ArticlePDF Available

On the meridional distribution of Alytes maurus Pasteur and Bons, 1962 (Amphibia, Discoglossidae)

Authors:

Figures

Content may be subject to copyright.
12 Herpetological Bulletin [2006] - Number 96
T
HE Moroccan midwife toad Alytes maurus
Pasteur & Bons, 1962 was finally separated
from the European midwife toad Alytes
obstetricans after 41 years, and elevated to full
specific rank when it was found to be closely
related to the Betican Alytes dickhilleni and
Majorcan midwife toad Alytes muletensis (Donaire
& Bogaerts, 2003). These authors suggested the
need to study the relationships between the two
disjunct distributional ranges in the Rif and Middle
Atlas regions within Morocco, and because the
species is rare and much localized, they stressed
the need to undertake more field research to
determine its global distribution. (Map 1).
Due to its reduced distributional range (about 30
localities known in an extent of occurrence less
than 5000 km
2
) in the wettest areas of the Rif and
Middle Atlas of Morocco, Alytes
maurus has been classified as a Near
Threatened species (IUCN, 2004).
Furthermore, Mateo et al. (2003)
feared a radical reduction in the
density of the populations of the
species exposed to human activity in
the Rif Mountains.
The Middle
Atlas distribution of
the species is scarcely known as it is
based only on one observation from the 1980s (Libis,
1985) and two from the 1990s (Mellado & Mateo,
1992; Bons & Geniez, 1996). No tangible proof of its
existence has ever been shown in the form of
photographs or specimens.
Under the scope of the DAPTF SEED GRANT
2004 project:
Environmental characteristics and
population census of three endemic amphibians of
Morocco (North Africa): Implications for
conservation’, a field expedition to the Rif and
Middle Atlas regions was undertaken from 31
st
October until 7
th
November 2004. During the rainy
night of 4
th
November, on a track running from
Taffert to Merhaoua in the Middle Atlas region, the
first author had the opportunity to find, photograph,
measure and collect toe clips (deposited at the
MNCN Madrid tissue bank for a future genetic
On the meridional distribution of Alytes maurus Pasteur and Bons,
1962 (Amphibia, Discoglossidae)
DAVID DONAIRE-BARROSO
1
, EL HASSAN EL MOUDEN
2
, TAHAR SLIMANI
2
, and
JUAN PABLO GONZALEZ
DE LA VEGA
3
1
C/San Vicente no 3 Jerez de la Fra. C.P. 11408, Cádiz, Spain
2
Cadi Ayyad University, Faculty of Sciences, Vertebrate Biodiversity and Ecology Laboratory,
B.P. 2390, Marrakech 40 000, Morocco
3
Apdo. Correos 1209, C.P. 21080, Huelva, Spain
Map 1. Updated global distribution of
Alytes maurus Pasteur & Bons, 1962;
hollow circles based on Bons & Geniez,
1996, solid circles by Donaire &
Bogaerts, 2003 and star symbol
unedited data from the project
‘Environmental characteristics and
population census of three endemic
amphibians of Morocco’.
RESEARCH ARTICLES
Distribution of Alytes maurus
Number 96 - Herpetological Bulletin [2006] 13
analysis) of three specimens of Alytes maurus from
three different sites (one male, one female and one
juvenile; Fig.1). Locality 1 at Tizi n’Teramecht
(N33° 40’ 11.7” W 4° 7’ 29.7”, altitude 2142 m),
locality 2 and 3 at Larij Touttene (N33° 38’37.2” W
4° 12’ 50.5”, altitude 2017 m; N33 38’ 26” W 4 12’
35.2”, altitude 1688 m respectively).
These three new sites confirm and validate the
20 year-old record by Libis (1985) of Alytes at Tizi
Ouaouestra (N33° 41’ W4° 6’, altitude 2050 m)
which is very close to locality 1 (about 2 km
away), and slightly expands its distribution since
Larij Touttene (localities 2 & 3) lies about 10 km.
from Tizi Ouaouestra to the southwest, proving its
wider distribution in the area of Djebel Bou Iblane
(see Map 2).
The two Larij Touttene sites are about
500 m from each other and they represent the new
southernmost known record of the species’
distribution.
At first glance, both locations, Tizi n’Teramecht
and Larij Touttene, have different habitats
corresponding to two bioclimatic zones; the first is
a rocky criomediterranean zone devoid of forest
with only bushy thorny vegetation present and
patches of snow (as described in Libis, 1985); Larij
T
outtene is a forested oromediterranean zone of
Pinus and Quercus trees below the Cedar line.
These two locations are found within the protected
SIBE priority 1 (site of bio-ecological interest)
Jebel Bou Iblane where neither deforestation nor
human impact seem to threaten the species.
However, outside the protected area the pressure of
domestic animals, deforestation and soil erosion is
alarmingly encroaching upon this population.
ACKNOWLEDGEMENTS
Thanks to Gustavo Espargallas who accompanied
and helped the first author during the fieldwork
and to Rachid, forestry guard who kindly hosted us
during that night at Taffert. Lastly to all the
reviewers who kindly helped to improve this short
note.
REFERENCES
Bons, J. & Geniez, Ph. (1996). Anfibios y Reptiles
de Marruecos (Incluido Sáhara Occidental)
Atlas biogeográfico. Barcelona, Spain:
Asociación Herpetológica Española. 319 pp.
Donaire, D. & Bogaerts, S. (2003). Datos sobre
taxonomia, ecología y biología de Alytes maurus
(Pasteur & Bons, 1962) (Anura; Discoglossidae),
Societat Catalana de Herpetología Dic 2003.
IUCN. Conservation Internacional & NatureServe.
(2004). Global Amphibian Assessment,
Map 2. Meridional distribution of Alytes maurus at the
Djebel Bou Iblane SIBE natural park. Square = former
southern most location (Libis, 1985); other symbols =
new records presented in this note.
Figure 1. Examples of Alytes maurus found at Djebel
Bou Iblane. Top left: male from location 2; top right:
female from loc. 1; bottom centre: juvenile from loc. 3.
Attacks by predaceous diving beetles on Terecay
14 Herpetological Bulletin [2006] - Number 96
http://www. globalamphibians.org
Libis, B. (1985). Nouvelle donnée sur la
répartition au Maroc du crapaud accoucheur
Alytes maurus Pasteur et Bons 1962 (Amphibia;
Discoglossidae). Bull. Soc. Herp. Fr, 33, 52–53.
Mateo, J.A., Pleguezuelos, J.M., Fahd, S., Geniez,
Ph. & Martínez-Medina, F.J. (2003). Los Anfibios,
los Reptiles y el Estrecho de Gibraltar. Un ensayo
sobre la Herpetofauna de Ceuta y su entorno.
Instituto de Estudios Ceutíes. Ceuta. 388 pp.
Mellado J. & Mateo J.A. (1992). New records of
Moroccan Herpetofauna.
Herpetol. J. 2(2), 58–61.
