Kandungan logam berat dalam makanan laut dan kadar pengambilannya oleh penduduk di Tanjung Karang, Selangor

Article (PDF Available) · January 2006with 2,413 Reads 
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
Cite this publication
Abstract
Seafood is highly likely to be contaminated by heavy metals caused by various human activities. In this study, the amount of Cu, Fe, Zn, Pb, Ni, and Cd in seafood was determined to estimate the intake of heavy metals among the population of Tanjung Karang through the Market Basket Study method. A variety of seafood were purchased from the Bagan Pasir, Tanjung Karang fish landing area and the concentration of heavy metals were determined using wet digestion method in concentrated nitric acid and perchloric acid in the ratio of 3:1. Atomic Absorption Spectrophotometer (AAS) was used to analyze the heavy metals. The concentrations of metals in seafood were compared to the Food Balance Sheet to determine the status of metal exposure per day in the individual diet. From the study, the estimated intake of heavy metals by the population was 0.17 mg/day for Cu, 0.44 mg/day for Fe, 0.58 mg/day for Zn, 0.008 mg/day for Pb, 0.007 mg/day for Ni and 0.031 mg/day for Cd.
Advertisement
The Malaysian Journal of Analytical Sciences Vol 10 No 2 (2006): 197-204
KANDUNGAN LOGAM BERAT DALAM MAKANAN LAUT DAN
KADAR PENGAMBILANNYA OLEH PENDUDUK
DI TANJUNG KARANG, SELANGOR
Tukimat Lihan, Norazura Ismail, Muzneena Ahmad Mustapha & Sahibin Abd Rahim
Pusat Pengajian Sains Sekitaran dan Sumber Alam
Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia
ABSTRAK
Makanan laut merupakan salah satu sumber makanan yang berpotensi tinggi dicemari logam berat akibat daripada
pelbagai aktiviti yang dijalankan oleh manusia. Di dalam kajian ini, kandungan logam Cu, Fe, Zn, Pb, Ni dan Cd dalam
makanan laut dikaji bagi mengganggarkan jumlah pendedahan penduduk Tanjung Karang terhadap logam berat dengan
menggunakan kaedah "Market Basket Study". Beberapa jenis makanan laut dibeli daripada pelabuhan perikanan Bagan
Pasir, Tanjung Karang bagi menentukan jumlah kandungan logam berat di dalamnya. Kaedah penghadaman basah
dengan kombinasi asid nitrik pekat dan asid perklorik pekat dengan nisbah 3:1 digunakan bagi menentukan kepekatan
logam berat dalam sampel. Logam-logam berat tersebut dianalisa dengan menggunakan Spektrofotometer Penyerapan
Atom (AAS). Kepekatan logam berat yang telah ditentukan dibandingkan dengan Jadual Makanan Seimbang penduduk
Malaysia bagi menentukan status pendedahan logam yang dikaji dalam sehari. Anggaran pengambilan logam-logam
berat oleh penduduk yang dikaji ialah 0.17 mg/hari bagi logam Cu, 0.44 mg/hari bagi logam Fe, 0.58 mg/hari bagi
logam Zn, 0.008 mg/hari bagi logam Pb, 0.007 mg/hari bagi logam Ni dan 0.031 mg/hari bagi logam Cd.
ABSTRACT
Seafood is highly likely to be contaminated by heavy metals caused by various human activities. In this study, the
amount of Cu, Fe, Zn, Pb, Ni, and Cd in seafood was determined to estimate the intake of heavy metals among the
population of Tanjung Karang through the Market Basket Study method. A variety of seafood were purchased from the
Bagan Pasir, Tanjung Karang fish landing area and the concentration of heavy metals were determined using wet
digestion method in concentrated nitric acid and perchloric acid in the ratio of 3:1. Atomic Absorption
Spectrophotometer (AAS) was used to analyze the heavy metals. The concentrations of metals in seafood were
compared to the Food Balance Sheet to determine the status of metal exposure per day in the individual diet. From the
study, the estimated intake of heavy metals by the population was 0.17 mg/day for Cu, 0.44 mg/day for Fe, 0.58
mg/day for Zn, 0.008 mg/day for Pb, 0.007 mg/day for Ni and 0.031 mg/day for Cd.
Keywords: Heavy metals, seafood, estimated intake, individual diet, Tanjung Karang
PENGENALAN
Sejak kebelakangan ini air semulajadi telah banyak dicemari oleh bahan toksik daripada pelbagai sumber.
Spesies hidupan laut kini semakin terancam bukan sahaja kerana kewujudan logam secara semulajadi di
dalam laut tetapi juga hasil daripada aktiviti manusia. Bahan-bahan toksik ini boleh mengurangkan
kemampuan sistem air untuk membekalkan sumber protein yang murah terutamanya ikan kepada
masyarakat tempatan dan memberi kesan buruk kepada diet manusia [I].
Kebelakangan ini kesedaran mengenai kandungan logam berat dalam makanan laut khususnya ikan mulai
mendapat perhatian kerana ikan merupakan sumber protein yang utama. Di Malaysia, ikan adalah sumber
protein yang utama di mana ia menyumbang sebanyak 23% protein haiwan yang dimakan. Secara
globalnya, manusia mengambil lebih banyak ikan sebagai sumber protein berbanding haiwan-haiwan lain.
Food and Agriculture Organization dan World Health Organization menganggarkan antara 15 hingga 20%
sumber protein haiwan adalah daripada haiwan akuatik terutamanya ikan [2].
Kajian ini bertujuan untuk menentukan kandungan logam berat di dalam ikan dan menganggarkan jumlah
pengambilan logam berat oleh penduduk di Tanjung Karang di dalam diet mereka.
197
Tukimat Lihan, et al. KANDUNGAN LOGAM BERAT DALAM MAKANAN LAUT
METODOLOGI
Kaedah persampelan 'market basket study' dianggap sesuai untuk menentukan kandungan unsur logam di
dalam makanan. Pemilihan jenis makanan laut mengambilkira. spesies yang mudah diperolehi oleh
populasi yang dikaji. Di dalam kajian ini, sampel bagi semua jenis makanan laut dibeli daripada pasar di
pelabuhan perikanan Bagan Pasir di Mukim Tanjung Karang. Sampel-sampel ini kemudiannya dimasukkan
ke dalam kotak ais untuk penyimpanan sementara. Di makmal, sampel disimpan di dalam peti sejuk pada
suhu -20
o
C sebelum dianalisis.
