To study the properties of some drought tolerance criteria and agronomic characters in wheat, an eight-parental diallel cross, excluding reciprocals, was grown in a randomized complete block design with three replications under two different water regimes (irrigated and rainfed) for two years in the College of Agriculture at Razi University, Kermanshah, Iran. High broad-sense heritability estimates were observed for harvest index, grain yield, and earliness. Additive gene action was found to be predominant for grain yield, harvest index, relative water content and chlorophyll fluorescence. The results of combining ability analysis revealed that Plainsman was the best general combiner and Plainsman × Kobomugi was the best specific combination for improving drought tolerance. The pooled analysis of variance for combining ability over rainfed conditions reflected that the GCA × environment interaction was not significant for harvest index and chlorophyll fluorescence, and the SCA × environment interaction was non-significant for relative water content and relative water loss, indicating that genes controlling osmoregulation and the other physiological traits mentioned are not affected in these varieties by different rainfed conditions and hence show static stability.