ArticlePDF Available

Abstract and Figures

Light exposure elicits numerous effects on human physiology and behavior, such as better cognitive performance and mood. Here we investigated the role of morning light exposure as a countermeasure for impaired cognitive performance and mood under sleep restriction (SR). Seventeen participants took part of a 48h laboratory protocol, during which three different light settings (separated by 2 wks) were administered each morning after two 6-h sleep restriction nights: a blue monochromatic LED (light-emitting diode) light condition (BL; 100 lux at 470 nm for 20 min) starting 2 h after scheduled wake-up time, a dawn-simulating light (DsL) starting 30 min before and ending 20 min after scheduled wake-up time (polychromatic light gradually increasing from 0 to 250 lux), and a dim light (DL) condition for 2 h beginning upon scheduled wake time (<8 lux). Cognitive tasks were performed every 2 h during scheduled wakefulness, and questionnaires were administered hourly to assess subjective sleepiness, mood, and well-being. Salivary melatonin and cortisol were collected throughout scheduled wakefulness in regular intervals, and the effects on melatonin were measured after only one light pulse. Following the first SR, analysis of the time course of cognitive performance during scheduled wakefulness indicated a decrease following DL, whereas it remained stable following BL and significantly improved after DsL. Cognitive performance levels during the second day after SR were not significantly affected by the different light conditions. However, after both SR nights, mood and well-being were significantly enhanced after exposure to morning DsL compared with DL and BL. Melatonin onset occurred earlier after morning BL exposure, than after morning DsL and DL, whereas salivary cortisol levels were higher at wake-up time after DsL compared with BL and DL. Our data indicate that exposure to an artificial morning dawn simulation light improves subjective well-being, mood, and cognitive performance, as compared with DL and BL, with minimal impact on circadian phase. Thus, DsL may provide an effective strategy for enhancing cognitive performance, well-being, and mood under mild sleep restriction.
Content may be subject to copyright.
2013
Chronobiology International, Early Online: 1–10, (2013)
!
Informa Healthcare USA, Inc.
ISSN: 0742-0528 print / 1525-6073 online
DOI: 10.3109/07420528.2013.793196
Effects of Artificial Dawn and Morning Blue Light on Daytime
Cognitive Performance, Well-being, Cortisol and Melatonin Levels
Virginie Gabel
1
, Micheline Maire
1
, Carolin F. Reichert
1
, Sarah L. Chellappa
1
, Christina Schmidt
1
,
Vanja Hommes
2
, Antoine U. Viola
1
*, and Christian Cajochen
1
*
1
Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland and
2
IT VitaLight I&D PC
Drachten, Philips Consumer Lifestyle, Drachten, The Netherlands
Light exposure elicits numerous effects on human physiology and behavior, such as better cognitive performance and
mood. Here we investigated the role of morning light exposure as a countermeasure for impaired cognitive
performance and mood under sleep restriction (SR). Seventeen participants took part of a 48h laboratory protocol,
during which three different light settings (separated by 2 wks) were administered each morning after two 6-h sleep
restriction nights: a blue monochromatic LED (light-emitting diode) light condition (BL; 100 lux at 470 nm for 20 min)
starting 2 h after scheduled wake-up time, a dawn-simulating light (DsL) starting 30 min before and ending 20 min
after scheduled wake-up time (polychromatic light gradually increasing from 0 to 250 lux), and a dim light (DL)
condition for 2 h beginning upon scheduled wake time (58 lux). Cognitive tasks were performed every 2 h during
scheduled wakefulness, and questionnaires were administered hourly to assess subjective sleepiness, mood, and well-
being. Salivary melatonin and cortisol were collected throughout scheduled wakefulness in regular intervals, and the
effects on melatonin were measured after only one light pulse. Following the first SR, analysis of the time course of
cognitive performance during scheduled wakefulness indicated a decrease following DL, whereas it remained stable
following BL and significantly improved after DsL. Cognitive performance levels during the second day after SR were
not significantly affected by the different light conditions. However, after both SR nights, mood and well-being were
significantly enhanced after exposure to morning DsL compared with DL and BL. Melatonin onset occurred earlier
after morning BL exposure, than after morning DsL and DL, whereas salivary cortisol levels were higher at wake-up
time after DsL compared with BL and DL. Our data indicate that exposure to an artificial morning dawn simulation
light improves subjective well-being, mood, and cognitive performance, as compared with DL and BL, with minimal
impact on circadian phase. Thus, DsL may provide an effective strategy for enhancing cognitive performance, well-
being, and mood under mild sleep restriction.