Kaedah pengekstrakan yang digunakan ialah kaedah penghadaman basah dengan sedikit pengubahsuaian
[3]. Dalam kaedah ini asid nitrik dan asid perklorik digunakan dengan nisbah 3:1. Penganalisaan bagi
kandungan setiap logam di dalam larutan sampel dilakukan menggunakan Spektrofotometer Penyerapan
Atom (AAS) model Perkin Elmer Model 4400 (untuk logam-logam Cd, Pb, dan Ni) dan Model 3300
(untuk logam-logam Cu, Zn dan Fe).
Anggaran kepekatan logam berat yang diambil oleh penduduk dalam sehari ditentukan dengan
membandingkan data kepekatan logam dalam setiap sampel dengan Jadual Makanan Seimbang (Food
Balance Sheet) penduduk Malaysia.
HASIL DAN PERBINCANGAN
Penentuan logam berat dalam makanan laut boleh ditentukan dengan menggunakan beberapa kaedah.
Setiap kaedah mempunyai kebaikan dan kekurangannya yang tersendiri. Kajian-kajian yang menggunakan
kaedah keseluruhan diet sebenarnya dapat memberikan maklumat mengenai aras bahan pencemar di dalam
makanan. Kaedah keseluruhan diet yang digunakan dalam kajian ini ialah dengan menggunakan
pendekatan analisis makanan individu.
Secara keseluruhannya terdapat 15 spesies makanan laut yang telah dianalisis dalam kajian ini. Kandungan
logam berat di dalam makanan laut yang dianalisa ditunjukkan di dalam Jadual 1 dan 2. Jadual 3 pula
menunjukkan anggaran pengambilan logam berat melalui makanan laut oleh penduduk yang dikaji.
Anggaran pengambilan logam berat dalam sehari ditentukan dengan membandingkan nilai daripada Jadual
Makanan Seimbang (FBS) bagi rakyat Malaysia. Berdasarkan nilai FBS (1994), jumlah makanan laut yang
diambil oleh penduduk di Malaysia adalah sebanyak 65.7 g/hari. Jadual Makanan Seimbang memberikan
gambaran komprehensif tentang bentuk makanan dan menyediakan anggaran kuantiti yang sesuai
penggunaan sesuatu kelas makanan penduduk bagi sesebuah negara dalam jangka masa tertentu.
Logam Kuprum
Kandungan logam Cu yang dikaji dalam 15 spesies makanan laut berada di dalam julat 0.29 mg/kg hingga
8.26 mg/kg. Kepekatan logam ini paling tinggi dikesan dalam udang kertas manakala ikan kembung
mencatatkan kepekatan terendah. Terdapat perbezaan yang signifikan (p<0.05) di antara 15 spesies
makanan laut yang dianalisis. Kadar penyerapan dan toleransi ikan terhadap pencemaran adalah
dipengaruhi oleh umur, saiz dan jantina [4].
Pengambilan logam Cu oleh penduduk di kawasan kajian dalam sehari pada amnya berada di dalam julat
yang kecil iaitu di antara 0.02 mg/hari hingga 0.54 mg/hari dengan purata pengambilan sebanyak 0.17
mg/hari. Jumlah ini jauh lebih rendah berbanding aras yang disarankan oleh National Academy of Sciences
iaitu sebanyak 2 mg hingga 3 mg sehari. WHO pula menganggarkan pengambilan logam ini per hari dalam
julat 1 mg/hari hingga 3 mg/hari [5]. FAO/WHO pula menyarankan anggaran pengambilan logam Cu bagi
lelaki dewasa tidak melebihi 12 mg/hari manakala bagi perempuan dewasa tidak melebihi 10 mg/hari [2].
Kanak-kanak pula memerlukan lebih banyak kuantiti logam ini di dalam makanan berbanding orang
dewasa bergantung kepada berat badan.
198
The Malaysian Journal of Analytical Sciences Vol 10 No 2 (2006): 197-204
Jadual 1: Purata kandungan logam Pb, Ni dan Cd dalam sampel makanan laut yang dibeli
daripada Pelabuhan Perikanan Bagan Pasir Tanjung Karang
Spesies Purata Kandungan Logam Berat Dalam Spesies (mg/kg berat
basah)
Pb Ni Cd
1 Ikan Kembung
(Rastrelliger kanagurta)
0.256±0.279 0.059 ± 0.017 0.271 ± 0.108
2 Ikan Bawal Putih
(Pampus argenteus)
0.133 ± 0.157 0.183 ± 0.198 0.166 ± 0.037
3 Ikan Belanak
(Vale mugil seheli)
0.109± 0.037 0.269± 0.304 0.427 ± 0.049
4 Ikan Gelama
(Sciaena dussumieri)
0.095 ± 0.042 0.131± 0.195 0.225 ± 0.172
5 Ikan Semilang
(Plotosus canius)
0.160±10.051 0.105 ± 0.023 0.900 ± 1.035
6 Ikan Selar Kuning
(Selarides leptolejus)
0.057± 0.013 0.010 ±0.018 0.105±0.008
7 Ikan Cencaru
(Megalaspis cordyla)
0.060 ± 0.009 0.003 ± 0.004 0.124 ± 0.056
8 Ikan Senangin
(Eleutheronema
etradactylum)
0.047 ± 0.017 0.001 ± 0.001 0.087± 0.043
9 Ikan Parang
(Chirocentrus dorab)
0.074 ± 0.018 0.022 ± 0.036 0.100 ± 0.080
10 Ikan Siakap
(Lates calcarifer)
0.067 ± 0.016 N. D. 0.138 ± 0.050
11 Sotong Katak
(Sepiella inermis)
0.243 ± 0.153 0.114 ± 0.025 1.469 ± 0.840
12 Sotong
(Loligo edulis)
0.099 ± 0.026 0.156 ± 0.271 0.606 ± 0.316
13 Ketam Bunga
(Portunus plagicus)
0.132 ± 0.121 0.110± 0.109 1.386 ± 1.005
14 Udang Harimau
(Penaeus sesulcatus)
0.141 ± 0.045 0.458 ± 0.294 0.856 ± 0.044
15 Udang Kertas
(Metapenaeus
intermedius)
0.164± 0.145 0.002 ± 0.004 0.142 ± 0.016
Purata 0.123 ± 0.064 0.108 ± 0.126 0.467± 0.473
N.D., tidak dapat dikesan
199
Tukimat Lihan, et al. KANDUNGAN LOGAM BERAT DALAM MAKANAN LAUT
Jadual 2: Purata Kandungan logam Cu, Fe dan Zn dalam sampel makanan laut yang
dibeli daripada Pelabuhan Perikanan di Bagan Pasir Tanjung Karang
Spesies Purata Kandungan Logam Berat Dalam Spesies (mg/kg berat
