Abstrakt Za období posledních cca 660 mil. let máme geologické záznamy jak o změnách klimatu na Zemi, tak o změnách sluneční aktivity. Nejdelší známé klimatické cykly mají délky cca 150 mil. let a chladné periody velice dobře časově korelují s orogeny a současně erozními periodami. Za posledních cca 5 mil. let je velice dobře zdokumentováno střídání dob ledových a meziledových s periodami cca 41 tis. let a cca 96 tis. let. Kromě galaktických vlivů jsou ve sluneční aktivitě a tím i klimatu pozorovatelné rázové periody planet a to od nejdelší periody 6256 let, 1020-1040 let, 208 let, 178,8 let, 88 let a 59,577 let. Zvláštní postavení má 62,5 letý cyklus excentricity Jupitera, který se promítá do všech klimatických parametrů na Zemi-teploty, AMO, PDO, LOD, pozic tlakových útvarů v atmosféře, směru a velikosti proudění vody v oceánech nebo srážkách. Pozorovaný nárůst teplot na Zemi je možno vysvětlit akumulací slunečního záření v horninách a největší sluneční aktivitou za posledních cca 1000 let. Zpoždění nárůstu teplot za sluneční aktivitou je dáno malou tepelnou vodivostí hornin a tím i velkým poločasem akumulace/radiace cca 270 let. Koncentraci CO 2 v atmosféře určuje zejména dynamická výměna plynů mezi oceánem a atmosférou na hladině a dosud rostoucí střední teplota oceánů, závislá na sluneční aktivitě. Tato koncentrace závisí na anomální teplotě jako její integrál a je proto také fázově zpožděná oproti globálním teplotám, a to až o desítky let. Dnešní pozorovaný nárůst koncentrace CO 2 je tedy možno fyzikálně vysvětlit jako dvojnásobně zpožděný vliv slunečního záření, které mělo počátek svého maxima po Malé době ledové přibližně po roce 1850 a vrcholu dosáhlo okolo roku 1958.
Abstract
For the period of the last 660 million years, we have geological records of both climate changes on Earth and changes in solar activity. The longest known climate cycles are approximately 150 million years long, and cold periods are very well correlated in time with orogens and at the same time with erosional periods. Over the past 5 million years, the alternation of ice ages and interglacials with periods of approximately 41,000 years is very well documented. years and approx. 96 thousand flight. In addition to galactic influences, shock periods of the planets can be observed in the solar activity and thus the climate, from the longest period of 6256 years, 1020-1040 years, 208 years, 178.8 years, 88 years and 59.577 years. The 62.5-year eccentricity cycle of Jupiter has a special position, which is reflected in all climatic parameters on Earth – temperature, AMO, PDO, LOD, positions of pressure structures in the atmosphere, direction and magnitude of water flow in the oceans or precipitation. The observed increase in temperatures on Earth can be explained by the accumulation of solar radiation in rocks and the greatest solar activity in the last 1000 years. The delay in the increase in temperatures due to solar activity is due to the low thermal conductivity of rocks and thus the long half-life of accumulation/radiation of about 270 years. The concentration of CO2 in the atmosphere is mainly determined by the dynamic exchange of gases between the ocean and the atmosphere on the surface and the still increasing average temperature of the oceans, dependent on solar activity. This concentration depends on the anomalous temperature as its integral and is therefore also phase-delayed with respect to global temperatures by up to decades. Today's observed increase in CO2 concentration can therefore be physically explained as a doubly delayed effect of solar radiation, which had the beginning of its maximum after the Little Ice Age approximately after 1850 and reached its peak around 1958.