Keywords: Cognitive performance, cortisol, melatonin, morning light, sleep restriction, well-being
INTRODUCTION
Light exerts powerful non-image-forming (NIF) effects
on behavioral and physiological functions, including
hormonal secretion (Cajochen, 2005; Jung et al., 2010),
sleep-wake regulation (for a review, see Chellappa et al.,
2011a), cognitive function (Cajochen et al., 2011;
Chellappa et al., 2011b), and its underlying cerebral
correlates, encompassing cortical and subcortical brain
regions (Vandewalle et al., 2009b). These light-depen-
dent effects are to a large extent mediated by retinal
photoreceptors containing the photopigment melanop-
sin, which are distinct from rods and cones (Hattar et al.,
2002). Maximal sensitivity of the human alerting
response and melatonin suppression to light occurs at
the short-wavelength light (ca. 460–480 nm), contrasting
with the spectral sensitivity of classical visual photo-
receptors (green light, 5550 nm) (Cajochen et al., 2005;
Lockley et al., 2006; Mu
¨
nch et al., 2006; Revell et al.,
2006). Together with light’s wavelength, other proper-
ties, such as intensity, duration, and timing, are crucial
in determining its effects on human physiology and
behavior (for a review, see Cajochen, 2007). Nighttime
light exposure triggers melatonin suppression with
concomitant reduction of subjective sleepiness and
objective markers of sleepiness (e.g., waking electro-
encephalographic [EEG] theta activity, incidence of slow
eye movements) (Cajochen et al., 2000; Chellappa et al.,
2011b, 2012; Lockley et al., 2006; Ruger et al., 2005).
It has been suggested that these effects are mediated
through melatonin’s alerting effects and/or its resetting
*Antoine U. Viola and Christian Cajochen contributed equally to this work.
Correspondence: Antoine U. Viola, Centre for Chronobiology, Psychiatric Hospital of University of Basel, Wilhelm Klein-Strasse 27,
CH-4018 Basel, Switzerland. Tel.: 0041 61 325 50 74; E-mail: antoine.viola@upkbs.ch
Submitted December 17, 2012, Returned for revision March 27, 2013, Accepted March 28, 2013
1
Chronobiol Int Downloaded from informahealthcare.com by Medizinbibliothek im Kantonsspital on 07/11/13
For personal use only.
properties on the endogenous circadian pacemaker
(Chellappa et al., 2011a). Although the studies investi-
gating the impact of daytime light are less abundant,
three studies reported that bright white light exposure
during daytime also enhances alertness (Phipps-Nelson
et al., 2003; Ruger et al., 2005; Smolders et al., 2012).
In the same vein, 20 min of daytime exposure to
bright white light (ca. 7000 lux) increases task-related
cortical activity while performing an oddball paradigm
(Vandewalle et al., 2006). Bright white light sources are
used as a therapeutic countermeasure against circadian
rhythm sleep disorders (Zhu & Zee, 2012) and depres-
sion, particularly seasonal depressive disorder (Wirz-
Justice et al., 1986). Apart from its therapeutic use,
bright light also improves well-being, vitality, and mood
stability among healthy subjects working indoors in
wintertime (Partonen & Lonnqvist, 2000). Furthermore,
chronic daytime exposure to blue-enriched moderate-
intensity light has the potential to improve visual
comfort, alertness, sleepiness, and mood in the working
environment (Viola et al., 2008).
More recently, the dynamics of light exposure have
been shown to directly affect the impact of morning
light exposure on sleep inertia, well-being, and cortisol
levels (Gimenez et al., 2010; Van de Werken et al., 2010).