Pasteur, G. & Bons, J. (1962). Note préliminaire sur
Alytes (obstetricans) maurus: gémellarité ou
polytopisme? remarques biogéographiques,
génétiques et taxonomiques. Bull. Soc. Zool. Fr. 87(1),
T
HE Dytiscidae (Insecta, Coleoptera) is a fairly
large family of beetles distributed over most
of the world. Both adults and larvae are
carnivorous, feeding on small aquatic
invertebrates (e.g. molluscs, crustaceans, insects),
while the larger species feed also on amphibians
(chiefly tadpoles) and small fish. The adults are
also scavengers, feeding on dead or injured
animals (cf. Larson
et al., 2000). Some large
Dytiscidae species have a fundamental role in the
demographic control of amphibian populations
(e.g. Ideker, 1979; Formanowicz, 1986;
Holomuzki, 1986). Moreover
, one case of
predation upon a reptile has been reported: a
neonate of Thamnophis elegans (Reptilia,
Serpentes, Colubridae) killed by a larva of
Dytiscus sp. (Drummond & Wolfe, 1981).
Two of the authors observed in the Ecuadorian
Amazon many adults of the tribe Cybistrini
(Dytiscinae) attacking young of
Podocnemis
unifilis (Reptilia, Testudines, Pelomedusidae).
Such behaviour has never been recorded, and is
the subject of this note.
The observations were made in January 1999 at
the ‘Reserva de produccion faunistica de
Cuyabeno’
(Sucumbios province) in four artificial
pools in three villages (one in Playas, two in
Zabalo and one in Zancudo) along the Aguarico
River banks. The young turtles were reared for
their first year of life in these pools, and were later
released along the rivers (headstarting) with the
aim of reducing the high natural mortality of
neonate turtles (cf. Caputo et al., 2005; Townsend
et al., 2005). The pools were specially dug
Observations of predaceous diving beetles (Insecta, Coleoptera,
Dytiscidae) attacking Terecay,
Podocnemis unifilis, (Reptilia,
Testudines, Pelomedusidae) in Ecuador
FRANCESCO PAOLO CAPUTO
1
, GIANLUCA NARDI
2
and PACO BERTOLANI
1
1,
* Dipartimento di Biologia Animale e dell’Uomo (Zoologia), Università degli Studi di Roma “La
Sapienza”, Viale dell’Università, 32. I-00185 Roma, Italy.
Email: francescopaolo.caputo@uniroma1.it
2
Centro Nazionale per lo Studio e la Conservazione della Biodiversità Forestale – Corpo Forestale
dello Stato. Strada Mantova, 29. I-46045 Marmirolo (MN), Italy. Email: l_nardi@hotmail.com
*Corresponding address: Caputo Francesco Paolo; Via Gabrio Serbelloni 115 I-00176 Roma
ABSTRACT Cases of adults of Megadytes (Megadytes) sp. and of M. (Trifurcitus) robustus
(Insecta, Coleoptera, Dytiscidae) attacking young of Podocnemis unifilis in headstarting pools in
the Ecuadorian Amazon are recorded. The possible causes of this behaviour are briefly discussed.
Megadytes (Trifurcitus) robustus is new to Ecuador.
Attacks by predaceous diving beetles on Terecay
Number 96 - Herpetological Bulletin [2006]
15
prismatic hollows (from 12 to 20 m
2
) lined with
PVC and filled with motor pumped water from the
Aguarico River. Three pools (the two at Zabalo
and the one at Zancudo) were badly managed
(scarce food, dirty water, competition for the
basking site, excessive vegetation and mud,
overcrowding, presence of young caimans), so in
these pools the accretion of
P. unifilis after one
year was lower than that observed in the well-
managed one (Playas). Moreover many of the
turtles in the badly managed pools showed health
problems (dwarf disease, posterior legs paralysed,
etc.) (Bertolani & Caputo, unpubl. data).
The three badly managed pools were infested by
large adults of Dytiscidae. Four specimens were
collected (Zacundo, UTM 0452750 9937724, 6
th
January 1999), belonging to two species:
Megadytes (Trifurcitus) robustus (Aubé, 1838)
and Megadytes (Megadytes) sp. The first species
was represented by two males and its
identification was confirmed by examinaton of the
genitalia (cf. Tremouilles & Bachmañn, 1980;
Tremouilles, 1989). Given that
Megadytes
(Megadytes) sp. was represented by two females,
it was not possible to identify it with certainty.
Megadytes (Trifurcitus) robustus is new to
Ecuador, having been previously recorded in
Argentina, Brazil, Paraguay and Uruguay (cf.
Tremouilles & Bachmañn, 1980; Tremouilles,
1989).
The Cuyabeno natives named these beetles
‘bichos que chupan la tarta’ (beetles that suck the
turtle), considering them to be hematophage
animals. For this reason they were eliminated by
the people responsible for the pools, albeit
somewhat haphazardly.
Dytiscidae, including those collected, were
observed attached to turtles’
inner thighs, close to
the conjunction of the carapace and plastron. Their
grip was so tight that even removing the turtle
from the water, did not loosen it. All the turtles
thus observed (from 4.4 to 4.7 cm in plastron
length) were moribund (probably due to poor
environmental conditions) and died shortly
afterwards, despite the removal of the insect.
Dytiscidae were never observed eating dead
turtles, though this may be due to the fact that
corpses were removed from the pools as soon as
they were seen. Both dytiscid species belong to the
tribe Cybistrini, which includes some of the largest
members of the family. No literature data are
available on the feeding behaviour of the collected
species, but it is known that other congeneric
species (Tucker, 1940; Motta & Uieda, 2004) and
those of the close genus
Cybister Curtis, 1827 are
predators of small vertebrates (e.g. Goidanich,
1943; Ideker, 1979; Johnson
et al., 2003) or
scavengers (Johnson & Jakinovich, 1970). Our
observations suggest that also
Megadytes
(Trifurcitus) robustus and Megadytes (Megadytes)
sp. are predaceous of small vertebrates. The
observed attacks on turtles are very probably
attributable to the abundance of prey and to their
bad health; similar situations have been observed
also in fish-breeding (cf. Larson
et al., 1990; Balke
et al., 2004).
We suppose that similar behaviour occurs also
in nature. This would take place during the dry
season when some turtles, due to falling water
levels, are confined to isolated muddy, low-
oxygen pools (Vogt & Soini, in press). In a such
situation availability of food may be reduced,
exposing the young turtles to risk of Dytiscidae
attack.
ACKNOWLEDGEMENTS
Thanks are due to Fernando Pederzani for help
with the Dytiscid identifications.
REFERENCES
Balke, M., Jäch, M. & Hendrich, L. (2004).
Insecta: Coleoptera. In Freshwater Invertebrates
of the Malaysian Region, pp. 556–609. C. M.
Yule, C.M. & Hoi Sen Y. (Eds.). Kuala Lumpur,
Malaysia: Academy of Sciences Malaysia.
Caputo, F.P., Canestrelli, D. & Boitani, L. (2005).
Conserving the terecay (Podocnemis unifilis,
T
estudines: Pelomedusidae) through a
community-based sustainable harvest of its
eggs. Biol. Conser
v.
126, 84–92.
Drummond, H. & Wolfe, G.W. (1981). An
observation of a diving beetle larva (Insecta:
Coleoptera: Dytiscidae) attacking and killing a
garter snake, Thamnophis elegans (Reptilia:
Serpentes: Colubridae). Coleopt. Bull. 35,
121–124.
Formanowicz, D.R. Jr
. (1986).
Anuran
Attacks by predaceous diving beetles on Terecay
16 Herpetological Bulletin [2006] - Number 96
tadpole/aquatic insect predator-prey
interactions: tadpole size and predator capture
success. Herpetologica 42, 367–373.
