harel (1998) distinguished between these two categories of knowledge—ways of
understanding and ways of thinking—upon which have been elaborated by Harel and
Sowder (in press): Generally speaking, a way of understanding (WoU) refers to
either a student’s (a) meaning/interpretation of a term or sentence, (b) solution to a
problem, or (c) justification to validate or refute a proposition. A way of thinking
(WoT) refers to “what governs one’s ways of understanding, and thus expresses
reasoning that is not specific to one particular situation but to a multitude of
situations.” Harel and Sowder (in press) classified WoT into three categories:
Vol 3–3
3–26 PME28 – 2004
problem-solving approaches, proof schemes, and beliefs about mathematics. The
three categories are not mutually exclusive.
Problem-solving approaches: Examples of problem-solving approaches include
“look for a simpler problem,” “examine specific cases,” and “draw a diagram.”
Unfortunately, some teachers, in attempts to improve problem-solving performance
with students, advocate problem-solving approaches that can render sense-making in
mathematics unnecessary. “Look for a key word in the problem statement” and “look
for relevant relationships among quantities based on their units” are examples of such
approaches.
Proof Schemes: Proving is defined in Harel and Sowder (1998) as the process
employed by a person to remove or create doubts about the truth of an observation.
A distinction is made between two processes of proving: ascertaining and
persuading. “Ascertaining is a process an individual employs to remove her or his
own doubts about the truth of an observation. Persuading is a process an individual
employs to remove others’ doubts about the truth of an observation” (Harel &
Sowder, 1998, p. 241) Thus, a person's proof-scheme consists of what constitutes
ascertaining and persuading for that person. Harel and Sowder provided a taxonomy
of proof scheme, which was later refined in Harel (in press).
Beliefs: Here beliefs refer to the teacher’s views about the nature of mathematics, of
knowing mathematics, and of learning mathematics. Examples of beliefs are
“mathematics is a web of interrelated concepts and procedures” and “understanding
mathematical concepts is more powerful and more generative than remembering
mathematical procedures” (Ambrose et. al., 2003, p. 33). These are obviously
desirable beliefs. Examples of undesirable beliefs are “formal mathematics has little
or nothing to do with real thinking or problem solving” and “only geniuses are
capable of discovering or creating mathematics” (Schoenfeld, 1985, p. 43). On the
one hand, one’s beliefs influence the way one interprets a situation, understands a
mathematical statement, and approaches a problem. On the other hand, one’s beliefs
evolve as one learns and does mathematics.
METHOD
A two-year, on-site professional development research project is underway to study
the evolution of teachers’ knowledge base. The site is a public middle/high school
that offers an intensive college preparatory education for low-income student
populations. The school adopts block schedule in which each class meets five times
(four 100-minutes and one 75-minute lessons) in a two-week period. Three teachers
have participated in this project.
One class of each teacher was observed by us once or twice each week. We then met
for 30-45 minutes with the teacher a few days after each observation to discuss the
teacher’s goals for the lesson and help the teacher reflect on the activities observed
during the lesson. So far, we have conducted a total of 14 such observation-
conversation pairs per teacher. The teachers understand that the observations are not
PME28 – 2004 3–27
to evaluate their teaching ability but a source for them and for us to learn about the
learning and teaching of mathematics. All three teachers were eager to participate in
this project and have enthusiastically shared their ideas with us.
The classroom lessons (except the first one or two lessons) are videotaped and the
conversations are audio-taped. During the teacher-researcher conversation, a teacher
shares his (or her) objectives and rationales for his teaching actions, his thoughts
about students’ WoU and WoT, and her or his plans for subsequent lessons. We pose
mathematical and/or didactical situations to test our hypotheses about specific aspects
of the teachers’ knowledge base.
At present, we have analyzed the first three observation-conversation pairs for one
Algebra II teacher whom we call Bud (a pseudo-name). The analysis includes
dividing each observation/conversation into segments (roughly speaking a segment is
a self-contained episode of an observed classroom activity or of a dialogue in a
conversation) and analyzing each segment with the previous observation-
conversation pairs in mind.
RESULTS AND DISCUSSION: FOCUS ON THE CONCEPT OF FUNCTION
Conversations
The following is an excerpt from a dialogue between the first author (H) and Bud (B).
It reveals certain aspects of Bud’s way of understanding the concept of function:
H: Do you think that they [the students] know what function is?