basah)
Cu
Fe Zn
1 Ikan Kembung
(Rastrelliger kanagurta)
0.29 ± 0.06 7.30 ± 1.17 14.30 ± 3.61
2 Ikan Bawal Putih
(Pampus argenteus)
0.66 ± 0.33 3.52 ± 3.20 7.93 ± 2.01
3 Ikan Belanak
(Vale mugil seheli)
0.71 ± 0.33 6.61 ± 1.99 7.50 ± 1.20
4 Ikan Gelama
(Sciaena dussumieri)
1.78 ± 1.04 3.46 ± 1.95 4.63 ± 3.84
5 Ikan Semilang
(Plotosus canius)
0.90 ± 0.43 3.55 ± 2.47 3.20 ± 3.23
6 Ikan Selar Kuning
(Selarides leptolejus)
1.54 ± 0.23 1.38 ± 0.15 6.6 ± 0.50
7 Ikan Cencaru
(Megalaspis cordyla)
2.61 ± 0.69 8.79 ± 6.67 3.23 ± 1.60
8 Ikan Senangin
(Eleutheronema
etradactylum)
2.19 ± 0.10 0.67 ± 0.63 5.25 ± 1.46
9 Ikan Parang
(Chirocentrus dorab)
4.03 ± 0.94 1.00 ± 0.75 4.09 ± 3.55
10 Ikan Siakap
(Lates calcarifer)
2.01 ± 0.13 1.04 ± 0.63 1.64 ± 0.27
11 Sotong Katak
(Sepiella inermis)
1.06 ± 0.21 7.18 ± 0.84 17.44 ± 3.98
12 Sotong
(Loligo edulis)
3.89 ± 2.60 7.61 ± 8.52 10.56 ± 3.20
13 Ketam Bunga
(Portunus plagicus)
5.98 ± 3.89 14.35 ± 11.44 18.28 ± 7.24
14 Udang Harimau
(Penaeus sesulcatus)
3.20 ± 0.41 33.14 ± 6.99 17.32 ± 2.01
15 Udang Kertas
(Metapenaeus intermedius)
8.26 ± 1.57 0.75 ± 0.46
9.27 ± 2.05
Purata 4.90 ± 2.20 6.69 ± 8.27 8.75 ± 5.63
Logam Ferum
Semua sampel makanan laut yang dikaji menunjukkan kandungan logam ini dalam julat 0.67 mg/kg hingga
33.14 mg/kg. Udang harimau mempunyai kepekatan logam Fe yang paling tinggi manakala ikan senangin
mempunyai kepekatan logam Fe terendah. Ujian statistik yang dilakukan menunjukkan terdapat perbezaan
yang signifikan (p < 0.05) bagi kepekatan logam Fe di antara setiap spesies makanan laut yang dikaji.
Jumlah pengambilan logam Fe bagi 15 spesies yang dikaji secara amnya adalah rendah kecuali udang
harimau iaitu sebanyak 2.18 mg/hari. Nilai ini merupakan nilai pengambilan tertinggi yang diperolehi di
kalangan spesies makanan laut yang dikaji. Sementara itu, nilai terendah dicerap di dalam ikan senangin
iaitu sebanyak 0.04 mg/hari. Purata anggaran pengambilan logam ini melalui makanan laut oleh penduduk
yang dikaji ialah 0.44 mg/hari. Nilai ini lebih rendah daripada pengambilan yang dianggarkan di Kuala
Selangor, Selangor iaitu sebanyak 1.02 mg/hari [6] dan 0.83 mg/hari di Kuala Kemaman, Terengganu [7].
Had yang disarankan bagi pengambilan logam Fe dalam diet ialah 18 mg/hari [8]. UK Department of
200
The Malaysian Journal of Analytical Sciences Vol 10 No 2 (2006): 197-204
Health and Social Society mengesyorkan pengambilan sebanyak 10.0 mg/hari bagi lelaki dan 12.0 mg/hari
bagi wanita dalam pengambilan logam Fe yang merangkumi semua kelas makanan [3].
Logam Zink
Pada amnya, kandungan logam Zn di dalam 15 spesies makanan laut yang dianalisis berada pada aras yang
lebih tinggi berbanding logam-logam lain yang dikaji kecuali pada ikan semilang, cencaru, siakap dan
udang harimau. Sebahagian besar daripada makanan dan minuman mengandungi logam Zn dan sumber
logam ini yang utama adalah daripada makanan laut [3]. Dalam kajian ini kandungan logam Zn di dalam
setiap spesies makanan laut berada dalam julat 1.64 mg/kg hingga 18.28 mg/kg. Kepekatan logam ini
paling tinggi dikesan pada spesies ketam bunga manakala paling rendah pada ikan siakap. Had maksimum
yang dibenarkan oleh USFDA adalah sebanyak 40 mg/kg. Ujian statistik yang dilakukan menunjukkan
terdapat perbezaan secara signifikan (p < 0.05) pada setiap spesies makanan laut yang dikaji.
Jumlah pengambilan logam Zn oleh populasi kajian adalah dalam julat 0.11 mg/hari hingga 1.20 mg/hari
dengan purata sebanyak 0.58 mg/hari. Hasil kajian yang dilakukan di Kuala Kemaman, Terengganu
menunjukkan anggaran pengambilan logam ini dalam sehari adalah sebanyak 0.64 mg/hari [7]. Kajian yang
dijalankan di United Kingdom melalui "Total Diet Study" menganggarkan pengambilan sebanyak 8.4
mg/hari melalui makanan laut [9]. Pengambilan logam, ini dalam keseluruhan makanan laut yang dikaji
adalah dalam julat yang sesuai untuk keperluan tubuh kerana anggaran pengambilan yang disarankan dalam
sehari adalah sebanyak 15 mg/hari meliputi semua kelas makanan [3, 10].
Logam Plumbum
Plumbum merupakan logam berat yang tidak diperlukan oleh tubuh manusia. Kepekatan logam ini adalah
berubah-ubah dan biasanya berada dalam julat antara 0.01 hingga 2.5 mg/kg [11]. Kandungan logam Pb di
dalam semua spesies makanan laut yang dikaji mempunyai kepekatan dalam julat 0.047 mg/kg dan 0.256
mg/kg. Ikan kembung mempunyai kepekatan yang paling tinggi manakala ikan senangin mempunyai
kepekatan yang terendah. Secara amnya, aktiviti perkapalan di Selat Melaka lebih menggalakkan dan
menyumbangkan lebih banyak pencemaran logam Pb berbanding bahan buangan industri [12]. Selain itu,
logam Pb dan unsur-unsur lain seperti Zn dan Cu digunakan dalam pembuatan cat anti karat dan sebagai
penyalut bagi menghalang serangan alga yang tumbuh di bahagian kapal, juga berkemungkinan
menyebabkan kontaminasi ini [13].