Goidanich, A. (1943). Sulla ittiofagia immaginale
del
Cybister lateralimarginalis (Coleoptera
Dytiscidae). Boll. Istit. Entomol. Univ. Bologna
15, 1-12 + 1 plate.
Holomuzki, J.R. (1986). Predator avoidance and
diel patterns of microhabitat use by larval tiger
salamanders.
Ecology 67, 737–748.
Ideker, J. (1979). Adult
Cybister fimbriolatus are
predaceous (Coleoptera: Dytiscidae).
Coleopt.
Bull.
33, 41–44.
Johnson, G.H. & Jakinovich, W. Jr. (1970).
Feeding behaviour of the predaceous diving
beetle
Cybister fimbriolatus fimbriolatus (Say).
Bioscience 20, 111.
Johnson, J.B., Saenz, D., Adams, C.K. & Conner,
R.N. (2003). The influence of predator threat on
the timing of a life-history switch point:
predator-induced hatching in the southern
leopard frog (
Rana sphenocephala). Can. J.
Zool. 81, 1608–1613.
Larson, D.J., Alarie, Y. & Roughley, R.E. (2000).
Predaceous Diving Beetles (Coleoptera:
Dytiscidae) of the Nearctic Region, with
emphasis on the fauna of Canada and Alaska.
Ottawa: National Research Council of Canada
Research Press, 982 pp.
Motta, R.L. & Uieda, V.S. (2004). Diet and trophic
groups of an aquatic insect community in a
tropical stream. Braz. J. Biol. 64, 809–817.
Townsend, W.R., Borman, R.A., Yiyoguaje, E. &
Mendua, L. (2005). Cofan Indians’ monitoring
of freshwater turtles in Zabalo, Ecuador.
Biodiversity Conserv. 14, 2743–2755.
Tremouilles, E.R. (1989). Notas sobre Coleoptera
acuaticos neotropicales. II. Nuevos aportes al
conocimiento del genero
Megadytes Sharp
(Coleoptera, Dytiscidae) sobre ejemplares del
British Museum (Natual History). Rev. Soc. Ent.
Argentina
45, 153–157.
Tremouilles, E.R. & Bachmañn, A.O. (1980). La
tribu Cybisterini [sic] en la Argentina
(Coleoptera, Dytiscidae). Rev. Soc. Ent.
Argentina 39, 101–125.
Tucker, R.W.F. (1940). Bufo marinus in Barbados.
Agric. J. Barbados 8, 145–150.
Vogt, R.C. & Soini, P. (in press). Podocnemis
unifilis (Troschel 1848). The conservation
biology of freshwater turtles. IUCN/SSC
Tortoise and Freshwater Turtle Specialist
Group: action plan rating.
Storeria dekayi. Lake County, Illinois, U.S.A. Pen and ink illustration by Will Brown.
www//blueridgebiological.com
... Parmi les articles manquants, un grand nombre ont été publiés dans le Bulletin de la Société Herpétologique de France. Auraient pu (dû) être cités : Boettger (1874), Mocquard (1895), Chabanaud (1916), Werner F. (1929), Roux (1939), Reymond (1953), Saint Girons (1953a, Bons et Pasteur (1957), Marx (1959), Bons (1960), Pasteur (1961), Bons (1962), Pasteur et Bons (1962), Bons (1969), Leviton et Anderson (1970), Saint Girons (1973, Malkmus (1981), Guillaume et Bons (1982), Salvador (1982), Joger (1984), Libis (1985), Beerli et al. (1986), Busack (1986), Destre et al. (1989), Valverde (1989), Arnold (1990), Mateo (1990), Bischoff et in den Bosch (1991), Rösler (1991), Bauer et al. (1992), , , Geniez P. et al. (1993), Geniez P. et Soto (1994, Pillet (1994), Geniez M. et Geniez P. (1995), Slimani et al. (1996), Genovart et al. (1997), Znariet El Mouden (1997), Smith et al. (1998), Znari et al. (1998), Bour et Maran (1999), Girard (1999), Maran et Geniez P. (1999), Herrmann et al. (2000), Znari et al. (2000), Boone (2001), Wilms et Böhme (2001), Barroso et Bogaerts (2003), Brito (2003), Geniez P. et Guillod (2003), Aymerich et al. (2004), Broadley et Wüster (2004), Escoriza et López Ortiz (2005), Paracuellos et al. (2005), Carranza et al. (2006), Donaire et al. (2006), El Mouden et al. (2006, Escoriza et al. (2006), Pinho et al. (2006), Vaconcelos [sic 11 ]et al. (2006), Chani et al. (2008), Pinho et al. (2008), Slimani (2008) J'ai été un peu surpris et déçu par cet ouvrage dont j'attendais bien plus. Il s'agit d'un atlas photographique mais en aucun cas d'une synthèse des connaissances acquises sur les amphibiens et reptiles du Maroc. ...
... Parmi les articles manquants, un grand nombre ont été publiés dans le Bulletin de la Société Herpétologique de France. Auraient pu (dû) être cités : Boettger (1874), Mocquard (1895), Chabanaud (1916), Werner F. (1929), Roux (1939), Reymond (1953), Saint Girons (1953a, Bons et Pasteur (1957), Marx (1959), Bons (1960), Pasteur (1961), Bons (1962), Pasteur et Bons (1962), Bons (1969), Leviton et Anderson (1970), Saint Girons (1973, Malkmus (1981), Guillaume et Bons (1982), Salvador (1982), Joger (1984), Libis (1985), Beerli et al. (1986), Busack (1986), Destre et al. (1989), Valverde (1989), Arnold (1990), Mateo (1990), Bischoff et in den Bosch (1991), Rösler (1991), Bauer et al. (1992), , , Geniez P. et al. (1993), Geniez P. et Soto (1994, Pillet (1994), Geniez M. et Geniez P. (1995), Slimani et al. (1996), Genovart et al. (1997), Znariet El Mouden (1997), Smith et al. (1998), Znari et al. (1998), Bour et Maran (1999), Girard (1999), Maran et Geniez P. (1999), Herrmann et al. (2000), Znari et al. (2000), Boone (2001), Wilms et Böhme (2001), Barroso et Bogaerts (2003), Brito (2003), Geniez P. et Guillod (2003), Aymerich et al. (2004), Broadley et Wüster (2004), Escoriza et López Ortiz (2005), Paracuellos et al. (2005), Carranza et al. (2006), Donaire et al. (2006), El Mouden et al. (2006, Escoriza et al. (2006), Pinho et al. (2006), Vaconcelos [sic 11 ]et al. (2006), Chani et al. (2008), Pinho et al. (2008), Slimani (2008) J'ai été un peu surpris et déçu par cet ouvrage dont j'attendais bien plus. Il s'agit d'un atlas photographique mais en aucun cas d'une synthèse des connaissances acquises sur les amphibiens et reptiles du Maroc. ...
