Content uploaded by Maria Pais
Author content
All content in this area was uploaded by Maria Pais on Jan 15, 2016
Content may be subject to copyright.
Original
article
Floral
nectaries
from
Limodorum
abortivum
(L)
Sw
and
Epipactis
atropurpurea
Rafin
(Orchidaceae):
ultrastructural
changes
in
plastids
during
the
secretory
process
MS
Pais,
ACS
Figueiredo
Departamento
de
Biologia
Vegetal,
Faculdade
de
Ciências
de
Lisboa,
Bioco
C2,
Campo
Grande,
1700
Lisbon,
Portugal
(Received
9
May
1994;
accepted
2
September
1994)
Summary —
Ultrastructural
features
of
the
floral
nectaries
of
2
orchid
species,
Limodorum
abortivum
(L)
Sw
and
Epipactis
atropurpurea
Rafin,
were
compared.
In
particular,
ultrastructural
changes
were
followed
in
the
plastids
throughout
the
process
of
nectar
secretion.
There
is
evidence
that
plastids
play
an
important
role
in
this
process.
Before
secretion
begins,
plastids
of
epidermal
and
subepidermal
cells
of
the
nectaries
of
both
species,
accumulated
large
quantities
of
starch.
However,
during
the
phase
of
nectar
secretion,
the
plastids
were
found
to
contain
little
if
any,
starch,
suggesting
that
starch
degradation
had
augmented
nectar
sugar
production.
Plastoglobuli
were
evident
during
all
developmental
stages.
The
tubular
reticulum
found
in
plastids
of
pre-secretory
nectaries
was
still
evident
during
secre-
tion,
but
was
then
found
to
contain
an
unknown,
dense
osmiophilic
material.
The
floral
nectary
of
L
abortivum
is
sucrose
dominant,
whereas
that of
Eatropurpurea
is
hexose
rich.
Therefore,
the
differences
in
nectar-carbohydrate
composition
are
apparently
not
explainable
by
the
similar
ultrastructural
changes
of their
floral
nectaries.
Further
investigation
is
required
to
determine
the
biochemical
basis
for
the
disparity
in
nectar
sugar
composition
between
these
2
species.
Epipactis
atropurpurea
Rafin
/
Limodorum
abortivum
(L)
Sw
/
nectary
/
orchid
/
plastid
/
starch
Abbreviations
used
in
the
figures:
CW
=
cell
wall;
CWp
=
cell-wall
pit;
CWi
=
cell-wall
ingrowths;
D
=
dic-
tyosome;
ER
=
endoplasmic
reticulum;
M
=
mitochondrion;
N
=
nucleus;
NC
=
nectariferous
cells;
OD
=
osmiophilic
droplets;
P
=
plastid;
PR
=
plastid
reticulum;
S
=
secretion;
St
=
starch;
V
=
vacuole;
VB
=
vascular
bundles.
INTRODUCTION
The
Orchidaceae
is
one
of
the
largest
and
most
evolved
families
in
the
angiosperms.
A
large
number
of
genera
within
this
family
possess
both
floral
and
extra-floral
nectaries.
Extra-floral
nectaries
secrete
nectar
on
the
outside
of
buds
or
inflorescences
when
the
flowers
are
developing
(van
der
Pijl
and
Dod-
son,
1966).
Floral
nectaries
are
particularly
important
due
to
their
adaptative
significance
related
with
the
ability
to
attract
pollinators.
The
morphology
and
location
of
floral
nec-
taries
in
the
Orchidaceae
are
variable:
a)
shallow
and
cup-like,
at
the
base
of
the
label-
lum;
b)
in
long
spurs,
produced
either
from
the
fused
sepals
or
from
the
base
of
the
labellum;
c)
long,
tubular
and
embedded
in
the
base
of
the
flower
alongside
the
ovary;
and
d)
on
the
side-lobes
or
along
the
central
groove
of
the
labellum
(see
van
der
Pijl
and
Dodson, 1966).
Epipactis
atropurpurea
and
Limodorum
abortivum
are
2
examples
of
this
diversity.
The
labellum
of
E
atropurpurea
is
divided
into
2
parts:
the
outer
part
(epichile)
is
tongue-shaped,
whereas
the
proximal
part
(hypochile)
has
the
shape
of
a
concave
gut-
ter.