Kajian yang dilakukan menunjukkan purata anggaran pengambilan logam Pb dalam sehari oleh populasi
kajian adalah sebanyak 0.008 mg/hari. Kajian yang dilakukan di Bandar Baru Bangi menunjukkan bahawa
makanan laut dan bahan minuman (milo dan teh) merupakan sumber utama pengambilan logam Pb [14].
Kajian yang dilakukan di Kuala Kemamam, Terengganu mendapati jumlah pengambilan logam ini dalam
sehari melalui makanan laut ialah 0.003 mg/hari [7]. Kajian yang dilakukan di Greenland pula
menunjukkan pengambilan sebanyak 0.003 mg/hari [15], manakala di Kanada pengambilan dianggarkan
sebanyak 0.024 mg/hari [16]. Berdasarkan kajian "Total Diet" yang dijalankan di United Kingdom,
pengambilan logam ini melalui ikan adalah sebanyak 0.026 mg/hari [9]. Had maksimum yang dibenarkan
oleh WHO ialah 0.430 mg/hari. WHO juga menganggarkan pengambilan logam Pb oleh manusia dewasa di
seluruh dunia adalah dalam julat 0.015 mg/hari hingga 0.316 mg/hari [17].
201
Tukimat Lihan, et al. KANDUNGAN LOGAM BERAT DALAM MAKANAN LAUT
Jadual 3: Anggaran pengambilan logam Cu, Fe, Zn, Pb, Ni dan Cd oleh penduduk di Tanjung Karang
melalui makanan laut
Anggaran Jumlah Pengambilan Logam Oleh Penduduk
(mg/hari)
Spesies Cu Fe Zn Pb Ni Cd
1 Ikan Kembung
(Rastrelliger kanagurta)
0.02 0.48 0.94 0.017 0.004 0.018
2 Ikan Bawal Putih
(Pampus argenteus)
0.04 0.23 0.52 0.009 0.012 0.011
3 Ikan Belanak
(Vale mugil seheli)
0.05 0.43 0.49 0.007 0.018 0.028
4 Ikan Gelama
(Sciaena dussumieri)
0.12 0.23 0.30 0.006 0.009 0.015
5 Ikan Semilang
(Plotosus canius)
0.06 0.23 0.21 0.010 0.007 0.059
6 Ikan Selar Kuning
(Selarides leptolejus)
0.10 0.09 0.43 0.004 0.0007 0.007
7 Ikan Cencaru
(Megalaspis cordyla)
0.17 0.58 0.21 0.003 0.0002 0.008
8 Ikan Senangin
(Eleutheronema
etradactylum)
0.14 0.04 0.34 0.003 0.00005 0.006
9 Ikan Parang
(Chirocentrus dorab)
0.26 0.07 0.27 0.005 0.001 0.007
10 Ikan Siakap
(Lates calcarifer)
0.13 0.07 0.11 0.004 N.D 0.009
11 Sotong Katak
(Sepiella inermis)
0.07 0.47 1.15 0.016 0.007 0.096
12 Sotong
(Loligo edulis)
0.26 0.50 0.69 0.006 0.010 0.040
13 Ketam Bunga
(Portunus plagicus)
0.39 0.94 1.20 0.009 0.007 0.091
14 Udang Harimau
(Penaeus sesulcatus)
0.21 2.18 1.14 0.009 0.030 0.056
15 Udang Kertas
(Metapenaeus intermedius)
0.54 0.05 0.61 0.011 0.0002 0.009
Purata
0.17 0.44 0.58 0.008 0.007 0.031
N.D., tidak dapat dikesan
202
The Malaysian Journal of Analytical Sciences Vol 10 No 2 (2006): 197-204
Logam Nikel
Logam nikel hadir dalam kepekatan yang rendah dalam kebanyakan makanan laut. Dalam kajian ini
kandungan logam ini adalah dalam julat N.D. (tidak dapat dikesan) hingga 0.458 mg/kg. Kandungan Ni
dalam udang harimau mengatasi spesies lain manakala ikan siakap menunjukkan kandungan logam ini
tidak dapat dikesan. Hasil kajian di United Kingdom menunjukkan kepekatan logam ini di dalam ikan
adalah sebanyak 0.120 mg/kg berat basah [9], manakala di Greek kepekatan logam ini adalah sebanyak
0.080 mg/kg [19]. Analisis statistik menunjukkan tiada perbezaan yang signifikan (p > 0.05) bagi
kandungan logam Ni dalam semua spesies makanan laut yang dikaji.
Dalam kajian ini pengambilan logam Ni oleh penduduk yang dikaji dianggarkan sebanyak 0.007 mg/hari.
Jumlah pengambilan logam Ni oleh manusia adalah sedikit iaitu sebanyak 0.016 mg/kg dalam paru-paru,
0.009 mg/kg dalam hati dan 0.006 mg/kg dalam jantung [11]. Pengambilan logam Ni yang paling tinggi
dikesan dalam udang harimau iaitu sebanyak 0.030 mg/hari. Kajian yang dilakukan di United Kingdom
menunjukkan jumlah pengambilan adalah sebanyak 0.130 mg/hari [9]. Jumlah pengambilan Ni oleh
penduduk Tanjung Karang menerusi makanan laut masih berada di bawah had yang dibenarkan oleh WHO
iaitu antara 0.100 mg/hari hingga 0.300 mg/hari [5].
Logam Kadmium
Dalam kajian ini, kandungan logam Cd di dalam makanan laut yang dianalisis berada pada julat yang besar
iaitu antara 0.087 mg/kg dan 1.469 mg/kg. Kepekatan logam ini dicerap paling tinggi pada spesies sotong
katak dan paling rendah pada spesies ikan senangin. Analisis statistik menunjukkan terdapat berbezaan
kepekatan yang signifikan (p<0.05) pada setiap spesies makanan laut yang dikaji. Kajian yang dilakukan
oleh FAO, UNEP dan GEMS menunjukkan kepekatan logam ini di dalam makanan laut adalah sebanyak
0.035 mg/kg. Kajian yang dijalankan di United Kingdom menunjukkan jumlah logam ini di dalam ikan
adalah sebanyak 0.013 mg/kg berat basah [9]. Walaupun kepekatan logam Cd yang dicerap di dalam kajian
ini agak tinggi berbanding kajian di United Kingdom dan kajian oleh FAO, UNEP dan GEMS, tetapi
kepekatan logam Cd yang dicerap masih berada di bawah had maksimum yang dibenarkan oleh USFDA
iaitu 2.0 mg/kg.