Article
Full-text available
Review of a book on Amphibians and Reptiles of Morocco. Maghreb Afrique du Nord Maroc Amphibia Reptilia Sauria Serpentes Amphisbaenia Chasseur de serpent Charmeur de serpent Biogéographie Maladie Alien Prédation Prédateur DOR Routes Pièges involontaires Mortalité Caudata Salamandridae Goldfuss, 1820 Pleurodeles waltl Michaelles, 1830 Salamandra algira Bedriaga, 1883 Anura Alytidae Fitzinger, 1843 Alytes maurus Pasteur & Bons, 1962 Discoglossus pictus Otth, 1837 Discoglossus scovazzi Camerano, 1878 Pelobatidae Bonaparte, 1850 Pelobates varaldii Pasteur & Bons, 1959 Bufonidae Gray, 1825 Barbarophryne brongersmai (Hoogmoed, 1972) Bufo spinosus Daudin, 1803 Bufotes boulengeri (Lataste, 1879) Sclerophrys mauritanica (Schlegel, 1841) Sclerophrys xeros (Tandy, Tandy, Keith & Duff-MacKay, 1976) Hylidae Rafinesque, 1815 Hyla meridionalis Boettger, 1874 Ranidae Rafinesque-Schmaltz, 1814 Pelophylax saharicus (Boulenger in Hartert, 1913) Dicroglossidae Anderson, 1871 Hoplobatrachus occipitalis (Günther, 1858) Chelonii Testudinidae Batsch, 1788 Testudo graeca Linnaeus, 1758 Geoemydidae Theobald, 1868 Mauremys leprosa (Schweigger, 1812) Emydidae Rafinesque, 1815 Emys orbicularis (Linnaeus, 1758) Gekkota Sphaerodactylidae Underwood, 1954 Quedenfeldtia moerens (Chabanaud, 1916) Quedenfeldtia trachyblepharus (Boettger, 1874) Saurodactylus brosseti Bons & Pasteur, 1957 Saurodactylus fasciatus Werner, 1931 Saurodactylus mauritanicus (Duméril & Bibron, 1836) Gekkonidae Oppel, 1811 Gekkonidae Gray, 1825 Hemidactylus angulatus Hallowell, 1854 Hemidactylus turcicus (Linnaeus, 1758) Stenodactylus mauritanicus Guichenot, 1850 Stenodactylus petrii Anderson, 1896 Stenodactylus sthenodactylus (Lichtenstein, 1823) Tropiocolotes algericus Loveridge, 1940 Tropiocolotes tripolitanus Peters, 1880 Phyllodactylidae Gamble, Bauer, Greenbaum & Jackman, 2008 Ptyodactylus oudrii Lataste, 1880 Tarentola annularis (É. Geoffroy de Saint-Hilaire, 1827) Tarentola boehmei Joger, 1984 Tarentola chazaliae (Mocquard, 1895) Tarentola deserti Boulenger, 1891 Tarentola hoggarensis Werner, 1937 Tarentola mauritanica (Linnaeus, 1758) Tarentola parvicarinata Joger, 1980 Scincoidea Scincidae Oppel, 1811 Scincidae Gray, 1825 Chalcides boulengeri ANDERSON, 1892 Chalcides colosii Lanza, 1957 Chalcides delislei (Lataste & Rochebrune, 1876) Chalcides delislei (Lataste, 1876) Chalcides ebneri Werner, 1931 Chalcides lanzai PASTEUR, 1967 Chalcides manueli HEDIGER, 1935 Chalcides mauritanicus (Duméril & Bibron, 1839) Chalcides minutus Caputo, 1993 Chalcides mionecton (Boettger , 1874) Chalcides montanus WERNER, 1931 Chalcides ocellatus (Forsskal, 1775) Chalcides parallelus (Doumergue, 1901) Chalcides polylepis Boulenger, 1890 Chalcides pseudostriatus Caputo, 1993 Chalcides sphenopsiformis (A.H.A. Duméril, 1856) Eumeces algeriensis Peters, 1864 Scincus albifasciatus Boulenger, 1890 Scincopus fasciatus (Peters, 1864) Lacertoidea Blanidae Kearney, 2003 Blanus mettetali Bons, 1963 Blanus tingitanus Busack, 1988 Trogonophiidae Gray, 1865 Trogonophis wiegmanni Kaup, 1830 Lacertidae Batsch, 1788 Acanthodactylus cf. audouini Boulenger, 1918 Acanthodactylus audouini Boulenger, 1918 Acanthodactylus aureus Günther, 1903 Acanthodactylus boskianus (Daudin, 1802) Acanthodactylus busacki Salvador, 1982 Acanthodactylus dumerilii (Milne-Edwards, 1829) Acanthodactylus erythrurus (Schinz, 1833) Acanthodactylus longipes Boulenger, 1918 Acanthodactylus maculatus (Gray, 1838) Acanthodactylus margaritae Tamar, Geniez, Brito & Crochet, 2017 Acanthodactylus taghitensis Geniez & Foucart, 1995 Atlantolacerta andreanskyi (Werner, 1929) Mesalina guttulata (Lichtenstein, 1823) Mesalina olivieri (Audouin, 1829) Mesalina pasteuri (BONS, 1960) Mesalina rubropunctata (Lichtenstein, 1823) Mesalina simoni (BOETTGER, 1881) Ophisops occidentalis (Boulenger, 1887) Podarcis vaucheri (Boulenger, 1905) Psammodromus algirus (Linnæus, 1758) Psammodromus blanci (Lataste, 1880) Psammodromus microdactylus Boettger, 1881 Scelarcis perspicillata (Duméril & Bibron, 1839) Timon tangitanus (Boulenger, 1891) Anguimorpha Anguidae Gray, 1825 Hyalosaurus koellikeri Günther, 1873 (sic) Varanidae Merrem, 1820 Varanus griseus (Daudin, 1803) Iguania Agamidae Spix, 1825 Agamidae Fitzinger, 1826 Agama boueti Chabanaud, 1917 Agama boulengeri Lataste, 1886 Agama impalearis Boettger, 1874 Trapelus boehmei Wagner, Melville, Wilms & Schmitz, 2011 Uromastyx dispar Heyden, 1827 Uromastyx nigriventris Rothschild & Hartert, 1912 Uromastyx occidentalis Mateo, Geniez, Lopez-Jurado & Bons, 1998 Chamaeleonidae Gray, 1825 Chamaeleo chamaeleon (Linnaeus, 1758) Serpentes Leptotyphlopidae Stejneger, 1892 Myriopholis algeriensis (Jacquet, 1895) Boidae Gray, 1825 Eryx jaculus (Linnaeus, 1758) Colubridae Oppel, 1811 Coronella girondica (Daudin, 1803) Dasypeltis sahelensis Trape & Mané, 2006 Hemorrhois algirus (Jan, 1863) Hemorrhois hippocrepis (Linnaeus, 1758) Lytorhynchus diadema (A.M.C. Duméril, Bibron & A.H.A. Duméril, 1854) Macroprotodon abubakeri Wade, 2001 Macroprotodon brevis (Günther, 1862) Natrix astreptophora (Seoane, 1884) Natrix maura (Linnaeus, 1758) Spalerosophis diadema (Schlegel, 1837) Spalerosophis dolichospilus (Werner, 1923) Telescopus tripolitanus (Werner, 1909) Lamprophiidae Boie, 1827 Boaedon fuliginosus (Boie, 1827) MALPOLON INSIGNITUS (GEOFFROY SAINT-HILAIRE, 1827) Malpolon monspessulanus (HERMANN, 1804) Psammophis schokari (Forsskal, 1775) Rhagerhis moilensis (Reuss, 1834) Elapidae Boie, 1827 Naja haje (Linnaeus, 1758) Viperidae Oppel, 1811 Bitis arietans (Merrem, 1820) Cerastes cerastes (Linnaeus, 1758) Cerastes vipera (Linnaeus, 1758) Daboia mauritanica (Gray, 1849) Echis pyramidum (Geoffroy Saint Hilaire, 1827) Vipera latastei Bosca, 1878 Inventaire Atlas Carte de répartition Reproduction Ecologie Habitat Alimentation Menaces Chat Procambarus Gambusia holbrooki Viande de brousse Tourisme Touriste Commerce animal Traces Mue
... A. obstetricans requires areas with high amounts of precipitation and occupy a wide range of habitats, from mountain ranges to crops 21 . A. muletensis is only known in a few localities on northern Mallorca Island22, whereas A. maurus is restricted to a few localities in the Rif and Middle Atlas Mountains of Morocco and typically occupies humid sites in karst and steep areas 23 . regarding the two Iberian endemics, A. dickhilleni is restricted to the Betic region in southeastern Spain 24 . ...