On
the
other
hand,
in
L
abortivum
each
flower
has
a
long,
thin
and
curved
nectary
spur
produced
from
the
internal
portion
of
the
labellum.
In
continuation
of
our
work
on
these
orchids
(Pais
and
Chaves
das
Neves,
1980;
Pais
et
al,
1986;
Pais,
1987;
Figueiredo
and
Pais,
1992)
we
present,
in
this
paper,
a
study
comparing
the
ultra-
structural
aspects
of
the
plastids
at
differ-
ent
stages
during
the
nectar
secretion
pro-
cess.
MATERIALS
AND
METHODS
Plant
material
Flowers
of
L
abortivum
and
E
atropurpurea,
of
different
developmental
stages,
were
collected
from
plants
growing
in
the
field,
at
Cotovia
(Ses-
imbra,
Portugal).
Transmission
electron
microscopy
Cross-sections
of
the
floral
nectaries
at
differ-
ent
stages
of
development
(pre-secretory,
secre-
tory
and
post-secretory
stages),
were
fixed
overnight
in
2%
glutaraldehyde
(GA)
in
0.1
M
sodium
cacodylate
buffer,
pH
7.2,
at
4°C.
The
material
was
rinsed
thoroughly
in
the
same
buffer
and
postfixed
with
2%
OSO4
(aqueous
solution)
for
2
h.
After
dehydration
in
a
graded
acetone
series,
the
material
was
embedded
in
Epon-Araldite
according
to
Mollenhauer
(1964).
Ultrathin
sections
were
stained
with
uranyl
acetate/lead
citrate
(Reynolds,
1963),
and
observed
with
a
Jeol
100C
electron
microscope
at
80
kV.
Light
microscopy
Semi-thin
sections
from
material
fixed
within
GA/OsO
4
as
above
were
stained
with
Methy-
lene
Blue-Azure
A-Safranin
(Warmke
and
Lee,
1976).
Scanning
electron
microscopy
The
material
was
fixed
with
GA/OsO
4
as
above,
rinsed
in
water
and
plunged
into
liquid
propane,
subcooled
in
liquid
nitrogen.
Specimens
were
freeze-dried
at
-65°C
for
4
d
in
a
Freeze-dryer
Polaron
E
5300.
Dried
specimens
were
sputter-
coated
with
gold
in
a
Polaron
E
5350
and
obser-
vations
were
made
at
15
kV
using
a
Jeol
JSM
T220
scanning
electron
microscope.
RESULTS
Epipactis
atropurpurea
The
internal
portion
of
the
floral
nectary
of
E
atropurpurea
has
the
shape
of
a
concave
gutter
(plate
I,
fig
1b,
c).
In
longitudinal
sec-
tion
a
nectariferous
layer
and
several
lay-
ers
of
parenchyma
cells
can
be
seen
(plate
I, fig
1a).
Both
the
nectariferous
and
parenchyma
cells
of
E
atropurpurea
contained,
in
the
pre-secretory
stage,
numerous
amyloplasts
filled
with
starch
grains
(plate
II,
fig
1-3).
Plastoglobuli
and
a
peripheral
reticulum
were
also
evident
in
these
plastids.
Dic-
tyosomes
and
endoplasmic
reticulum
occurred
in
the
cytoplasm
(plate
II,
fig
1).
At the
secretory
stage,
a
reticulum
with
osmiophilic
content
was
common
in
the
plas-
tids
(plate
III,
figs
1, 2).
At
this
stage,
little
or
no
starch
was
present
inside
such
plastids.
Dictyosomes
and
ER
profiles
were
abun-
dant
both
in
nectariferous
(plate
III,
fig
1)
and
parenchyma
cells.
Cell-wall
ingrowths
were
profuse,
but
were
present
only
along
the
external
walls
of
the
nectariferous
cells
(plate III,
fig
3).
Limodorum
abortivum
Like
in
E
atropurpurea,
when
observed
in
cross-section,
the
floral
nectary
from
L
abortivum
consists
of
an
internal
epidermal
cell
layer
of
nectariferous
cells
surround-
ing
the
secretory
cavity
and
various
layers
of
parenchyma
cells
(plate
I,
fig
2a,b).