The use of an artificial dawn light resulted in a
significant reduction of sleep inertia complaints, which
could not be explained by a shift in the dim light
melatonin onset or timing of sleep offset (Gimenez et al.,
2010). In another study, Van de Werken et al. (2010)
showed that 30 min of an artificial dawn light (max-
imum 300 lux) prior to wake-up time was more efficient
in alleviating sleep inertia and increasing subjective
alertness compared to acute light exposure (300 lux) at
wake-up time. However, they could not find significant
effects on cognitive performance and did not confirm
enhanced cortisol levels upon awakening after dawn, as
observed earlier by Thorn et al. (2004). Although these
initial studies clearly showed beneficial effects of an
artificial dawn signal on sleep inertia and well-being, the
design of the studies did not allow for testing how these
acute effects of a dawn simulation light translate into
daytime cognitive performance and well-being levels.
To address this question, we investigated the impact
of morning artificial dawn simulation light exposure on
alertness, well-being, mood, cognitive performance, and
classical markers of the circadian timing system (mela-
tonin and cortisol) and compared this effect with a dim
light condition, as well as with a bright monochromatic
blue light exposure of fixed intensity. The duration of
light exposure during scheduled wakefulness (eyes
open) was the same for each of the two experimental
light conditions, but they differed in intensity, spectral
composition, and the timing of administration. This
latest aspect was motivated by the potential modality of
using blue light not directly in the bedroom but at the
beginning of the morning, possibly at work. One
primary aim of this was to compare two morning light
devices that are known for their effects on mood and
cognitive performance, even though they do not share
the same characteristics. The entire study protocol was
performed under stringently controlled laboratory con-
ditions, with two sleep restriction nights in order to test
whether these light effects can counteract the detri-
mental effects of partial sleep loss on daytime alertness
and cognitive performance, which is increasingly
encountered in contemporary society. We hypothesized
the following:
(1) As compared with the dim light condition, light
exposure mimicking dawn will facilitate the
wake-up process with respect to subjective per-
ception of sleepiness, tension, and well-being
and will have a beneficial impact on cognitive
performance levels, especially in the time zone
surrounding the wake-up period.
(2) As compared with the dim light condition, blue
light exposure will increase subjective and object-
ive neurobehavioral performance, which will be
potentially sustained throughout the entire
waking day.
(3) As maximal circadian phase-advancing proper-
ties have been attributed to short-wavelength
light in the morning, particularly BL will lead to a
advance in the assessed circadian phase markers
(melatonin and cortisol).
MATERIALS AND METHODS
Study Participants
Study volunteers were recruited through advertisements
at different local universities and internet sites in
Switzerland, Germany, and France. The screening pro-
cedure began with a telephone interview, involving a
detailed explanation of the study. All participants gave
written informed consent. The study protocol, screening
questionnaires, and consent forms were approved by
the local ethics committee (EKBB/Ethikkommission
beider Basel, Switzerland). They conformed to the
Declaration of Helsinki and were performed in accord-
ance with international ethical standards (Portaluppi
et al., 2010). All applicants completed questionnaires
about their sleep quality, life habits, and health state.
These questionnaires comprised a consent form, a
General Medical Questionnaire, the Beck Depression
Inventory II (BDI-II) (Beck et al., 1961), the Epworth
Sleepiness Scale (ESS) (Johns, 1991), the Horne-O
¨
stberg
Morningness-Eveningness Questionnaire (MEQ) (Horne
&O
¨
stberg, 1976), the Munich Chronotype Questionnaire
(MCTQ) (Roenneberg et al., 2003), and the Pittsburgh
Sleep Quality Index (PSQI). Potential candidates with a
PSQI score 45 were excluded from the study (Buysse
et al., 1989). Further exclusion criteria were smoking,
medication or drug consumption, body mass index
519 and 428 kg/m
2
, shiftwork within the last 3 months,
transmeridian flights during the 3 months before the
study, as well as medical and sleep disorders. Since our
2 V. Gabel et al.
Chronobiology International
Chronobiol Int Downloaded from informahealthcare.com by Medizinbibliothek im Kantonsspital on 07/11/13
For personal use only.
study protocol included two nights of partial sleep
restriction (restriction to 6 h), we also excluded partici-
pants with usual sleep durations of 57 h and of 49h
(Aeschbach et al., 1996), to minimize a possible con-
founding effect of sleep duration (Table 1).