Jumlah pengambilan logam Cd yang dikaji dalam sehari adalah dalam julat 0.006 mg/hari hingga 0.096
mg/hari dengan purata 0.031 mg/hari. Kajian-kajian lain menunjukkan anggaran pengambilan harian logam
ini ialah 0.007 mg/hari di Kuala Kemaman, Terengganu [7], 0.2 mg/hari di Greenland [15], 0.24 mg/hari di
Arab [18] dan 0.016 hingga 0.029 mg/hari di Sepanyol [20]. Sementara itu, pengambilan mingguan logam
ini di Kanada adalah sebanyak 0.088 mg/minggu untuk berat badan 60 kg [15]. Had yang dibenarkan dalam
gizi oleh WHO ialah 0.064 mg/hari [5].
KESIMPULAN
Penyelidikan terhadap logam berat dalam makanan laut khasnya dan kelas makanan yang lain amnya
adalah sangat penting bagi memastikan keselamatan makanan itu dan menjamin kesihatan manusia. Secara
keseluruhannya, kandungan logam berat di dalam makanan laut daripada kawasan Tanjung Karang yang
dikaji adalah berada di bawah had maksimum yang dibenarkan oleh beberapa pertubuhan seperti WHO,
USFDA dan FAO. Hasil kajian menunjukkan jumlah anggaran pengambilan logam berat oleh populasi
yang dikaji dalam sehari bagi logam Cu ialah 0.17 mg/hari, 0.44 mg/hari bagi logam Fe, 0.58 mg/hari bagi
logam Zn, 0.008 mg/hari bagi logam Pb, 0.007 mg/hari bagi logam Ni dan 0.031 mg/hari bagi logam Cd.
PENGHARGAAN
Setinggi-tinggi penghargaan kepada Universiti Kebangsaan Malaysia kerana membiayai projek
penyelidikan ini melalui Geran Penyelidikan S/21/2000.
203
Tukimat Lihan, et al. KANDUNGAN LOGAM BERAT DALAM MAKANAN LAUT
RUJUKAN
1. Ahmad Ismail & Ahmad Badri. 1994. Ekologi Air Tawar. Dewan Bahasa dan Pustaka, Kuala
Lumpur.
2. FAO/WHO. 1998. Codex Alimentarius Commission. Discussion paper on cadmium. Joint
FAO/WHO Food Standards Programme. Rome: Food and Agricultural Organization/ World Health
Organization.
3. Reilly, C. 1980. Metal contamination of food. Applied Science Publishers Ltd., London.
4. Babji, A.S., A. Zulkifli & M.S. Embong. 1983. Monitoring of heavy metals contents of coastal water
fishes in Peninsular Malaysia. Preprint: An International Conference on Development &
Management of Tropical Living Aquatic Resource. August 2-5. Universiti Pertanian Malaysia,
Serdang.
5. World Health Organization. 1994. Quality directive of potable water. Ed. Ke-2. World Health
Organization, Geneva.
6. Huzairi, M. 2001. Kajian penentuan kandungan logam surih dalam makanan laut dan jumlah
pengambilannya oleh penduduk di Kuala Kemaman, Terengganu dan Kuala Selangor, Selangor.
Tesis Sm. Sn, Universiti Kebangsaan Malaysia (Tidak diterbitkan)
7. Tukimat L., A.B. Rahayu., C.C. Zaidi, & A.R. Sahibin. 2002. Kajian penentuan kandungan logam.
berat terpilih di dalam makanan laut dan anggaran pengambilannya oleh penduduk Kuala Kemaman,
Terengganu. Proceeding of the Regional Symposium on Environment and Natural Resources. 10- 11
th April 2002. Kuala Lumpur, Malaysia.
8. Theodore, P. L. 1981. Food and your well-being. West Publishing Co., St. Paul New York. Los
Angeles. San Francisco.
9. Ysart, G., P. Miller, M. Crosdale, H. Crews, P. Robb, M. Baxter, C. De L'Argy & N. Harrison, 2000.
1997 UK Total Diet Study - dietary exposures to aluminium, arsenic, cadmium, chromium, copper,
lead, mercury, nickel, selenium, tin and zinc. Food Additives and Contaminant, 17: 775-786.
10. National Academy of Science (NAS). 1980. Recommended dietary allowances. Ed. Ke 9. National
Academy of Science, Washington.
11. Bennett, B. G. 1981. Exposure commitment assessments of environmental pollutions. A MARC
Report Number 25: 1(2):18-3 1.
12. Giordano, R., L. Musmeci, L. Ciaralli, I. Vernillo, M. Chirico, A. Piccioni & S. Constantini. 1995.
Total contents and sequential extractions of mercury, cadmium and lead in coastal sediments. Mar.
Pollut. Bull. 24(7): 350-357.
13. Balogh, K.V. 1988. Heavy metal pollution from a point source demonstrated by mussel (Unio
pictorum L.) at Lake Balaton, Hungary. Bull. Environ. Contam. Toxicol. 41: 910-914.
14. Zawiah, H. & A. R. Rosmiza. 1995. Evaluation of trace elements iron, zinc, copper and lead in the
diet of female university students. Mal. J. Nutr. 1: 31-40.
15. Johansen, P., T. Pars & P. Bjerregaard. 1999. Lead, cadmium, mercury and selenium intake by
Greenlanders from local marine food. The Science of the Total Environment 245: 187-194.
16. Dabeka, R.W. & A.D. McKenzie. 1995. Survey of lead, cadmium, fluoride, nickel and cobalt in food
composites and estimation of dietary intake of these elements by Canadians in 1986-1988. Journal of
AOAC International. 78(4): 897-909.
17. World Health Organization. 1995. Inorganic lead. Environmental Health Criteria. Number 165
(World Health Organization, Geneva).
18. Salleh, Z.A., H. Brunn, R. Paetzold & L. Hussein. 1998. Nutrients and chemical residues in an
Egyptian total mixed diet. Food Chemistry. 63:535-541.