... Global Biodiversity Information Facility (GBIF.org [23 January 2020] GBIF Occurrence Download https://doi.org/10.15468/dl.n9vgeb). We have selected, and included in the analyses, only points separated by at least 1 km from among all available points in the distribution areas. ...
Thesis
Los anfibios están entre los organismos más dependientes de las condiciones ambientales, estando limitados por características fisiológicas diferentes según sus estadios de vida (larvario o adulto). Además, nuestra área de estudio, el Mediterráneo Occidental, presenta una interesante historia paleogeográfica y paleo-climática, con la aparición y desaparición de barreras físicas o ambientales, derivadas estas últimas de los relativamente rápidos cambios climáticos producidos durante las glaciaciones. Es importante destacar que, en el actual escenario de Cambio Global, y más específicamente de Cambio Climático, esperamos cambios bruscos en el hábitat disponible para estas especias. Por esta razón, el estudio de la evolución del nicho, y sus perspectivas futuras, es una herramienta esencial para la conservación. En este trabajo abordamos este tema mediante una aproximación integrada dividida en dos bloques principales. Un primer bloque centrado en el modelado de nicho ambiental, incluyendo la evolución en la divergencia de este, escenarios futuros y condiciones pasadas que afectan la distribución actual de los anfibios en nuestra área de estudio. Y un segundo bloque que analiza las cuestiones fisiológicas que afectan a ambas fases de vida, e indagando en la respuesta de estos organismos para adaptarse a condiciones ambientales subóptimas. Nuestros resultados muestran que la divergencia de nicho ambiental tiene un papel clave en la evolución, que la estabilidad climática es un promotor de la diversidad en los anfibios del Mediterráneo Occidental y que el calentamiento climático antrópico afectará la disponibilidad de hábitat de estas especies de diferentes maneras, con reducciones en algunas y aumentos en otros. Esperamos que nuestros datos, unidos a futuras investigaciones, proporcionen información útil para la conservación de este grupo tan amenazado.
... A. obstetricans requires areas with high amounts of precipitation and occupy a wide range of habitats, from mountain ranges to crops 21 . A. muletensis is only known in a few localities on northern Mallorca Island 22 , whereas A. maurus is restricted to a few localities in the Rif and Middle Atlas Mountains of Morocco and typically occupies humid sites in karst and steep areas 23 . Regarding the two Iberian endemics, A. dickhilleni is restricted to the Betic region in southeastern Spain 24 . ...
... A total of 319 A. dickhilleni presence points were surveyed by the authors within all their Andalusian distribution areas. We identified 170 local population locations of A. cisternasii (including our own collection data and data from Amphibiaweb 27 ), 162 of A. obstetricans (our data, Amphibiaweb, and in addition, revised data from www.obser vatio n.org), 14 of A. maurus (our data, Amphibiaweb and Donaire et al. 23 ), and 11 of A. muletensis (our data and Amphibiaweb). All populations were separated by at least 200 m. Figure 1 shows the distribution of points selected for all five species. ...
Article
Full-text available
Variation and population structure play key roles in the speciation process, but adaptive intraspecific genetic variation is commonly ignored when forecasting species niches. Amphibians serve as excellent models for testing how climate and local adaptations shape species distributions due to physiological and dispersal constraints and long generational times. In this study, we analysed the climatic factors driving the evolution of the genus Alytes at inter- and intraspecific levels that may limit realized niches. We tested for both differences among the five recognized species and among intraspecific clades for three of the species (Alytes obstetricans, A. cisternasii, and A. dickhilleni). We employed ecological niche models with an ordination approach to perform niche overlap analyses and test hypotheses of niche conservatism or divergence. Our results showed strong differences in the environmental variables affecting species climatic requirements. At the interspecific level, tests of equivalence and similarity revealed that sister species were non-identical in their environmental niches, although they neither were entirely dissimilar. This pattern was also consistent at the intraspecific level, with the exception of A. cisternasii, whose clades appeared to have experienced a lower degree of niche divergence than clades of the other species. In conclusion, our results support that Alytes toads, examined at both the intra- and interspecific levels, tend to occupy similar, if not identical, climatic environments.
... Les données utilisées pour l'élaboration de la répartition des espèces ont été recueillies à partir des travaux suivants : Bons et Geniez 1996, Slimani et al. 1996, Hasi et al. 1997, Mateo et al. 1998, Martínez-Medina 2001, Gallix 2002, Brito 2003, Crochet et Geniez 2003, Donaire-Barroso et Bogaert 2003, Herrmann et Herrmann 2003, Crochet et al. 2004, Guillon et al. 2004, Martínez-Solano et al. 2004, In den Bosch 2005, Donaire-Barroso et al. 2006, Zangari et al. 2006, Fahd et Mediani 2007, Fahd et al. 2007, Guzman et al. 2007, Carranza et al. 2008, Ramos et Díaz-Portero 2008, Doglio et al. 2009, García-Muñoz et al. 2009, Barnestein et al. 2010, Bergier et al. 2010, Ceacero et al. 2010, El Hamoumi et Himmi 2010, Harris et al. 2010, Westerström 2010, Barata et al. 2011, Bergier et al. 2011, Brito et al. 2011, Lapeña et al. 2011, Barata et al. 2012a, b, Barnestein et al. 2012, de Pous et al. 2012, Velo-Anton et al. 2012, Barata 2013, Beukema et al. 2013, Escoriza et Ben Hassine 2013, Reques et al. 2013, Bergier et al. 2014, Damas-Moreira et al. 2014, Velo-Antón et al. 2014, Mediani et al. 2015, Sanchez-Vialas et al. 2015, Martinez-Freiria et al. 2017, Avella et al. 2019, Martínez del Mármol et al. 2019, Miralles et al. 2020 Les données de l'atlas de Bons et Geniez (1996) ont été converties en coordonnées géographiques par géo-référencement. Nous avons également utilisé les données recueillies sur le terrain par l'intermédiaire de notre équipe de recherche basée au Maroc (LESCOBIO, Faculté des Sciences de Tétouan) et au Portugal (CIBIO, Université de Porto). ...