One week before the study, participants were
requested to refrain from alcohol, caffeine, and choc-
olate intake in order to level out the impact of
these consumption behaviors on sleep and the other
investigated variables reported here (e.g., subjective
sleepiness). They were also instructed to keep a regular
sleep-wake schedule (bedtimes and wake times within
30 min of self-selected target time) for 1 wk prior to
each study segment. Compliance was verified by wrist
actigraphy (Actiwatch L; Cambridge Neurotechnologies,
Cambridge, UK) and self-reported sleep logs. Eighteen
young healthy men (20–33 years old; mean SEM:
23.1 0.8) who fulfilled all inclusion criteria were
selected to participate in the study. One participant
could not be included in the analysis because of poor
quality of the EEG recordings and noncompliance
during cognitive testing. The remaining 17 volunteers
had the following light treatment order: 3 DL-BL-DsL, 3
BL-DsL-DL, 3 DsL-DL-BL, 3 DL-DsL-BL, 3 BL-DL-DsL,
and 2 DsL-BL-DL; where BL is a blue monochromatic
LED (light-emitting diode) light condition (100 lux at
470 nm for 20 min) starting 2 h after scheduled wake-up
time, DsL is a dawn-simulating light starting 30 min
before and ending 20 min after scheduled wake-up time
(polychromatic light gradually increasing from 0 to
250 lux), and DL is a dim light (DL) condition for 2 h
beginning upon scheduled wake time (58 lux). Six
participants were morning (59 to 86), nine intermediate
(42 to 58), and two evening (16 to 41) chronotypes,
according to the MEQ, whereas for the MCTQ, there
were seven morning (0 to 3.99), four intermediate (4 to
4.99), and six evening (5 to 9.5) chronotypes. A com-
prehensive urine toxicological analysis for drug abuse
was carried out prior to the study, along with an
ophthalmologic examination in order to exclude
volunteers with visual impairments (visual field, color
vision, pupillary reflex).
The study was carried out during the winter season
(January to March) in Basel, Switzerland, to minimize
the effects of outdoor ambient light levels. The labora-
tory setup comprised a balanced crossover design with
three segments (one control condition and two experi-
mental conditions), separated by an at least 2-wk
intervening period. Participants remained in individual
windowless and sound-attenuated bedrooms under
controlled 40 lux light condition, except for the first 2 h
after wake-up during the morning light exposure (see
below). No information on time-of-day was given. Each
study segment lasted 48 h, comprising two sleep restric-
tion (SR) nights (6 h) adjusted to each participant’s
habitual bedtime followed by two 18-h scheduled
waking days (Figure 1A). The light protocol for each
session consisted of a 2-h dim light (58 lux) exposure
after wake-up time followed by 40 lux until bedtime. The
light treatment was administered after each sleep-
restricted night, either with no additional light for the
control condition, or with a blue light (BL; 2 h after
wake-up, 20-min exposure of 100 lux of 470 nm; full
width at half maximum [FWHM] 27 nm) with a photon
density of 2.4E 18 photons/m
2
s and a melanopic
value of 4150 m-lux (goLITE BLU energy light; HF3330;
Philips, Drachten, Netherlands) placed at 50 cm diag-
onally of the participant when he was sitting at the desk
looking straight ahead (see Figure 1B for spectral
composition), or with a DsL (polychromatic light grad-
ually increasing from 0 to 250 lux during 30 min before
wake-up time; the light remained around 250 lux for
20 min after wake-up time) placed near the bed at eye
level (see Figure 1C for the time course of spectral
composition). The illuminance, photon density, corre-
lated color temperature and melanopic illuminance of
the dawn simulation light, measured 45 cm from the
device were as follows:
5 min after light onset: 1.2 lux, 1.9E 16/m
2
s,
1090 K, 0.2 m-lux
15 min after light onset: 13 lux, 1.4E 17/m
2
s,
1500 K, 7.5 m-lux
24 min after light onset: 78 lux, 7.1E 17/m
2
s,
2200 K, 120 m-lux
30 min after light onset: 250 lux, 2.4E 18/m
2
s,
2750 K, 620 m-lux
Subjective Assessment of Sleepiness, Well-being,
and Mood
Subjective sleepiness was assessed every hour, using the
Karolinska Sleepiness Scale (KSS) (Akerstedt et al., 1994).