B: Not really. [My] last year class is an indication that they don’t really understand
what a function is?
H: What is for you understanding function? What kind of [student]
understanding of functions would [make you] happy?
B: Well if they can given a variety Given information in a variety of ways,
whether it is a table or a graph, or equation, if they can tell me whether it’s a
function and why, and if they can give me some [examples of those] that’s not a
function or explain why something is not ... a function, and explain mathematically
why it can’t be a function. Then I, then I will be satisfied that they’ve understood ...
For Bud, understanding functions seems to mean being able to determine whether a
graph, a table, or an expression is a function and provide examples and non-examples
of function. He further indicated that his “students knew the definition of a function,
but they couldn’t take it and see it in a graph. … They have problems putting the
definition to use.” He attributed their difficulties to their lack of understanding the
concept of ordered pair of numbers and graph.
When asked to consider the need—from the student’s viewpoint—of determining
whether a given situation is a function, he said:
…, much of what they are going to do in math relates to the family of functions. …,
and then we talk about non-functions, we talk about, I mean, this is the way I’ve
3–28 PME28 – 2004
always learned it. Here is a function, there is a non-function. The way I learned it,
so I am teaching the way I’ve learned it.
Bud’s response suggests that his teaching was content driven rather than student
driven. The question of why students would be intrinsically interested in the concept
of function is not part of his epistemological or pedagogical consideration. Based on
our observations so far, Bud seems to view school mathematics as a fixed set of
concepts and procedures that are to be delivered to and remembered by students.
These concepts and procedures can be organized systematically into topics and
subtopics and can be imparted to students.
In an attempt to advance Bud’s knowledge base on the concept of function, we
offered him problems whose context can potentially stimulate reasoning in terms of
functions. The following problem is an example:
(I) A pharmacist is to prepare 15 milliliters of special eye drops for a
glaucoma patient. The eye-drop solution must have a 2% ingredient, but
the pharmacist only has 10% solution and 1% solution in stock. Can the
pharmacist use the solutions she has in stock to fill the prescription?
(II) The same pharmacist receives a large number of prescriptions of
special eye drops for glaucoma patients. The prescriptions vary in
volume but each requires a 2% active ingredient. Help the pharmacist
find a convenient way to determine the exact amounts of the 10% solution
and 1% solution needed for a given volume of eye drops.
Part II, for example, is likely to help students interpret situations in terms of function.
Bud viewed such problem as an application problem appropriate merely for
enrichment activities, not to be part of the main curriculum that he is committed to
teach. He did use this problem but offered it as the Problem of the Week. He
commented that his students had difficulties with the chemistry aspect of the above
problem: “I think it wasn't so much the math part that came with the problem, I think
more of the problem came from...throwing in chemistry terms into the mix, … the
solution and … the terminology.” For Bud, the solution of this problem consists of
two parts: the process of interpreting the problem statement is not considered
mathematics but chemistry. The mathematical part begins when one write the
algebraic equations and solves their unknowns.
H: So you have a plan of how to connect this [the pharmacist problem] to the
concept of function.
B: Right, well, umm, I guess I started thinking about more in terms of linear functions
instead of functions in general.
H: Oh, linear functions.
B: I don't know if that matters, umm, just cause I originally, as soon as I saw it I just
thought two linear equations, that umm, cause I can relate it to, that way I can relate
it to slope, I can relate it to y-intercept, I can relate it to solving systems …
PME28 – 2004 3–29
Bud viewed this problem as one that can be used to practice linear functions, rather
than a situation where one can think in terms of the process conception of function:
for any input T (the volume of the prescribed eye-drop solution with 2% active
ingredient), one gets the output
x (the volume of the 1% solution) from the equation
0.01 0.10( ) 0.02
x
T x T+ = . Even if Bud did possess the way of thinking of
interpreting situations in terms of function, it was not spontaneous for him. As a
consequence, he did not attempt to set it as a cognitive objective.
Observations
In his first lesson on the concept of functions, Bud introduced the notions of
dependent and independent variables, the definition of function, and the domain and
range of a function. He mainly emphasized concept definitions and literal meaning
of terms. For example, after discussing the literal meaning of depend on something,
Bud attempted to relate it to the mathematical meaning of dependent. “I depend on
the internet [otherwise] I couldn’t talk to friends. OK. Just like you guys depend on
things, equation has two parts and one part depends on another.”
B: Does anybody know what the two parts to an equation are?