Research
Full-text available
Le Maroc est l'un des pays les plus riches du Bassin méditerranéen pour ce qui est de l'herpétofaune. Ce ne sont en effet pas moins de 120 espèces d'amphibiens et de reptiles terrestres qui constituent l'herpétofaune de ce pays, dont 30 sont endémiques, soit 25 %. Le genre Chalcides est particulièrement diversifié avec 16 espèces dont neuf sont des endémiques. Une carte de distribution a été élaborée pour chaque espèce. Trois nouvelles espèces ont été ajoutées à la liste des endémiques du Maroc. Trois principaux patterns de répartition, sensu, superficie occupée et nombre de localités ont été identifiés : 1/ large, 2/ ponctuelle et, 3/ le reste des espèces montrant une répartition restreinte. Trois patterns de répartition, sensu région occupée, ont été identifiés 1/ montagnard, 2/ atlantique et 3/ sud marocain. Les zones qui se sont avérées héberger le plus d'espèces endémiques sont la péninsule Tingitane, la côte atlantique, le massif rifain et les Haut et Moyen Atlas. Summary-Atlas of endemic amphibians and reptiles of Morocco: Distribution maps and conservation status. Morocco is one of the richest countries in the Mediterranean Basin, comprising 120 terrestrial amphibians and reptiles, of which 30 are endemic species (25%). Remarkably, the genus Chalcides hits top record with nine endemic species out of 16 existing species. Updated distribution maps were elaborated for each species. A new species was added to the taxonomic list of endemics of Morocco. Three main distribution patterns regarding the occupied area and number of localities were identified: 1/ large, extensive, or widespread, 2/ punctual, and 3/ restricted distribution. Three main distribution patterns regarding the occupied region were identified: 1/ mountain, 2/ Atlantic, and 3/ southern Morocco. The areas apparently accommodating most of the endemic species are located within the Tangitan Peninsula, Atlantic coast, Rif Massif, and High and Middle Atlas.
... Les données utilisées pour l'élaboration de la répartition des espèces ont été recueillies à partir des travaux suivants : Bons et Geniez 1996, Slimani et al. 1996, Hasi et al. 1997, Mateo et al. 1998, Martínez-Medina 2001, Gallix 2002, Brito 2003, Crochet et Geniez 2003, Donaire-Barroso et Bogaert 2003, Herrmann et Herrmann 2003, Crochet et al. 2004, Guillon et al. 2004, Martínez-Solano et al. 2004, In den Bosch 2005, Donaire-Barroso et al. 2006, Zangari et al. 2006, Fahd et Mediani 2007, Fahd et al. 2007, Guzman et al. 2007, Carranza et al. 2008, Ramos et Díaz-Portero 2008, Doglio et al. 2009, García-Muñoz et al. 2009, Barnestein et al. 2010, Bergier et al. 2010, Ceacero et al. 2010, El Hamoumi et Himmi 2010, Harris et al. 2010, Westerström 2010, Barata et al. 2011, Bergier et al. 2011, Brito et al. 2011, Lapeña et al. 2011, Barata et al. 2012a, b, Barnestein et al. 2012, de Pous et al. 2012, Velo-Anton et al. 2012, Barata 2013, Beukema et al. 2013, Escoriza et Ben Hassine 2013, Reques et al. 2013, Bergier et al. 2014, Damas-Moreira et al. 2014, Velo-Antón et al. 2014, Mediani et al. 2015, Sanchez-Vialas et al. 2015, Martinez-Freiria et al. 2017, Avella et al. 2019, Martínez del Mármol et al. 2019, Miralles et al. 2020. ...
Article
Le Maroc est l'un des pays les plus riches du Bassin méditerranéen pour ce qui est de l’herpétofaune. Ce ne sont en effet pas moins de 120 espèces d'amphibiens et de reptiles terrestres qui constituent l’herpétofaune de ce pays, dont 30 sont endémiques, soit 25 %. Le genre Chalcides est particulièrement diversifié avec 16 espèces dont neuf sont des endémiques. Une carte de distribution a été élaborée pour chaque espèce. Trois nouvelles espèces ont été ajoutées à la liste des endémiques du Maroc. Trois principaux patterns de répartition, sensu, superficie occupée et nombre de localités ont été identifiés : 1/ large, 2/ ponctuelle et, 3/ le reste des espèces montrant une répartition restreinte. Trois patterns de répartition, sensu région occupée, ont été identifiés 1/ montagnard, 2/ atlantique et 3/ sud marocain. Les zones qui se sont avérées héberger le plus d’espèces endémiques sont la péninsule Tingitane, la côte atlantique, le massif rifain et les Haut et Moyen Atlas. Bulletin de la Société Herpétologique de France, 176: 61-94
... Of course, such trends will be subject to adaptation to local population environmental conditions, but this general framework may be used to identify potential key reproductive triggers. Alytes maurus, although being distributed in North Africa, has a highland distribution and as such breeds in late Spring and early summer, much like A. obstetricans, of which it was, until recently considered a subspecies (Donaire- Barroso, 2006;Marquez et al., 2011). It is likely that the provision of a long, cold winter period followed by the creation of a warm summer microclimate would stimulate breeding in this species. ...
Article
Full-text available
Captive husbandry and breeding may be pivotal to the successful conservation of many amphibian species, with captive stock providing research subjects, educational tools and animals for release into the wild. Husbandry protocols are missing for many species and sub-optimal for many more, which may limit the success of captive breeding attempts. It has been suggested that observations and environmental data taken from species in nature may be used to infer optimal captive conditions for amphibians. For species where data from the wild are not available, 'analogue', that is closely related but more accessible species, may be used as surrogates to inform captive husbandry to some degree. These hypotheses, although logically cogent, are not well tested in amphibians. In particular, the suitability of analogue species based on some knowledge of basic ecology and biology is frequently not assessed. We show that captive husbandry requirements and breeding stimuli correlate with feld data and phenology in wild populations of the midwife toads Alytes obstetricans and A. cisternasii. In particular, the provision of hot summer temperatures following a cold brumation period of suitable duration may be important for breeding the western-central European A. obstetricans. Conversely, the Iberian A. cisternasii responds to hot summer temperatures with a rest period and reproduces in the cooler autumn and winter months. Brooding success was highly variable in A. obstetricans and smaller than records from wild toads, possibly due to the young age of breeding stock. Clutch size was similar in A. cisternasii to records from wild counterparts. Although specific breeding triggers and annual temperature requirements are likely to vary between localities for both species, these observations provide some useful data on the indoor breeding of both species. Our results also highlight the relevance of feld data in designing captive husbandry protocols, while illustrating the inappropriateness of using one species as an analogue for the other in terms of husbandry requirements unless basic aspects of natural history, ecology and phenology can be shown to be broadly similar.
... A. maurus is native to Morocco and the North African Spanish enclave of Ceuta, but is found only in the Western and Central Rif Mountains and Middle Atlas Mountains of Morocco, from 200m to 2,050m asl. It is known to occur in 30 localities with an extent of occurrence less than 5000km 2 in the wettest areas of the Rif and Middle Atlas of Morocco (Donaire- Barroso et al., 2006;Donaire-Barroso et al., 2009;Dietterich, 2014;Fig. 9). A. muletensis is endemic to the island of Mallorca, where its range is restricted to the Sierra Tramuntana in the North of the Island, between 10m and 850m asl in an increasing area of 10km 2 (Serra et al., 2009). ...