19. Tsoumbaris, P. & P.H. Tsoukali. 1994. Heavy metals in common foodstuff. Quantitative analysis.
Bull. Environ. Contam. Toxicol. 53: 61-66.
20. Cuadrado, C., J. Kumpulainen & O. Moreiras. 1995. Contaminants and nutrients in total diets in
Spain. European Journal of Clinical Nutrition. 49: 707-778.
204
  • ... Five species of fish and shrimp which live in in Tanjung Karang, Selangor also contain Pb, Ni, and Cd with concentration 0.123±0.064 mg kg -1 ; 0,123 ± 0,064 mg/kg; 0,467 ± 0,473 mg kg-1 on average wet weight respectively (Lihan et al., 2006). The research was done by Rahman (2006) found that some shrimps contain from 7.14±1.1 to 13.25 ± 2.2 mg kg -1 . ...
    Article
    Full-text available
    The study was aimed to compute Pb and Cd bioaccumulation in different organs of broiler. Carcass, heart, liver, gizzard, intestine, and excreta. The data were obtained from broiler reared in the litter cage. Four treatments of feed were given to the broiler chicken, i.e. T1 = X brand of commercial feed, T2 = Y brand of commercial feed, T3 = self-prepared feed without fish meal addition and T4 = self prepared feed without fish meal but contaminated with cadmium chloride (Cd.Cl2.4H2O). For each treatment, five broiler chicken were grouped each week (from week I up to week VI). Results of the first stage of this study was analyzed descriptively. A polinomial regression equation was used as an empirical model to describe the heavy metal bioaccumulation phenomenon in broiler carcasses. The quadratic equation turned out to be the most suitable model for describing the bioaccumulation of heavy metal in broiler carcasses. From the simulation, it was found that quadratic model fit to 61.31% and 54.17% bioaccumulation data of Pb and Cd respectively. According to the model, initially metal concentrations declined since the first week and started to rebound at the fifth week, both in terms of chronological and physiological age. The patterns of Pb and Cd bioaccumulation in this study can be used as a reference to determine the proper slaughter period. It can be concluded that for reducing the risk of metal contamination the proper slaughter time of the broiler is before the fifth week.
  • ... Justeru, tahap kepekatan akumulasi logam berat adalah pelbagai dalam organ ikan (Yilmaz et al. 2007). Di Malaysia, ikan adalah sumber protein utama yang menyumbang sebanyak 23% protein haiwan dalam makanan (Tukimat et al. 2006). Ikan kerisi atau nama saintifiknya Nemipterus nemurus Bleeker yang digunakan dalam kajian ini merupakan antara ikan marin yang menjadi sumber protein di Malaysia. ...
    Conference Paper
    Full-text available
    Kandungan logam plumbum (Pb), kadmium (Cd) dan merkuri (Hg) dalam isi, insang dan tulang ikan kerisi (Nemipterus nemurus Bleeker) dari Perairan Selat Melaka telah ditentukan. Hubungan di antara lokasi persampelan dan saiz ikan (panjang dan berat) dengan kepekatan logam telah di kaji. Sampel ikan dihadam dengan menggunakan kaedah penghadaman berasid dan kandungan Pb dan Cd dianalisis dengan menggunakan spektrofotometer serapan atom (AAS) jenis relau grafit, manakala kandungan Hg pula ditentukan menggunakan AAS jenis Flow Injection. Kepekatan kandungan Pb dan Cd yang tertingi dicatatkan dalam insang iaitu 0.6630  0.5923 g/g dan 0.2775  0.4205 g/g masing-masing manakala kepekatan logam Hg paling tinggi dicatatkan dalam isi ikan iaitu 0.1727  0.0915 g/g. Julat kandungan kepekatan logam yang diperoleh di dalam semua organ ialah 0.0784 – 0.6630 g/g, 0.0319 – 0.2775 g/g dan 0.1068 – 0.1727 g/g bagi Pb, Cd dan Hg masing-masing. Kepekatan semua kandungan logam dalam organ ikan kerisi masih berada di bawah had maksimum yang dibenarkan oleh Akta Makanan Malaysia (1983) dan Peraturan-peraturan Makanan (1985) (1 g/g bagi Cd dan Hg; 2 g/g bagi Pb). Kepekatan ketiga-tiga logam yang tercerap adalah di luar julat tercemar dan ini menunjukkan ikan kerisi dari Perairan Selat Melaka adalah selamat untuk di makan. Kata kunci: Plumbum, Kadmium, Merkuri Pendahuluan Kebimbangan tentang kesan pencemaran antropogenik terhadap ekosistem hidupan akuatik semakin meningkat (Mazet et al. 2005). Peristiwa kontaminasi yang disebabkan oleh merkuri di Minamata, Jepun pada 1956 (Langford & Ferner 2002; Tomiyasu et al. 2006); di Great Lakes (Mohapatra et al. 2007); di Amazon (Pinheiro et al. 2007); dan di China (Zhang & Wong 2007) jelas menunjukkan betapa seriusnya ancaman ini. Kontaminasi logam berat yang serius bukan sahaja disebabkan kesan toksisitinya kepada manusia, tetapi juga kerana keupayaannya mengalami bioakumulasi dan biomagnifikasi dalam rantai makanan (Begum et el. 2005). Kesedaran mengenai logam berat khususnya dalam ikan mulai mendapat perhatian kerana ikan merupakan sumber protein yang utama. Ikan dianggap sebagai indikator yang signifikan dalam menilai tahap pencemaran logam berat serta risiko kepada manusia (Begum et el. 2005; Papagiannis et al. 2004). Selain itu, organ tertentu di dalam ikan mempunyai afiniti yang berbeza terhadap logam berat. Justeru, tahap kepekatan akumulasi logam berat adalah pelbagai dalam organ ikan (Yilmaz et al. 2007). Di Malaysia, ikan adalah sumber protein utama yang menyumbang sebanyak 23% protein haiwan dalam makanan (Tukimat et al. 2006). Ikan kerisi atau nama saintifiknya Nemipterus nemurus Bleeker yang digunakan dalam kajian ini merupakan antara ikan marin yang menjadi sumber protein di Malaysia. Menurut Fishbase (2006), N. nemurus Bleeker penting kerana mempunyai nilai komersil yang tinggi.
  • ... The reputation of fish as health food has well established itself as a key nutritional requirement in most parts of the world and thus its consumption is highly recommended by health practitioners, nutritionists and dieticians to combat non-communicable diseases, pushing aside meat, poultry and eggs. Malaysians, being blessed with abundance fish supplies of various species and other seafood products, consume about 60-70% of proteins from such sources (Tukiman et al., 2006; Zuraini et al., 2006). Fishes are predatory by nature. ...