S1: The number that makes …
B: Well … No, because we are just talking about the equation. An equation just
doesn’t have one answer.
S2: Isn’t the parts [of both sides of the] equal sign having to be equal to each other?
B: Ummm…
S2: Yes. Say, yes.
B: Kind of yeah but not really what I’m going for.
S3: The independent variable, and the dependent variable (not completely audible)
B: The independent variable and the dependent variable. The independent part and the
dependent part.
Bud was particularly focused on his own way of understanding the concept of
function that he ignored those of his students. For example, S1 attempted to answer
Bud’s question “Does anybody know what the two parts to an equation are?” by
saying how he understood the meaning of an equation. Rather than trying to build on
S1’s WoU, Bud chose to reject S1’s answer. His style of exchange with students is
generally not of a free discussion but of an attempt to deliver his own knowledge.
The following excerpt shows that some students had difficulty with the “uniqueness
to the right” property (i.e., for an input value there could be only one output value).
B: … More or less a parabola, a little skewed but that’s OK. Is it going to be a
function? [S1], why? You are shaking your head.
S1: (inaudible)
3–30 PME28 – 2004
B: OK. For each x I have, like say OK, this x right here, [if I’m looking at] this x, how
many values of
y does it have to match up with?
S2: One.
B: It has one right there. Is there any place on this graph that has more than one
y value
for the
x?
S3: (said something about 2
x values for 1 y value.)
B: Different thing. It’s a good question. We will get to that eventually. His question
was, what if [we] look at it backwards, I think. What if, you are looking at the
y,
and say, because this value of the
y, you will notice that it has how many x values?
S4: Two.
B: Two. For, being a function, that doesn’t matter? Excellent question, we are going
to deal with that later. It has to do with inverse functions and things like that. But
for now, for functions, all we are looking at, for each
x, there is only one y.
Bud did not seem to empathize with students’ struggle in understanding why a
function must have one
y-value for each x-value and not the other way around.
Instead of addressing this difficulty, he resorted to a different issue—that of the
inverse function—a concept the students had not been exposed to at the time.
Student’s difficulty with the uniqueness-to-the-right property surfaced again when he
discussed whether a line is a function; his students were unable to understand why a
horizontal line is a function but a vertical line is not. Bud believed that the concept
definition (in the sense of Tall & Vinner, 1981) alone is sufficient for students to
overcome their difficulties with the concept of function.
In his lesson on linear function, he discussed the characteristics of linear function, the
names and WoU for
m and b in y mx b= + , the procedure for graphing y mx b= +
without plotting points, and the procedure for finding the equation of the line passing
through two points whose coordinates are given.
B: What do you think something that is linear is going to look like?
S1: Straight.
S2: Line.
B: Line. So if it is a linear function it could be a straight up and down line then? It
could be a vertical line?
S’s: No.
B: Why, why can’t I have a vertical line if I want a linear function?
S3: [A vertical line] isn’t a function.
B: Right. Vertical lines remember aren’t function. When I say linear functions, I
am not talking about vertical lines.
The above excerpt suggests a view that mathematical facts are to be remembered. In
the following excerpt, Bud’s question “does anybody remember how you could do it
PME28 – 2004 3–31
using slope and y-intercept” suggests that the procedure for sketching is something
that one should memorize rather than reconstruct.
B: What, when you graph something, y equals, say 2x plus 5, what do you do first?
S1: Plug in the number for
x.
S2: Well, I know … (said something about making a table).
B: Well, you could make an in-and-out table. Does anybody remember how you could
do it using slope and
y-intercept though?
S3: Yes
B: How so?
S3: Get, err, get numbers for
x, plug in …(inaudible) …x, you get negative 3.
B: Well, that’s making in-and-out table. I want to use; I want to do it without having to
make a table. I want to be able to look at the equation and instantly be able to plot
points, without having to plug in anything.
Bud chose not to pursue students’ suggestions because his goal was to teach the
intercept-slope procedure for sketching, a procedure which he considered more
efficient. As such, he missed the opportunity to build on students’ current knowledge
to develop a critical way of thinking, that of appreciation for mathematical efficiency.