At
the
pre-secretory
stage
the
nectarif-
erous
cells
of
L
abortivum
showed
numer-
ous
polymorphic
plastids
with
a
dense
stroma,
an
osmiophilic
reticulum,
some
plastoglobuli
and
starch
grains
(plate
IV,
figs
1, 2).
During
this
stage,
the
parenchyma
cells
contained
numerous
amyloplasts
with
several
starch
strains
filling
almost
the
entire
organelle
(plate
IV,
fig
3).
During
the
secretory
stage
starch
dis-
appeared
from
the
plastids
of
nectariferous
cells
and
the
plastid
reticulum
appeared
filled
with
osmiophilic
contents
(plate
IV,
fig
4;
plate
V,
fig
1).
In
the
cytoplasm
of
these
cells
numerous
osmiophilic
droplets
could
be
seen.
Cell-wall
pits
were
also
frequently
observed
between
adjacent
nectariferous
and
parenchyma
cells
(plate
V,
fig
2).
In
the
nectariferous
cells,
ER
was
profuse
(plate
V,
fig
3)
with
numerous
profiles
adja-
cent
to
plastids
(plate
V,
fig 1).
Dictyosomes
were
also
abundant
(plate
V,
fig
3).
Later
in
the
secretory
stage,
the
apparent
exuda-
tion
from
nectariferous
cells
of
some
osmio-
philic
droplets
was
observed
(plate
V,
fig
4).
The
exudation
of
the
nectar
components
into
the
secretory
cavity
occurred
by
dis-
ruption
of
the
cuticle
(plate
V,
fig
5).
DISCUSSION
Previous
studies
on
the
chemical
composi-
tion
of
the
floral
nectars
of
E
atropurpurea
and
L
abortivum
have
indicated
clear
dif-
ferences.
L
abortivum
has
been
classified
as
belonging
to
a
fairly
primitive
group
within
the
evolutionary
sequence
of
orchids,
since
its
nectar
contains
mainly
sucrose
and
a
low
total
amino-acid
concentration
com-
pared
to
the
open
E
atropurpurea
nectary
(Pais
and
Chaves
das
Neves,
1980;
Pais
et al,
1986).
From
the
ultrastructural
point
of
view
the
main
feature
of
the
nectariferous
and
parenchyma
cells
of
these
orchids
were
the
changes
observed
in
the
plastids
dur-
ing
the
secretion
process
(Pais,
1987;
Figueirido
and
Pais,
1992).
In
the
pre-
secretory
stage,
both
the
nectariferous
and
parenchyma
cells
of
E
atropurpurea
showed
numerous
starch
grains.
This
type
of
plastid
could
only
be
seen
in
the
parenchyma
cells
of
L
abortivum.
In
the
nectariferous
cells
of
L
abortivum,
plastids
with
an
osmiophilic
reticulum
and
small
starch
grains
were
found.
This
type
of
poly-
morphic
plastids
with
dense
stroma
and
osmiophilic
reticulum
are
uncommon
in
nectariferous
tissues
but
have
been
described
in
many
other
secretory
struc-
tures,
especially
in
those
secreting
monoterpenes
(Fahn,
1988).
The
accumulation
of
nectar
both
in
the
nectary
of
E
atropurpurea
and
in
that
of
L
abortivum
occurred
simultaneously
with
starch
degradation,
which
might
indicate
that
the
starch
accumulated
in
both
parenchyma
and
nectariferous
cells
is
the
source
of
some
of
the
secreted
sugars.
Also
common
to
both
glands
is
the
presence
of
a
plastid
reticulum.
Nevertheless,
these
sim-
ilar
ultrastructural
features
are
not
in
agree-
ment
with
the
nectar/sugar
ratios
of
both
glands:
the
floral
nectar
of
L
abortivum
is
sucrose
dominant
(Pais
et
al,
1986),
whereas
that
of
E
atropurpurea
is
hexose
rich
(Pais
and
Chaves
das
Neves,
1980).
Therefore,
further
investigation
is
required
to
determine
the
basis
for
the
differences
in
the
nectar/sugar
composition.
Probably
these
differences
will
reside
in
the
type
and
amount
of
enzymes
involved
in
sugar
trans-
formations
in
both
glands.
Numerous
osmiophilic
droplets
could
be
seen
in
the
plastids
and
cytoplasm
of
the
nectariferous
cells
in
both
nectaries.