    Article
    Full-text available
    Assessment of heavy metals content in different commercial fish species are of particular interest since fish is important to the human diet and nutrition, apart from being a bioindicator for marine pollution and contamination and food safety. Most contemporary studies focus either on single markets, ports, seaside markets or direct sampling from natural habitat. Very few studies were conducted on fish samples obtained from both wet markets and supermarkets; hence this present study aims to compare the heavy metal concentration of marine fish from these places. Selected organs isolated from Rastrellinger kanagurta, Epinephelus sexfasciatus, Lates calcarifer, and Decapterus maruadsi were analysed for Cd and Pb using Flame AAS via dry ashing-acid digestion method. Results from wet markets and supermarkets were statistically compared for any significant difference (p<0.05). Cd and Pb contents ranged from 0.489 – 2.366 mg/kg and 0.616– 2.638 mg/kg respectively for wet market samples while supermarket samples ranged from 0.121– 2.667 mg/kg and 0.813 – 3.124 mg/kg. Mean comparisons between markets were also found to be significantly different though Cd and Pb contents in the edible organs fell within the safety limit for human consumption when compared to the standard permissible limits from the Fourteenth Schedule of Malaysian Food Regulations 1985.
  • ... The protein content in fish mostly averages from 15 to 20 percent; hence fish provides comparatively cheap and readily available protein sources in complement with long chains of n-3 fatty acids, amino acids, vitamins and minerals that further contributes to healthier nutritional options for a balance dietary intake (Hajeb et al., 2009; FAO, 2010). Marine fish is the important components of protein sources being incorporated into Malaysian diet which constitutes about 60 to 70 percent of protein consumed in Malaysia (Tukiman et al., 2006; Zuraini et al., 2006). Fish which occupy top level in the aquatic food chain are notorious for its ability to bioconcentrate heavy metals in its flesh muscles and organs. ...
    Article
    Full-text available
    Most investigations on heavy metals content in fish were either conducted on single markets, ports, seaside markets or direct sampling from natural habitat, and there were very few studies done on fish samples from both wet markets and supermarkets. This paper presents the assessment outcome of Cd and Pb levels in commercial fish sold between wet markets and supermarkets in Klang Valley, Malaysia. In this study, the organs of four commercial fish species (Rastrellinger kanagurta, Epinephelus sexfasciatus, Lates calcarifer, and Decapterus maruadsi) sampled from different markets within the sampling area were assessed using dry ashing-acid digestion method and Flame AAS. Results obtained concluded that Cd and Pb in fishes sampled from supermarkets are generally higher compared to wet markets, while both metals content in the edible organs fall well within the permissible limits for human consumption when compared to the Fourteenth Schedule of the Malaysian Food Regulations 1985.
  • ... Apart from this, the fishes are rich source of vitamins, minerals, and proteins. Studies in [9] [10] reveal that 60 to 70% of protein needs are fulfilled by the consumption of fishes in Malaysia. But, [11] [12] [13] have analysed the other side of high fish consumptions . ...
    Article
    Full-text available
    This study is focused on evaluating the trace metal levels in water and tissues of two commercial fish species Arius thalassinus and Pennahia anea that were collected from Kapar and Mersing coastal waters. The concentrations of Fe, Zn, Al, As, Cd and Pb in these coastal waters and muscle, liver and gills tissues of the fishes were quantified. The relationship among the metal concentrations and the height and weight of the two species were also examined. Generally, the iron has the highest concentrations in both water and the fish species. However, Cd in both coastal waters showed high levels exceeding the international standards. The metal level concentration in the sample fishes are in the descending order livers > gills > muscles. A positive association between the trace metal concentrations and weight and length of the sample fishes was investigated. Fortunately the level of these metal concentrations in fish has not exceeded the permitted level of Malaysian and international standards.
  • Article
    Full-text available
    Palu bay waters is susceptible to heavy metal pollution due to the inclusion of the waste product of Palu city, and such as agriculture, and traditional mining. The objective of this research was to determine the contamination of heavy metals mercury (Hg) and lead (Pb) in water, sediment, and torpedo scad fish (Megalaspis cordyla). Sampling was done purposively at 10 sampling points. Parameters of water quality measurements were done in the field for temperature, pH, brightness, turbidity, and dissolved oxygen (DO), and at laboratory analysis for salinity, chemical oxygen demand (COD), ammonia, and nitrates. Heavy metals were analized by following APHA, and Indonesian National Standard (SNI) methods. The results showed that Hg consentrations in water, sediment, gill, meat, liver, and spleen were 0.0008-0.0042 mg/l, 0.017-0.287 mg/kg, 0.007-0.145 mg/kg, 0.014-0.046 mg/kg, 0.052-0.106 mg/kg, and 0.043-0.414 mg/kg, respectively. Pb concentrations in water, sediments, gill, meat, liver, and spleen were 0.0130-0.0392 mg/l, 2.647-8.987 mg/kg, 0.132-0.775 mg/kg, 0.005-0.734 mg/kg, 0.295-1.871 mg/kg, and 1.654-12.92 mg/kg, respectively. The average of Hg and Pb concentrations in the water had exceeded the specified quality standards, while in the sediment were still below the quality standards. The average of Hg and Pb concentrations in all observed fish organs were below the quality standards, except for Pb concentrations in gill, liver, and spleen. Keywords: heavy metals, water, sediment, Megalaspis cordyla, Palu Bay
  • Article
    Full-text available
    Palu bay waters is susceptible to heavy metal pollution due to the inclusion of the waste product of Palu city, and such as agriculture, and traditional mining. The objective of this research was to determine the contamination of heavy metals mercury (Hg) and lead (Pb) in water, sediment, and torpedo scad fish (Megalaspis cordyla) Sampling was done purposively at 10 sampling points. Parameters of water quality measurements were done in the field for temperature, pH, brightness, turbidity, and dissolved oxygen (DO), and at laboratory analysis for salinity, chemical oxygen demand (COD), ammonia, and nitrates. Heavy metals were analized by following APHA, and Indonesian National Standard (SNI) methods. The results showed that Hg consentrations in water, sediment, gill, meat, liver, and spleen were 0.0008-0.0042 mg/l, 0.017-0.287 mg/kg, 0.007-0.145 mg/kg, 0.014-0.046 mg/kg, 0.052-0.106 mg/kg, and 0.043-0.414 mg/kg, respectively. Pb concentrations in water, sediments, gill, meat, liver, and spleen were 0.0130-0.0392 mg/l, 2.647-8.987 mg/kg, 0.132-0.775 mg/kg, 0.005-0.734 mg/kg, 0.295-1.871 mg/kg, and 1.654-12.92 mg/kg, respectively. The average of Hg and Pb concentrations in the water had exceeded the specified quality standards, while in the sediment were still below the quality standards. The average of Hg and Pb concentrations in all observed fish organs were below the quality standards, except for Pb concentrations in gill, liver, and spleen. Keywords: heavy metals, water, sediment, Megalaspis cordyla, Palu Bay
  • Article
    Samples of sediments collected along Italian coasts were analysed for mercury, cadmium, and lead contents by means of atomic absorption spectrometry methods. Determinations of iron and organic carbon were also performed. In addition, selective extractions were applied to the samples in order to evaluate the presence of the elements investigated in different chemical fractions. The mean values of total metals, expressed on the basis of dry weight, were 0.23±0.41 mg kg−1 for Hg, 0.16±0.12 mg kg−1 for Cd, and 41.1±37.3 mg kg−1 for Pb. In general, the levels of metals found in the stations where there was not much shipping activity were quite low and typical of unpolluted coastal sediments, whereas the highest concentrations noted were in the stations placed inside harbours. The procedure of selective extractions evidenced high percentages of metals in the residual fraction. For lead and cadmium, the concentrations obtained through leaching showed the anomaly/background contrast better than the total concentrations.