CONCLUSION
This preliminary analysis focuses mainly on observations-conversations concerning
the concept of function. Bud’s ways of understanding and ways of thinking of this
concept and the way he taught it give hints as to his knowledge base, which seems to
include the following beliefs: (a) mathematics is a fixed set of interrelated concepts
and procedures, (b) modeling is not part of algebra, algebra is essentially
manipulation of symbols, (c) learning mathematics means essentially remembering
what the teacher teaches, (d) content structure, not student need, drive mathematics
curricula.
A conceptual framework for teacher’s knowledge base would enable us to describe
teacher’s teaching personalities and the rationale for their teaching actions. We hope
that a complete model for Bud’s knowledge base would help us explain his
preference for teacher-led discussions over lectures, his tendency to disregard
students’ current ways of understanding, and his choice and sequencing of problems
for classroom discussions.
The components of a teacher’s knowledge base are inseparable from each other.
One’s ways of understanding and ways of thinking of mathematical concepts seem to
dictate the nature of the other components of knowledge. For example, Bud’s way of
understanding functions impacted the kind of emphasis he placed on the pharmacist
problem. He focused on the procedural aspect of solving the problem rather than the
conceptual aspect of modeling the problem situation in terms of functions.
3–32 PME28 – 2004
This has implications to curricula for pre-service mathematics teachers and for
professional development programs for in-service mathematics teachers. Focusing
on one component of teacher knowledge base in isolation from the other two is
unlikely to be effective. It is unrealistic, for example, to expect prospective teachers
to change their beliefs and conceptions about mathematics they have formed over the
years in one or two courses. Integrated curricula, where the three components of
knowledge base are addressed in a synergetic manner, can help teachers grapple with
the mathematics and at the same time reflect on their own learning, which, in turn,
can help them appreciate epistemological and pedagogical issues.
References:
Ambrose, R., Philipp, R., Chauvot, J., & Clement, L. (2003). A web-based survey to assess
prospective elementary school teachers’ beliefs about mathematics and mathematics
learning: An alternative to likert scales. In N. A. Pateman, B. J. Dougherty & J. T. Zilliox
(Eds.), Proceedings of the 27th conference of the International Group for the Psychology
of Mathematics Education (Vol. 2, pp. 33–39). University of Hawaii.
Cohen, D. K. & Ball, D. L. (1999). Instruction, capacity, and improvement (CPRE Research
Report No. RR-043). Philadelphia, PA: University of Pennsylvania, Consortium for
Policy Research in Education.
Cohen, D. K. & Ball, D. L. (2000). Instructional innovation: Reconsidering the story. Paper
presented at the Annual Meeting of the American Educational Research Association,
New Orleans.
Harel, G. (1994). On teacher education programmes in mathematics. International Journal
of Mathematical Education in Science and Technology, 25(1), 113-1195.
Harel, G. (1998). Two dual assertions: the first on learning and the second on teaching (or
vice versa). The American Mathematical Monthly, 105, 497-507.
Harel, G. (in press). Students' proof schemes revisited: historical and epistemological
considerations. In P. Boero (Ed.), Theorems in school. Dordrecht: Kluwer.
Harel, G., & Sowder, L. (1998). Student’s proof schemes: results from exploratory studies.
In A. H. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research in collegiate mathematics
education III (pp. 234-283). Providence, RI: American Mathematical Society.
Harel, G., & Sowder, L. (in press). Advanced mathematical-thinking at any age: Its nature
and its development. Mathematical Thinking and Learning
.
Schoenfeld, A. (1985). Mathematical problem solving. New York, NY: Academic Press.
Shulman, S. (1986). Those who understand: Knowledge growth in teaching. Educational
Researcher, 15, 4-14.
Shulman, S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard
Educational Review, 57, 1-22.
Tall, D. O., & Vinner, S. (1981). Concept image and concept definition in mathematics with
particular reference to limits and continuity. Educational Studies in Mathematics, 12
,
151-169.
... Teachers play a significant role in developing students' problem-solving ability. Some studies (e.g., Harel and Lim, 2004) found that mathematics teachers ignore students' WoUs and WoTs. Moreover, it has seen that mathematics teachers try to impose their own WoTs to students and they are not open to alternative WoTs (Harel and Lim, 2004). ...
... Some studies (e.g., Harel and Lim, 2004) found that mathematics teachers ignore students' WoUs and WoTs. Moreover, it has seen that mathematics teachers try to impose their own WoTs to students and they are not open to alternative WoTs (Harel and Lim, 2004). Considering together the need for new approaches as suggested by recent studies on problem-solving and the role of teachers in developing students' problem-solving ability, the importance of mathematics teachers' WoTs becomes more salient. ...