Technical Report
Full-text available
The information in this Best Practice Guideline has come from a variety of sources including an extensive literature review, the experience of the authors and others in the captive husbandry of Alytes species as well as direct observations of the species in the field. Amphibian husbandry is a rapidly evolving field and there are many aspects that require further research. Water parameters and UVB exposure in the field require documentation. It has only been possible to recommend water parameters and UV provision based on captive husbandry experience and a more evidence based approach utilising parameters from the field should be developed in order to make evidence based husbandry recommendations. Captive diets for both larval and post metamorphic amphibians are likely to differ from diets consumed by larval and post metamorphic amphibians in the field. Replicating the wild diet in captivity will likely be precluded by the limited number of invertebrate species that can be reared on scale required for them to form viable live food colonies. Key husbandry points 1. The provision of appropriate UV, temperature and humidity gradients within the enclosure (this will vary depending on the species and the time of year). 2. Monitoring egg carrying males. Entanglement of the egg masses around the hind legs of male specimens can result in an annular constriction around the distal aspect of the tibial region. This can cut through the soft tissues of the leg and /or result in the obstruction of the blood flow. If not detected early and treated, the foot swells up and may eventually become necrotic. 3. Monitoring and management of water quality.
... Subsequently, the species received little scientific attention (but see e.g., Arntzen & Szymura, 1984;Libis, 1985) until the almost simultaneous publications of Bons & Geniez (1996), Schleich et al. (1996) and Salvador (1996) provided reviews of the species' geographic distribution and natural history. More recently, Donaire- Barroso & Bogaerts (2003) proposed to elevate the Moroccan midwife toad to the species level and, together with Donaire- Barroso et al. (2006), provided a substantial increase in ecological knowledge and geographic distribution. The specific status of A. maurus was later confirmed by osteological, mitochondrial DNA and nuclear DNA evidence (Fromhage et al., 2004;Martínez-Solano et al., 2004;Gonçalves et al., 2007). ...
Article
Full-text available
We aimed at determining the effects of past climatic conditions on contemporary intraspecific genetic structuring of the endemic Moroccan midwife toad Alytes maurus using mitochondrial DNA (12S, 16S and cytochrome b) analysis and ecological niche modelling. Unexpectedly, our genetic analyses show that A. maurus presents a low level of variability in the mitochondrial genes with no clear geographical structuring. The low genetic variation in mtDNA can be explained by a much broader climatic suitability during the Last Glacial Maximum that allowed the connection among populations and subsequent homogenization as a consequence of gene flow.
... It has a discontinuous distribution throughout humid areas in montane-karst and forested areas (mainly Q. pyrenaica) close to water sources in the western and central Rif Mountains (Fig. 3b) between 200 and 2050 m above sea level (Jebel Tazekka) (see DE POUS et al., 2013). Its distribution in the Middle Atlas is poorly known (LIBIS, 1985;DONAIRE-BARROSO et al., 2006). A recent genetic analysis shows that A. maurus presents low levels of mtDNA variability with no clear geographical structuring . ...
Chapter
Full-text available
Morocco has one of the highest rates (28.6%) of amphibian endemism among countries bordering the Mediterranean Sea and, while large areas of Morocco are crucial for conserving amphibian biodiversity, some areas are not afforded legal protection. We examine biodiversity, identify immediate anthropogenic threats, discuss critical habitat for the conservation of amphibian diversity and the role of currently protected areas in meeting conservation goals within Morocco, Western Sahara included. The study area harbours 14 amphibian species, eight of which are assigned to the categories of Endangered (Pelobates varaldii), Vulnerable (Salamandra algira, Amietophrynus xeros, and Hoplobatrachus occipitalis) or Near Threatened (Pleurodeles waltl, Alytes maurus, Bufo spinosus, and Barbarophryne brongersmai) using IUCN criteria at the regional level of the study area. Habitat loss and degradation due to conversion of land for agriculture, urbanization, or industry are major threats, but infrastructure for tourism, freshwater pollution by chemicals, introduction of non-native species to aquatic ecosystems (Gambusia holbrooki), pathogens Batrachochytrium dendrobatidis), road-kills, and natural disasters (drought), are also rapidly increasing threats. In addition, consequences from global warming must also be considered. The present Conservation Area Network (CAN) does not include distributional ranges of some amphibian species, and a more complete CAN in Atlantic and desert areas is suggested. The northwestern Atlantic, Rif-Middle Atlas, Central Atlantic, and Tiris regions should be considered priorities for conservation because of amphibian endemism and/or the existence of isolated amphibian populations.
Article
Full-text available
Le bassin méditerranéen est l'une des régions les plus diversifiées de la planète en matière de biodiversité. Au sein de cette région, le nord-ouest de l'Afrique est l'une des zones les plus riches en espèces d'amphibiens. Elle héberge aussi le plus grand nombre d'espèces considérées comme étant menacées. Il est, donc, important de connaître la répartition ainsi que les menaces qui pèsent sur la communauté d'amphibiens des aires protégées de cette région. Parmi celles-ci se trouve le bassin versant d'Oued Laou. Localisé dans la région nord–ouest du Maroc, sur le littoral méditerranéen, il occupe une superficie d'environ 930 km 2. Il se situe entre deux cadres géographiques différents, le littoral et la montagne, et se caractérise par la présence d'un climat allant du semi-aride au perhumide. Cette région présente un grand intérêt biogéographique, paysager et possède une diversité exceptionnelle aussi bien floristique que faunistique. Neuf espèces d'amphibiens ont été observées dans le bassin versant d'Oued Laou, ce qui représente plus de 64% de l'ensemble des espèces présentes au Maroc. Ce groupe de vertébrés, a été peu étudié au Maroc. Le bassin versant du Laou se caractérise par une grande diversité d'habitats : la plaine d'Oued Laou, s'est avérée être la zone la moins riche (2 espèces). Les zones les plus riches sont Jbel Kelti, Bouhachem et le sud-ouest du bassin versant d'Oued Laou (9 espèces). Ces zones sont inclues dans le Parc National de Talassemtane et le Projet de Parc Naturel de Bouhachem. Les espèces les plus rares sont Pleurodeles waltl et Bufotes boulengeri. Les plus abondantes sont Amietophrynus mauritanicus et Pelophylax saharicus. Les espèces les plus menacées sont P. waltl, Salamandra algira et Alytes maurus. Les principales menaces qui pèsent sur les amphibiens d'Oued Laou sont la déforestation et la pollution de l'eau. Les mesures de protection à prendre sont l'élaboration de nouveaux textes législatifs incluant les amphibiens au Maroc et la prise en considération des amphibiens et de leurs habitats dans la zonation des aires protégées du bassin versant d'Oued Laou. Abstract : The River Laou Catchment area lies in the northwestern region of Morocco, near to the Mediterranean coast and occupies a surface of about 930 km 2. It is situated between two different geographical frames, the coast and the mountain, and is characterised by the presence of a climate ranging from semi-arid to perhumid. This region represents an important interest concerning biogeography, landscape and has an exceptional floristic and faunistic diversity. Nine species of amphibians have been observed in the River Laou Catchment, and this represents over 64 % of all species present in Morocco. This group of vertebrates has been poorly studied in Morocco. The River Laou Catchment is characterised by a large diversity of habitats: the plain of Wadi Laou is the zone with the lowest species richness (2 species). The richest zones are Jbel Kelti, Bouhachem and the southwest of the River Laou Catchment (9 species). These areas are included in the Talassemtane National Park and the project for a new Natural Park at Bouhachem. The rarest species are Pleurodeles waltl and Bufotes boulengeri. The most abundant are Amietrophynus mauritanicus and Pelophylax saharicus. The most threatened species are P. waltl, Salamandra algira and Alytes maurus. Major threats against amphibians of River Laou Catchment are deforestation and water pollution. Conservation measures to be taken are the elaboration of new legal texts that include amphibians in Moroccan legislation, and the consideration of amphibians and their habitat in the zonation of protected areas of the River Laou Catchment.