  • Article
    A mixed diet composite (EGYPT-DIET95) was prepared to represent the intake of Egyptian urban adults. Proximate analyses and assays for selected toxic elements, as well as organic chloro compounds, were carried out on this composite using well established methods and certified RMs (reference materials). The analysis of the composite diet demonstrates its usefulness for assessment of daily intakes. Calculated daily intakes of toxic substances were compared with the Acceptable Daily Intake of Codex Alimentarius (1984). The amounts of mercury and nitrates in Egyptian total-diet samples are of health concern.
  • Article
    The Recommended Dietary Allowances serve two basic uses: As guidelines for planning diets and food supplies and as a tool for evaluating nutritional adequacy of food consumed. Establishing standards to serve these functions is not simple. Differences in individuals in different population groups dictate allowances with relatively high margins of safety to prevent deficiencies. Even so, anomalies arise. Surveys have shown that intakes of vitamin A and protein are likely to exceed their respective allowances. On the other hand, calcium and thiamin intakes of older women and iron in teenage boys and women in the reproductive years are difficult to meet in terms of nutrient density ratios. In addition, insufficient data make it impossible to set allowances for some essential trace elements--and, other essential elements may yet be discovered. Thus the allowances are not guaranteed to represent the totality of nutritional needs.
  • Article
    Few studies are concerned with heavy metal pollution caused by the use of various paints in water ecosystems. In a study on the content of metals in dockyard sediments, elevated levels of Cu and Zn from antifouling paints, and Pb from anticorrosive and primer paints were reported. In the present work, a study was performed close to a sailing boat harbor of heavy metal pollution using biological samples. The concentrations of Cu, Zn, Cd and PB were determined in the organs of freshwater mussel (Unio pictorum L.) by AAS technique.
  • Article
    Polychlorinated biphenyls have been widely used in industry, but because of recognised environmental and human health hazards are now mostly restricted to closed electrical systems. PCBs are extremely stable compounds and are persistent in the environment once released. Representative values of PCB concentrations in the background environment and in man are selected from available data and a pathway analysis is performed utilizing the exposure commitment method. Dietary intake of PCBs is quite variable depending primarily on consumption of contaminated fish. Representative intake of 24 micrograms d -1 may be associated with concentrations in man of 0.35 mgkg -1 of body weight, from which a mean residence time in the body of 3 years may be inferred. Diminished intake and body concentrations should eventually become evident, reflecting reduced industrial usage and releases to the environment of PCBs. The exposure evaluation accounts also for secondary pathways to man from PCBs in air and drinking water. The analysis provides a framework for assessment of PCB movements through the environment in pathways to man. The estimates of transfer factors obtained from representative background levels should be generally relevant and may be applied to more specific cases of exposure.
  • Article
    Nickel is one of many trace metals that are pervasive in the environment, being released from natural and man-made sources, and to which man is exposed. Representative values of nickel concentrations in the background environment and in man are selected from available data and a pathway analysis is performed to illustrate application of the exposure commitment method to environmental pollutant assessment. Estimated dietary intake of nickel is of the order of 170 micrograms d-1. With fractional absorption of five per cent, retention in the body of 30 per cent of the absorbed amount and an estimated mean body content of nickel of 500 micrograms, an effective mean retention time of 200 days is derived. Contributions to the body burden from drinking water and inhalation of nickel in air are generally less important than dietary intake in normal circumstances. The exposure evaluation is performed for total nickel in the environment and in man. Relationships for specific nickel compounds would be useful and can be derived in a similar fashion as data become available.
  • Article
    During the period 1986-1988, foods were purchased at the retail level in 5 Canadian cities and, for each city, prepared for consumption and combined into 113 composites and 39 composite subsets. Lead and cadmium were determined in all the samples; fluoride, in samples from Winnipeg; and cobalt and nickel, in samples from Montreal. Means and ranges of concentrations (ng/g) found in individual samples were lead, 23.2 (< 0.4-523); cadmium, 9.96 (< 0.02-167); fluoride, 325 (11-4970); nickel, 196 (< 0.6-2521); and cobalt, 9.4 (< 0.3-75.7). Estimated dietary intakes (microgram/day) of the elements over all ages and sexes were lead, 24; cadmium, 13; fluoride, 1763; nickel, 286; and cobalt, 11. During the period 1985-1988, the average level of lead in canned foods decreased from 73.6 to 46 ng/g.
  • Article
    Lately, toxic effects of some heavy metals (Pb, Cd) as well as desirable ones of some others (Ni, Mn, Zn) have been a field of thorough investigation. The main way of human body fortification in metals is through foodchain depending on the kind and quantity of the consumed food, according to dietary habits. The purpose of this study is the calculation of metals daily intake through common foodstuff of Greek inhabitants. The calculation is based on results from quantitative analysis of Pb, Cd, Ni, Mn, and Zn in common foodstuff from the market of the city of Thessaloniki. The daily food consumption data is derived from three sources: (a) answers to a questionnaire distributed to families of the city of Thessaloniki, (b) nutrition data provided by the Agricultural Bank of Greece and (c) nutrition data according to international bibliography.