... This problem designed by the researchers was included in the study as it clearly shows the process of generalization by looking for a pattern. The second problem was adapted from the problem used by Harel and Lim (2004). Although this problem can be seen as a routine problem falling in the category of "mixture problems", it is difficult to perceive the functional relationship on which the problem is based, as supported by their results. ...
Article
Full-text available
Abstract The aim of this study is to investigate pre-service middle school mathematics teachers' ways of thinking (WoT), ways of understanding (WoU) and pedagogical approaches as well as the relationships among them in the context of problem-solving within the DNR framework. In this qualitatively designed study, the data was collected through clinical interviews with four pre-service middle school mathematics teachers and analyzed through open and axial coding approach. The results of the analysis indicated that pre-service mathematics teachers' WoTs in the context of problem-solving were fell into two categories. This study also revealed that WoTs and particularly proof schemes in the context of problem-solving might play effective role in pre-service middle school mathematics teachers' pedagogical approaches. Keywords: Problem solving, ways of thinking, ways of understanding, pre-service mathematics teachers. Özet Bu çalışmada ortaokul matematik öğretmeni adaylarının problem çözme bağlamındaki düşünme yolları, anlama yolları ve pedagojik açıklamaları ile bunlar arasındaki ilişkilerin DNR çerçevesi kapsamında araştırılması amaçlanmaktadır. Dört ortaokul matematik öğretmeni adayından nitel araştırma yöntemlerinden klinik görüşme yoluyla toplanan veriler açık ve eksensel kodlama yaklaşımı ile analiz edilmiştir. Analiz sonuçları matematik öğretmeni adaylarının problem çözme bağlamındaki düşünme yollarının iki kategoriye ayrıldığını göstermiştir. Ayrıca bu çalışma problem çözme bağlamındaki düşünme yollarının ve özellikle kanıt şemalarının ilköğretim matematik öğretmen adaylarının pedagojik açıklamalarında etkili bir rol oynadığını açığa çıkarmıştır. Anahtar Kelimeler: Problem çözme, düşünme yolları, anlama yolları, ilköğretim matematik öğretmen adayları.
... Some studies display that mathematics teachers focus on students' reaching to the solution and they ignore developing problem solving skills of the students (e.g. Harel & Lim, 2004). ...
... However, the researches in literature have shown that teachers focus only procedural operations in problem solving and they ignore students' mental needs and thinking ways while they are teaching (e.g. Harel & Lim, 2004). Therefore, courses ensuring that pre-service teachers are aware of which questions can be characterized as problems as well as courses in which pre-service teachers see and investigate different problem situations, and search possible solution approaches and strategies for a problem should be offered in mathematics teacher education programs (Lopez-Real & Man-Sang Lee, 2006). ...
... Spilkova (2001) contends that teachers' teaching competencies are based on reflective practices, subject knowledge, attitude, experience, and values. The mathematics teaching competencies conception further dwells on a number of competencies that are essential in determining teachers' competencies namely, knowledge of the principles of learning, pedagogical knowledge, and subject knowledge (Bromme, 1994, Harel & Kien, 2004. Similarly, Carpenter, Fennema & Franke (1996) model shows the dynamics that take place in classroom of which contents, pedagogical knowledge, and teacher beliefs essentially regarded as determinants of teachers' competencies in teaching. ...
... These findings are not surprising since varieties of teaching strategies introduced to teachers who specialize in mathematics in order to enhance the pedagogical knowledge. The competencies in teaching mathematics gained by teachers whose field of study was mathematics corresponded to Harel and Kien (2004) three critical components of teachers' competencies namely: knowledge of mathematics content, knowledge of principles of learning, and methods of teaching mathematics. Henceforth, teachers who did not specialize in mathematics were not knowledgeable in the use of different teaching strategies. ...