Subjective tension was measured using a 100-mm visual
analog scale (VAS). Subjective well-being was assessed
using a composite score calculated as follows: [VAS
mood þ (100 VAS tension) þ (100 VAS physical com-
fort)]/3, according to Birchler-Pedross and colleagues
(Birchler-Pedross et al., 2009). Subjective mood was
investigated every 2 h on the Positive and Negative
TABLE 1. Characteristics of the group of participants.
Characteristic Minimum Maximum Mean SEM
n 17
Age 20 33 23.12 0.82
Sleep time (h) 21:45 2:00 23:50 00:19
Wake time (h) 6:00 10:00 07:57 00:15
Sleep duration (h:min) 7:00 9:00 08:06 00:08
BDI 0 7 1.47 0.51
ESS 1.5 14 5.79 1.01
MEQ 29 74 54.35 2.64
MCTQ 2.33 6.49 4.4 0.28
PSQI 1 5 2.88 0.27
BMI 20.75 25.76 22.86 0.35
BDI ¼ Beck Depression Inventory; ESS ¼ Epworth Sleepiness Scale;
MEQ ¼ Horne-O
¨
stberg Morningness-Eveningness Questionnaire;
MCTQ ¼ Munich Chronotype Questionnaire; PSQI ¼ Pittsburg
Sleep Quality Index; BMI ¼ body mass index.
Morning Light Exposure on Well-being and Cognition 3
!
Informa Healthcare USA, Inc.
Chronobiol Int Downloaded from informahealthcare.com by Medizinbibliothek im Kantonsspital on 07/11/13
For personal use only.
Affect Scale (PANAS) (Watson et al., 1988).
This questionnaire comprises two 10-item mood
scales, and provides measures of positive affect (PA)
and negative affect (NA) on a 5-point scale.
Cognitive Performance
Beginning 30 min after wake-up time, participants
completed a 25-min test battery every 2 h. The battery
included five cognitive tasks for sustained attention and
executive functions: Sustained Attention to Response
Task (SART; Robertson et al., 1997), Verbal 1-, 2-, and 3-
back (N-Back1-2-3; Kubat-Silman et al., 2002), and
Paced Visual Serial Addition Task (PVSAT; Feinstein
et al., 1994). To quantify the magnitude of the light
effects on global cognitive performance, a composite
score was computed by normalizing the data for each
test separately (i.e., SART, PVSAT, N-Back1-2-3) and
averaging it to yield a composite score for each volun-
teer for each 2-h period according to Viola and col-
leagues (Viola et al., 2007).
Salivary Melatonin and Cortisol
Saliva samples were scheduled during wakefulness
every 30 min during the first 4 h after wake-up time
and followed by hourly intervals until bedtime,
starting the first evening upon arrival at the laboratory.
Salivary samples were immediately frozen and kept at
20
C until the melatonin and cortisol assays were
conducted. A direct double-antibody radioimmuno-
assay was used for the melatonin assay (validated
by gas chromatography–mass spectroscopy with an
analytical least detectable dose of 0.65 pm/mL;
Bu
¨
hlmann Laboratory, Scho
¨
nenbuch, Switzerland;
Weber et al., 1997). The minimum detectable dose of
melatonin (analytical sensitivity) was determined to be
2 pg/mL.