Although
the
chemical
nature
of
this
com-
ponent
is
not
clear,
the
appearance
of
sim-
ilar
osmiophilic
droplets
has
been
inter-
preted
as
corresponding
to
the
presence
of
lipids
or
phenolic
material
in
different
types
of
floral
(Peterson
et al,
1979;
Mey-
berg
and
Kristen,
1981;
Kronestedt
et al,
1986,
Sawidis
et al,
1989)
and
extra-floral
nectaries
(Clair-Maczylajtys
and
Bory,
1983).
In
the
outer
walls
of
the
nectariferous
cells of
E atropurpurea cell-wall
ingrowths
could
be
found,
forming
a
thick
labyrinthine
layer.
These
wall
ingrowths
are
common
in
other
outer
walls
of
the
secretory
cells
of
nectaries
(Durkee
et al,
1981;
Fahn,
1988),
nevertheless
they
were
not
observed
in
the
L
abortivum
nectary.
Résumé —
Nectaires
floraux
de
Limo-
dorum
arbortivum
(L)
Sw
et
d’Epipactis
atropurpurea
Rafin
(Orchidaceae) :
modifications
de
l’ultrastructure
des
plastides
au
cours
du
processus
de
sécrétion.
Nous
avons
comparé
les
carac-
téristiques
ultrastructurales
de
la
sécrétion
nectarifère
de
2
espèces
d’orchidées.
Des
coupes
dans
les
nectaires
floraux
ont
été
réalisées
à
divers
stades
de
développe-
ment
(avant,
pendant
et
après
la
sécré-
tion),
fixées
avec
2%
de
glutaraldéhyde,
postfixées
durant
2
h
avec
une
solution
aqueuse
de
tétroxyde
d’osmium
(OsO
4)
à
2%
et
étudiées
en
microscopie
électro-
nique
à
transmission
et
à
balayage.
La
par-
tie
interne
du
nectaire
floral
d’E
atropur-
purea
a
la
forme
d’une
gouttière
concave
(planche
1,
fig
1 a,b,c).
Le
nectaire
floral
de
L
abortivum
montre
une
couche
cellulaire
épidermique
interne
de
cellules
nectari-
fères
parenchymateuses
(planche
I,
fig
2a,b).
Avant
la
sécrétion,
les
cellules
nec-
tarifères
et
parenchymateuses
d’E
atro-
purpurea
présentent
de
nombreux
amylo-
plastes
remplis
de
grains
d’amidon
(planche
II,
figs
1,
2,
3).
Pendant
la
sécré-
tion,
des
structures
tubulaires
avec
un
contenu
osmiophile
se
rencontrent
fré-
quemment
dans
les
plastides
(planche
III,
figs
1, 2).
À
ce
stade
on
trouve
peu
ou
pas
d’amidon
à
l’intérieur
de
ce
type
de
plas-
tides.
La
paroi
des
cellules
nectarifères
présentent
de
nombreuses
invaginations
(plante
III,
fig
3).
Avant
la
sécrétion,
les
cellules
nectarifères
de
L
abortivum
pré-
sentent
de
nombreux
plastides
poly-
morphes
avec
des
structures
tubulaires
osmiophiles,
des
stroma
denses,
quelques
plastoglobules
et
de
petits
grains
d’ami-
don
(planche
IV,
figs
1, 2).
Au
cours
de
ce
stade,
les
cellules
parenchymateuses
mon-
trent
de
nombreux
amyloplastes
avec
plu-
sieurs
grains
d’amidon
remplissant
presque
entièrement
l’organite
(planche
IV,
fig
3).
Durant
la
sécrétion
l’amidon
disparaît
des
plastides
des
cellules
nectarifères
et
les
structures
tubulaires
apparaissent
emplies
d’un
contenu
osmiophile
(planche
IV,
fig
4 ;
planche
V,
fig
1
). On
observe
fréquem-
ment
des
renfoncements
dans
la
paroi
cel-
lulaire
entre
les
cellules
nectarifères
et
parenchymateuses
voisines
(planche
V,
fig
2).
Dans
les
cellules
nectarifères,
le
reti-
culum
endoplasmique
est
abondant
(planche
V,
fig
3)
avec
de
nombreux
diver-
ticules
contigüs
aux
plastides
(planche
V,
fig
1).