Article
Full-text available
The purpose of this study was to assess the extent to which predictors of teachers’ competencies in teaching mathematics predict the outcomes of mathematics performance among learners at upper primary phase. The determinants were namely gender, teaching experience, region, qualification, and fields of study exert effect on teachers’ competencies in lesson planning and preparation, assessment and evaluation of learners, lesson delivery, the use of teaching strategies, the quality of homework, and the availability of teaching materials. The generic understanding of the impacts of predictors of teaching competencies on learners’ performance significantly informs the development of training programmes components, and teaching and learning processes across the schooling system. Shulman’s theory of teacher content and pedagogical knowledge underpinned the study. The study comprised of holistic samples of 117 mathematics teachers at upper primary phase teachers from 39 schools. The selection of three schools from each region followed three criteria, namely outstanding, moderate, and lower performances in Grade 10 examination. Data is collected from classroom observation and analysis of relevant documents. The findings show that predictor variables such as gender, teacher qualification, teaching experience, field of study, and region exerted effects on the way teachers plan and prepare the lesson, deliver the lesson, assess and evaluate learners, use the teaching materials, and the quality of work. Teachers who specialized in mathematics were more competent in mathematics teaching. The results presuppose that predictors of teachers’ competencies in teaching mathematics are essential for improving teaching and learning of mathematics in schools. The outcome of this study is beneficial to education officials who are directly responsible for coordinating the teaching of mathematics in schools and the allocation of teaching subjects, particularly mathematics. The findings showed that a number of teachers were not trained mathematics. This was an indication of the existing shortage of mathematics teachers in schools nationally. Untrained mathematics teachers negatively influenced learners’ performance. These outcomes implied that education planners at the national, regional and district levels should set up strategies on how to increase the production of mathematics teachers nationally in order to meet the demand of such teachers in schools.
... Bireyin sahip olduğu matematiksel bilgi de problem çözme sürecini etkilemekte olup, aynı zamanda problem çözme bireyin sahip olduğu bilgiyi sağlamlaştırmaktadır (Guberman ve Leikin, 2013). Bu nedenle problem çözmenin öğrenme ortamının temelini oluşturmalı, matematiksel kavramların öğretiminde ve becerilerin geliştirilmesinde kullanılması önemlidir (Guberman ve Leikin, 2013;Harel ve Lim, 2004;Lesh ve Zawojewski, 2007). ...
... Guberman and Leikin (2013) emphasized that not only mathematical knowledge effects problem solving process but also problem solving supports one's mathematical knowledge. Literature indicates that therefore problem solving should be foundation of mathematics learning environment (Guberman and Leikin, 2013;Harel and Lim, 2004;Lesh and Zawojewski, 2007). To support middle school students' transition from arithmetic to algebra, problem solving especially verbal problems' solving gain more importance. ...
Article
Full-text available
The aim of this study is to investigate pre-service middle school mathematics teachers’ ways of thinking (WoT), ways of understanding (WoU) and pedagogical approaches as well as the relationships among them in the context of problem-solving within the DNR framework. In this qualitatively designed study, the data was collected through clinical interviews with four pre-service middle school mathematics teachers and analyzed through open and axial coding approach. The results of the analysis indicated that pre-service mathematics teachers’ WoTs in the context of problem-solving were fell into two categories. This study also revealed that WoTs and particularly proof schemes in the context of problem-solving might play effective role in pre-service middle school mathematics teachers’ pedagogical approaches.
... Some studies display that mathematics teachers focus on students' reaching to the solution and they ignore developing problem solving skills of the students (e.g. Harel & Lim, 2004). ...
... However, the researches in literature have shown that teachers focus only procedural operations in problem solving and they ignore students' mental needs and thinking ways while they are teaching (e.g. Harel & Lim, 2004). Therefore, courses ensuring that pre-service teachers are aware of which questions can be characterized as problems as well as courses in which pre-service teachers see and investigate different problem situations, and search possible solution approaches and strategies for a problem should be offered in mathematics teacher education programs (Lopez-Real & Man-Sang Lee, 2006). ...
... However, this domain of mathematics education scholarship still has much to contribute to the development of instructional, curricular, and pedagogical innovations that seek "to improve the learning attained by anyone who studies mathematics" (ibid.). The overwhelming majority of research in this area has attended to one, or more, of the following foci: (1) characterizing the nature of mathematical and pedagogical knowledge teachers must possess to support students' conceptual mathematical learning (e.g., Ball, Thames, & Phelps, 2008;Fennema & Franke, 1992;Rowland, Huckstep, & Thwaites, 2005;Shulman, 1986Shulman, , 1887; (2) understanding the experiences by which teachers might construct such knowledge (e.g., Harel, 2008;Harel & Lim, 2004;Silverman & Thompson, 2008); (3) developing assessments to measure teachers' knowledge (e.g., Hill, Ball, & Schilling, 2008;Herbst & Kosko, 2014, Thompson, 2015, and (4) demonstrating the causal link between teacher knowledge and student achievement (e.g., Baumert et al., 2010;Campbell et al., 2014;Hill, Rowan, & Ball, 2005) or instructional quality (e.g., Charalambous & Hill, 2012;Copur-Gencturk, 2015;Even & Tirosh, 1995;. Stated succinctly, research on teacher knowledge in mathematics education has largely focused on what teachers need to know, how they might come to know it, how one might measure it, and the effect of this knowledge on instructional quality and student performance. ...