Book
Full-text available
Dytiscid beetles comprise a large element within the Canadian fauna yet their identification is difficult for the nonspecialist and the distribution and habitats of the species are only sketchily known. The initial and continued aims are to make the predaceous water beetle fauna of Canada accessible to as wide an audience as possible by summarizing available knowledge of the fauna, documenting the species present and their distribution and habitats, providing means for the identification of the taxa, and indicating where knowledge is especially lacking and where interesting and possibly productive research avenues lie. To achieve these aims it has been necessary to revise several genera, review the systematic position of many taxa and to seek out immature stages of various taxa. Much new information, including descriptions of new taxa, is included in this book. The aim of the work being to aid and encourage others to look at water beetles with increased interest and appreciation and to stimulate research on these poorly understood insects. The Canadian fauna cannot be understood without reference to the overall Nearctic fauna and therefore the scope gradually enlarged over time to include most of the North American fauna. This work treats all Nearctic genera and most species. Detailed treatment is provided for all species known from Canada. Non-Canadian species are treated as fully in some genera, in others these species are included only in keys. Only within genera where some species are too poorly known to allow their definition, are all species not included. The areas with the most incomplete coverage are both the Gulf States and southwestern United States, namely western Texas to southern California. For the rest of the continent, it is hoped that this work will provide a useful identification guide.
Article
Full-text available
We tested the hypotheses that potential egg predators, crayfish Procambarus nigrocinctus and dytiscid Cybister sp. larvae, would accelerate the timing of hatching and that a larval predator, dragonfly naiad Anax junius, would delay hatching in the southern leopard frog (Rana sphenocephala). We also tested the hypothesis that differences in response would be proportional to predator lethality. Our results indicate that our hypotheses were partially supported. The presence of an efficient egg predator (crayfish) induces hatching faster than a less efficient predator (dytiscid larvae). However, the presence of a larval predator (naiads) did not delay hatching. Eggs that developed in the presence of egg predators produced hatchlings that were shorter (total length) than those reared in the presence of larval predators or those reared in the absence of predators. We suggest that earlier hatching times should decrease vulnerability to egg predators but result in shorter hatchlings.
Article
Full-text available
The exploitation of South American river turtles as a food source has long been considered the main factor contributing to the decline of populations. Along a stretch of the Aguarico River (Ecuador), we investigated the spatial and temporal distribution of terecay (Podocnemis unifilis) nests, factors affecting nest outcome, and the effect of offering a reward for each hatchling captured on the pattern of egg consumption by the local human community. Flooding influence on egg mortality appears to be particularly important in this Amazonian region, destroying 63.1% of all nests. This amount of nests resulted more than sufficient to satisfy the local community’s consumption needs (28.2%). The proposed reward for each hatchling ensured the voluntary participation of the Cofan people in the terecay conservation project, leading to: (i) nests being harvested only from sites where there were likely no hatching possibilities, (ii) efficient management and protection of nesting beaches with abolition of poaching of nests and adult females, and (iii) transplantation of nests from sites that would be flooded (and whose yield exceeds human consumption). Therefore, we argue that in this area of Aguarico River there are both biologically and socially favourable conditions for the establishment of a sustainable harvest of terecay eggs. Possible factors determining high nest mortality due to flooding in this area, as well as opportunities to make the project evolve toward economic self-sustainability, will also be discussed.
Article
Full-text available
The Cofán Indians of Aguarico and Zábalo Rivers in Ecuador in 1990 began a turtle recuperation effort by raising turtle hatchlings (Podocnemis expansa and P. unifilis) in small pools. To evaluate the effectiveness of this program, the Cofán developed and tested three methods to document changes in the populations of turtles. The first method consisted of interviews with people from neighbouring communities about their perceptions of changes in turtle abundance. The second method was a direct count of turtles observed along the rivers from canoe. The third method was an indirect count, involving turtle nest censusing along community beaches. Two of the methods yielded numerical, statistically positive turtle population trends. The turtle program has influenced the community's perception of turtle conservation issues so that, instead of hunting the adults and eggs, they now protect them. The training in record-keeping permits them to make a transparent history of the equitability of access to the turtle egg resource. The Cofán monitoring experience strengthened their successful petition to the Ecuadorian government for the rights to manage their territorial lands within the Cuyabeno Wildlife Reserve, and to receive protected area status and management rights to other ancestral lands. The experience gained by the Zábalo monitors is now serving as a model for the design and implementation of the park monitoring system of the newly-established Cofán Park Ranger Corps, which will be patrolling three Ecuadorian Ecological Reserves which overlap Cofán inhabited areas.
Article
Full-text available
The diet and trophic groups of an assemblage of aquatic insects were studied in a tropical stream. Genera of the orders Ephemeroptera, Odonata, Plecoptera, Lepidoptera, and Hemiptera showed feeding specialization. Others, such as Trichoptera, Coleoptera, and Diptera, showed great diet variation with genera of different trophic groups. Seasonal variation of insect diet, evident only for some genera of the orders Trichoptera, Lepidoptera, Coleoptera, and Diptera, was due to the differences observed in community composition and to generalist habits of these genera. However, the seasonal comparison of trophic groups showed no significant statistical differences. The great importance of organic matter, a non-limited resource, in the diet of Ribeirão do Atalho aquatic insects may be the explanation for the trophic stability in this community organization.
Article
Examined the vulnerability of a series of sizes (developmental stages) of Rana clamitans tadpoles from semi-permanent ponds in New York to predation by 3 instars of predaceous diving beetles larvae (Dytiscus verticalis). Generally, tadpole vulnerability decreased with increasing tadpole size and increased with increasing predator size. The effect of tadpole size as an antipredator defense on predator capture effeciency is examined.-from Authors
Article
Larvae Ambystoma tigrinum nebulosum were studied in permanent ponds in the White Mountains of east-central Arizona. Microhabitat use of larvae at Big Meadows Tanks 1 and 2 was strongly influenced by risk of predation from adult predaceous diving beetles Dytiscus dauricus. Adult beetles were active at night and moved almost exclusively in vegetated littoral areas, while larval salamanders occupied vegetated shallows during the day and moved to open, deeper areas at night. Dytiscus was essentially absent from Lower Cottonwood Tank, and salamanders used littoral areas both day and night. Densities of zooplankton and macroinvertebrate prey were higher in vegetated shallows than in open, deeper areas at all times of day, throughout the summer sampling periods at all ponds. Larvae at Big Meadows used vegetated shallows by day, apparently because food densities and temperatures were higher than in pelagic areas, but avoided vegetated shallows at night when risk of beetle predation increased.-from Author
Anuran rAttacks by predaceous diving beetles on Terecay 16 Herpetological Bulletin [2006] - Number 96 tadpole/aquatic interactions: tadpole size and predator capture success
  • D R Formanowicz
  • Through
  • Jr
Formanowicz, D.R. through a Jr. (1986). Anuran rAttacks by predaceous diving beetles on Terecay 16 Herpetological Bulletin [2006] - Number 96 tadpole/aquatic interactions: tadpole size and predator capture success. Herpetologica 42, 367–373