Plus
tard
on
peut
observer
l’exuda-
tion
du
nectar
dans
la
cavité
sécrétrice,
formée
par
déchirement
de
la
couche
externe
de
la
cuticule
(planche
V,
fig
5).
L’ultrastructure
des
cellules
nectarifères
et
parenchymateuses
suggère
que
les
plas-
tides
jouent
un
rôle
important
dans
la
sécrétion
du
nectar.
Chez
L
abortivum
le
nectar
accumulé dans
l’espace
sous-cuti-
culaire
est
déversé
dans
la
cavité
nectari-
fère
par
la
rupture
de
la
couche
externe
de
la
cuticule.
Chez
E atropurpurea
l’exu-
dation
du
nectar
se
fait
à
travers
les
pores
dation
du
nectar
se
fait
à
travers
les
pores
de la cuticule.
Orchidaceae
/
Epipactis
atropurpurea
/
Limodorum
abortivum
/
nectaire
/
plas-
tide / amidon
Zusammenfassung —
Florale
Nektarien
bei
Limodorum
abortivum
(L)
Sw
und
Epipactis
atropurpurea
Rafin
(Orchida-
ceae):
Ultrastrukturelle
Veränderungen
in
den
Plastiden
während
des
Sekre-
tionsprozesses.
Wir
führten
eine
verglei-
chende
Untersuchung
über
die
Ultrastruk-
tur
und
die
chemische
Zusammensetzung
der Nektarsekretion
in
Blüten
bei
zwei
Orchideenarten,
Limodorum
abortivum
und
Epipactis
atropurpurea
durch.
Querschnitte
der
Nektarien
wurden
in
verschiedenen
Entwicklungsstadien
(vor,
während
und
nach
der
Sekretion)
für
die
Transmission-
und
Rasterelektronenmikroskopie
in
2%
Glutaraldehyde
fixiert
und
2
Stunden
mit
2%
wässeriger
Osmiumtetroxidlösung
nachfixiert.
Der
innere
Teil
der
Nektarien
von
E atropurpurea
hat
die
Form
einer
kon-
kaven
Rinne
(Tafel
I, Abb
1a,b,c).
Die
Nek-
tarien
von
L
abortivum
weisen
eine
innere
epidermale
Zellschicht
aus
nektarerzeu-
genden
Drüsenzellen
auf,
die mit
ver-
schiedenen
Lagen
von
Parenchymzellen
das
Sekretreservoir
umgibt
(Tafel
I,
Abb
2a,b).
Sowohl
die
Drüsen-
als
auch
die
Parenchymzellen
von
E atropurpurea
zeig-
ten
im
Stadium
vor
der
Sekretion
viele
mit
Stärkekörnern
gefüllte
Amyloplasten
(Tafel
II,
Abb
1, 2, 3).
Im
sekretorischen
Stadium
traten
vermehrt
tubuläre
Strukturen
mit
osmiophilem
Inhalt
in
den
Plastiden
auf
(Tafel
III,
Abb
1, 2).
In
diesem
Stadium
ent-
hielten
die
Plastiden
nur
noch
wenig
oder
keine
Stärke
mehr.
Die
Zellwand
der
Drü-
senzellen
wiesen
zahlreiche
Einstülpungen
auf
(Tafel
III,
Abb
3).
Vor
Beginn
der
Sekre-
tion
enthielten
die
nektarerzeugenden
Zel-
len
von
L
abortivum
zahlreiche
polymorphe
Plastiden
mit tubulären
osmiophilen
Struk-
turen,
dichtem
Stroma,
einigen
Plastoglobuli
und
kleinen
Stärkekörnern
(Tafel
IV,
Abb
1,
2).
Gleichzeitig
wiesen
die
Parenchym-
zellen
zahlreiche
Amyloplasten
mit
einigen
Stärkekörnern
auf,
die
fast
die
ganze
Orga-
nelle
ausfüllen
(Tafel
IV,
Abb
3).
Während
der
Sekretion
verschwand
die
Stärke
aus
den
Plastiden
der
Drüsenzellen
und
die
mit
osmiophilen
Inhalt
gefüllten
tubulären
Struk-
turen
traten
auf
(Tafel
IV,
Abb
4;
Tafel
V,
Abb
1).
Häufig
wurden
Vertiefungen
der
Zellwand
zwischen
aneinander
grenzen-
den
Drüsen-
und
Parenchymzellen
beob-
achtet
(Tafel
V,
Abb
2).