Cortisol was measured by ALPCO (ALPCO
Diagnostics, Salem, NH, USA), using a direct salivary
enzyme-linked immunosorbent assay (ELISA) for quan-
titative determination of cortisol. The sensitivity was
Blue Light spectrum
Wavelength (nm)
I (W/m
2
nm)
I (W/m
2
nm)
0.00
380 480 580 680 780
Wavelength (nm)
380 480 580 680 780
0.02
0.04
0.06
0.08
Dawn Simulation Light spectrum
0.000
0.002
0.004
0.006
30 min
24min
15min
5min
46
(A)
(B) (C)
Sleep
Sleep
Blue monochromatic
LEDs (goLite)
Dawn Simulating Light
Continuous EEG, EOG, EMG, Heart Rate, Body Temperatures, Respiration etc.
Light Exposure: 40 lux
Light Exposure: 8 lux
20 22 24 2 4 6 8 10 12 14 16 18 20 22 24
20 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
2 4 6 8 10 12 14 16 18
Time of Day (h)
Elapsed Time into Protocol (h)
44
Sleep
Sleep
48
20
Sleep
Sleep
Session 1
Session 2
Session 3
FIGURE 1. (A) Protocol design. Three conditions with different morning light exposures. Spectral composition (light wavelength by
irradiance; W/m
2
-nm) of the (A) blue light and the (B) dawn simulation light at 5 min (gray solid line), 15 min (gray dash line), 24 min (black
solid line) and 30 min (black dash line).
4 V. Gabel et al.
Chronobiology International
Chronobiol Int Downloaded from informahealthcare.com by Medizinbibliothek im Kantonsspital on 07/11/13
For personal use only.
1.0 ng/mL and intra-assay coefficient of variances
amounts to 10.3% for baseline values 6.6 ng/mL.
Statistical Analysis
For all analysis, the statistical package SAS (version 9.1;
SAS Institute, Cary, NC, USA) was used. Statistical
analyses were carried out for each variable (subjective
sleepiness, subjective well-being, positive and negative
affects, and cognitive performance) separately with the
mixed-model analysis of variance for repeated measures
(PROC MIXED), with within factors ‘‘light condition’’
(dim light [DL] versus blue light [BL] versus dawn
simulation light [DsL]) and ‘‘time-of-day’’ (all assessed
time points). The rationale for this approach was that
time-of-day was deemed as a continuum, and thus a
better form to illustrate the temporal dynamics of all our
dependent variables. The time course of the melatonin
profiles were analyzed for each day (SR1 and SR2)
separately, since melatonin onsets were only available
for the baseline evening and in the evening after SR1.
Cortisol analysis was also done separately for SR1 and
SR2, since we intended to analyze the wake-up response
after both sleep restriction nights. Contrasts were
assessed with the LSMEANS statement, and degrees of
freedom were corrected with the Kenward-Rogers con-
trasts. The Wilcoxon-Mann-Whitney test was used for
post hoc comparisons, since not all data reached the
criterion for a normal distribution. Alpha adjustment for
multiple comparisons was applied according to Curran-
Everett (Curran-Everett, 2000).
For the analyses of the dim light melatonin onset
(DLMO) following exposure to either DL, BL, or DsL,
data were z-scored to provide a normalized comparison
of amplitudes across each individual (Zeitzer et al.,
1999). The individual z-score adjustment provides a
mean at 0 with a variation of 1. For each melatonin
profile, we derived a DLMO using a fixed threshold of 0.
The DLMO was defined as the time when melatonin
levels hit and exceeded the threshold. The time the
melatonin levels crossed the threshold was determined
by linear interpolation between the points immediately
below and above the threshold on the day following
exposure to either BL or DsL relative to melatonin onset
on the day prior to light exposure (baseline levels of
melatonin under dim light conditions) (Zeitzer et al.,
1999).
RESULTS
Subjective Assessment of Sleepiness, Well-being,
and Mood
With respect to subjective sleepiness, we observed a
significant main effect of ‘‘light condition’’ and ‘‘time-
of-day’’ (Table 2). Analysis revealed no significant
influence of light exposition on subjective sleepiness
after the first sleep restriction (SR). However, after the
second SR, participants felt subjectively sleepier follow-
ing BL exposure compared with the DsL and DL
conditions (Figure 2, first panel). Post hoc analysis
revealed a significant difference between the DsL and
the DL exposure at 10 h of elapsed time awake (ca.