Conference Paper
Full-text available
I present the results of a study designed to determine if there were incongruities between a secondary teacher's mathematical knowledge and the mathematical knowledge he leveraged in the context of teaching, and if so, to ascertain how the teacher's enacted subject matter knowledge was conditioned by his conscious responses to the circumstances he appraised as constraints on his practice. To address this focus, I conducted three semi-structured clinical interviews that elicited the teacher's rationale for instructional occasions in which the mathematical ways of understanding he conveyed in his teaching differed from the ways of understanding he demonstrated during a series of task-based clinical interviews. My analysis revealed that that the occasions in which the teacher conveyed/demonstrated inconsistent ways of understanding were not occasioned by his reacting to instructional constraints, but were instead a consequence of his unawareness of the mental activity involved in constructing particular ways of understanding mathematical ideas.
... The overwhelming majority of scholarship on teacher knowledge in mathematics education has attended to one, or more, of the following foci: (1) characterizing the nature of mathematical and pedagogical knowledge teachers need to provide students with opportunities to develop a conceptual understanding of mathematics (e.g., Ball, 1990;Ball, Hill, & Bass, 2005;Ball, Thames, & Phelps, 2008;Hill, Ball, & Schilling, 2008;Hill, Schilling, & Ball, 2004;Shulman, 1986Shulman, , 1887; (2) understanding the experiences by which teachers may construct such knowledge (e.g., Harel, 2008;Harel & Lim, 2004;Silverman & Thompson, 2008); and (3) demonstrating the causal link between teacher knowledge and student achievement (e.g., Hill, Rowan, & Ball, 2005). In other words, research on teacher knowledge in mathematics education has largely focused on what teachers need to know, how they may come to know it, and the effect that this knowledge has on student performance. ...
Conference Paper
Full-text available
This paper reports the results of a series of task-based clinical interviews I conducted to examine how a secondary mathematics teacher's understandings of angle measure afford or constrain his capacity to bring his mathematical knowledge to bear in the context of teaching. The results suggest that the teacher, David, possessed two complementary but conceptually distinct ways of understanding angle measure that he was not consciously aware of having. As a result David was unable to strategically employ his two ways of understanding in novel problem-solving situations and was unable to leverage his understandings in the context of teaching. I also discuss the effectiveness of an instructional intervention designed to support David in becoming aware of his understandings and conclude that engaging teachers in experiences that promote reflected abstraction is one way of supporting them in transforming their mathematical knowledge into a pedagogically efficacious form.
Article
Full-text available
The purpose of this research is to describe the pedagogical knowledge of prospective teachers in designing mathematics learning and its relationship with beliefs about teaching. This research participant was a prospective teacher who was a constructivist belief that had taken a micro-teaching course and had excellent communication skills, as demonstrated by the fluency in delivering ideas. Data is collected through semi-structured interview techniques. The data obtained were coded, simplified, presented, triangulated time for the credibility data, and concluded. The results show that prospective teachers knew in preparing lesson plans and learning media by the curriculum to facilitate students learning in class. The selection of verbal representations, symbol representations, and the selection of contextual problems is in line with his belief that the teacher's role is to guide students and help them discover mathematical concepts actively. Prospective teachers have good knowledge about choosing the right time to ask questions to students. Prospective teachers know when to ask questions, when to reflect on students' answers, and when to ask new questions or give new assignments. Prospective teachers know assessment techniques, namely the assessment of learning outcomes obtained from the way students find solutions to problems and the suitability of problems with solutions made by students.