In
den
nektarer-
zeugenden
Zellen
war
das
Endoplasmatische
Reticulum
sehr
gut
ent-
wickelt
(Tafel
V,
Abb
3),
zahlreiche
Aus-
läufer
grenzten
an
die
Plastiden.
Später
konnte
die
Ausscheidung
einiger
Nektar-
produkte
in
der
Zelle
beobachtet
werden
(Tafel
V,
Abb
4).
Die
Ausscheidung
der
Nektarkomponenten
in
das
Sekretreservoir
erfolgte
durch
Aufreißen
der
äußeren
Kuti-
kulaschicht
(Tafel
V,
Abb
5).
Die
Ultra-
struktur
der
Drüsen-
und
Parenchymzellen
läßt
vermuten,
daß
die
Plastiden
eine
wich-
tige
Rolle
bei
der
Nektarsekretion
spielen.
Bei
L
abortivum
sammelt
sich
der
Nektar
in
einem
subkutikularen
Raum
und
wird
durch
Aufreißen
der
oberen
Kutikulaschicht
in
das
Nektarreservoir
abgegeben.
In
E
atropurpurea
erfolgt
die
Nektarausschei-
dung
durch
Poren
in
der
Kutikula.
Orchidaceae
/
Epipactis
atropurpurea
/
Limodorum
abortivum
/
Nektarium
/
Pla-
stide
/
Stärke
REFERENCES
Clair-Maczylajtys
D,
Bory
G
(1983)
Les
nectaires
extraflo-
raux
pédicellés
chez
l’Ailanthus
glandulosa.
Can
J
Bot 61,683-691
Durkee
L,
Gaal
D,
Reisner W
(1981)
The
floral
and
extra-
floral
nectaries
of
Passiflora.
I.
The
floral
nectary.
Am
J Bot
68,
453-462
Fahn
A
(1988)
Secretory
tissues
in
vascular
plants.
New
Phytol 108,
229-257
Figueiredo
AC,
Pais
MS
(1992)
Ultrastructural
aspects
of
the
nectary
spur
of
Limodorum
abortivum
(L).
Ann
Bot 70,
325-331
Meyberg
M,
Kristen
U
(1981)
The
nectaries
of
Aptenia
cordifolia,
ultrastructure,
translocation
of
14
C-labelled
sugars,
and
a
possible
pathway
of
secretion.
Z
Pflanzenphysiol104,
139-147
Mollenhauer HH
(1964)
Plastic
embedding
mixtures
for
use
in
electron
microscopy.
Stain
Technol39,
111-
115
Pais
MS,
Chaves
das
Neves
H
(1980)
Sugar
content
of
the
nectar
exudate
of
Epipactis
atropurpurea.
Api-
dologie
11,
39-45
Pais
MS,
Chaves
das
Neves
H,
Vasconcelos
AMP
(1986)
Amino-acid
and
sugar
content
of
the
nectar
exudate
of
Limodorum
abortivum
and
Epipactis
atropurpurea.
Apidologie
17, 125-136
Pais
MS
(1987)
Ultrastructure
des
nectaires
floraux
d’Epipactis
atropurpurea
et
production
du
nectar.
Ann
Sci
Bot 8,
17-28
Peterson
RL,
Scott
MG,
Miller
SL
(1979)
Some
aspects
of
carpel
structure
in
Caltha
palustris.
Am
J
Bot
66,
334-342
van
der
Pijl
L,
Dodson
CH
(1966)
Orchid
Flowers.
Their
Pollination
and
Evolution.
University
of
Miami
Press,
Miami,
FL,
USA
Reynolds
ES
(1963)
The
use
of
lead
citrate
at
high
pH
as
an
electron-opaque
stain
in
electron
microscopy.
J
Cell
Biol
17,
208-212
Sawidis
T,
Emeftheriou
EP,
Tsekos
I (1989)
The
floral
nectaries
of
Hibiscus
rosasinensis.
III.
A
morpho-
metric
and
ultrastructural
approach.
Nord J Bot 9,
63-71
Warmke
HE,
Lee
SLJ
(1976)
Improved
staining
proce-
dures
for
semithin
epoxy
sections
of
plant
tissues.
Stain
Technol 51,
179-185