Article
This paper highlights an attempt by two grade 8 teachers, Bulelwa and Kevin, to draw in the everyday in the teaching of mathematics. Though located in different South African contexts and settings, both teachers tend to enable their learners' access to mathematics by rendering the everyday inauthentic. I argue that inauthenticating the everyday is an unavoidable strategy by which the everyday considerations are silenced and not necessarily teachers' lack of empowerment, as it is sometimes claimed. Within the mathematics education community, the relative merits and demerits of incorporating the everyday in mathematics remains one unresolved aspect. Whilst a number of studies cite the benefits of summoning the everyday in the teaching of mathematics (e.g., Skovsmose, 1994; Santos & Matos, 2002), others suggest that the everyday, when recruited into the mathematics, tends to conceal or draw some learners' attention away from the latter (Cooper & Dunne, 2000). Therefore, the challenge of balancing access to mathematics with recruitment of the everyday remains one of the central themes regarding the mathematics-everyday relationship. The new South African education curriculum, Curriculum 2005 (C2005) has offered a definition of mathematics which makes the mathematics-everyday relationship important to reflect on. In its definition, C2005 advances an epistemological position of mathematics as a unique subject, "with its own symbols and language" and suggests the teaching of mathematics which incorporates the everyday. (DoE, 2000:16) This definition presents a practical challenge for teachers with regard to, on the one hand making mathematics accessible and, on the other, recruiting the everyday. In this paper I draw on the experiences of two grade 8 teachers, Bulelwa and Kevin*, who were trying to implement C2005. I particularly highlight and reflect on the way the two negotiated the challenge of summoning the everyday in order to enable their learners' access to the mathematics content. I will organize this discussion into four sections. In the second section I will provide the context in which the study took place. I will then, in the third and fourth sections respectively discuss the teachers' motivations for drawing in the everyday and the way in which they moved from these contexts to the mathematics. The final section will provide some reflections and
Article
Since World War II, efforts to improve schools have numbered in the thousands. Most efforts have concentrated on improving the curriculum materials used in schools or on "training" teachers in new instructional methods. Many of these efforts have gone under the banner of "building instructional capacity," a term that for decades has been featured prominently in conversations about educational reform. Unfortunately, three decades of research has found that only a few interventions have had detectable effects on instruction and that, when such effects are detected, they rarely are sustained over time. A review of research and professional experience with school improvement suggests several explanations for these disheartening findings. One is that schools are complex social organizations situated within, and vitally affected by, other complex social systems including families, communities, and professional and regulatory agencies. The larger social environment of schools constrains and shapes the actions of teachers, students, and administrators, often in ways that greatly complicate the work of school improvement. Challenges to school improvement are particularly acute in highpoverty settings where recruiting wellqualified teachers is difficult and where the emotional and health problems of students often deflects attention to educational issues or impedes work on them. As a result, many researchers now believe that school improvement involves much more than efforts to change interactions occurring within schools. To succeed, school improvement interventions also must attend to the complex relationships that exist among intervention agents, schools, and their social environments.
Article
Lee S. Shulman builds his foundation for teaching reform on an idea of teaching that emphasizes comprehension and reasoning, transformation and reflection. "This emphasis is justified," he writes, "by the resoluteness with which research and policy have so blatantly ignored those aspects of teaching in the past." To articulate and justify this conception, Shulman responds to four questions: What are the sources of the knowledge base for teaching? In what terms can these sources be conceptualized? What are the processes of pedagogical reasoning and action? and What are the implications for teaching policy and educational reform? The answers — informed by philosophy, psychology, and a growing body of casework based on young and experienced practitioners — go far beyond current reform assumptions and initiatives. The outcome for educational practitioners, scholars, and policymakers is a major redirection in how teaching is to be understood and teachers are to be trained and evaluated. This article was selected for the November 1986 special issue on "Teachers, Teaching, and Teacher Education," but appears here because of the exigencies of publishing.
Article
Current teacher education programmes suffer from a lack of attention to the three crucial components of teachers’ knowledge: mathematics content, episte‐mology, and pedagogy. As a result, they cannot achieve the desired quality in teachers as was envisioned by the current mathematics education leadership. Teachers’ mathematics knowledge is far from being satisfactory even in terms of the standards for high‐school mathematics. The work on epistemology and pedagogy is detached from a personal experiential basis of teaching, and thus it is in conflict with the well established principle that knowledge construction (and this includes mathematics knowledge as well as knowledge of mathematics epistemology and pedagogy) is a product of personal, experiential problem‐solving activity. The effort of teacher education programmes must centre on these three components of teachers’ knowledge base. In particular, teachers’ knowledge of mathematics should be promoted and evaluated in terms of mathematics values, not specific skills, concepts, and symbol manipulations.