16:00 h the afternoon) after the second night of sleep
restriction and between the BL and the DL exposure at
4 h of elapsed time awake (ca. 10 h the morning) after
the second night of sleep restriction (Wilcoxon non-
parametric test).
Concerning well-being, we observed a significant
main effect for the factors ‘‘light condition’’ and ‘‘time-
of-day’’ (Table 2). Furthermore, considering the light
effect, analyses revealed that the participants felt gen-
erally better during the entire study after a DsL exposure
compared to a BL or a DL exposure. Compared with the
BL exposure, well-being after the DsL improved during
approximately 7 h after the first SR night. After BL
exposure, well-being levels were maintained stable
compared with DL condition. After the second SR
night, the level of well-being was likewise increased
after a DsL exposure throughout all the day. Post hoc
analysis revealed a significant difference between the
DsL and the DL exposure at 10 and 12 h of elapsed time
awake (ca. 16:00 and 18:00 h the afternoon) after the
second night of sleep restriction (Wilcoxon non-para-
metric test) (Figure 2, second panel).
A similar profile was observed with respect to
subjective tension (main effect of ‘‘light condition’’
and ‘‘time-of-day’’; Table 2). Subjective tension was
lower after a DsL exposure compared with BL or DL
exposure across all the experiment. Post hoc analysis
revealed a significant difference between the DsL and
the DL exposure at 6, 10, and 12 h of elapsed time
awake (ca. 12:00, 16:00 and 18:00 h the afternoon) after
the second night of sleep restriction (Wilcoxon non-
parametric test) (Figure 2, third panel).
Concerning the mood scales, we observed significant
effects of ‘‘light condition’’ and ‘‘time-of-day’’ when
TABLE 2. Analysis of variance for different variables for the time course of the study.
Analysis of variance
Variable Light Time of day Light Time of day
Sleepiness F
2,658
¼ 4.70, p50.01 F
14,658
¼ 14.40, p50.0001 F
28,658
¼ 0.46, p ¼ 0.9927
Well-being F
2,658
¼ 12.00, p50.0001 F
14,658
¼ 6.20, p50.0001 F
28,658
¼ 0.47, p ¼ 0.9922
Tension F
2,658
¼ 13.20, p50.0001 F
14,658
¼ 3.40, p50.0001 F
28,658
¼ 0.53, p ¼ 0.9786
Positive mood F
2,702
¼ 3.17, p ¼ 0.0426 F
14,702
¼ 8.33, p50.0001 F
28,702
¼ 0.96, p ¼ 0.5291
Negative mood F
2,702
¼ 8.21, p ¼ 0.0003 F
14,702
¼ 0.44, p ¼ 0.9617 F
28,702
¼ 0.42, p ¼ 0.9965
Cognitive performance F
2,658
¼ 10.31, p50.0001 F
14,658
¼ 0.32, p ¼ 0.9920 F
28,658
¼ 0.40, p ¼ 0.9978
Morning Light Exposure on Well-being and Cognition 5
!
Informa Healthcare USA, Inc.
Chronobiol Int Downloaded from informahealthcare.com by Medizinbibliothek im Kantonsspital on 07/11/13
For personal use only.
looking at the overall time course. DsL and BL exposures
helped maintaining mood after the first SR night,
whereas under the dim light condition, positive mood
was significantly lower. After the second SR night,
positive mood was equal across all light settings
(Figure 2, fourth panel). However, the post hoc analysis
did not reveal significant light effects.
For the negative mood scale, only a main effect of
‘‘light condition’’ was found. A reverse pattern was also
observed: although the light condition did not affect
negative mood after the first sleep restriction night, DsL
was able to decrease negative mood over the day follow-
ing the second sleep restriction night. Post hoc analysis
revealed a significant difference between the DsL and the
DL exposure at 10 h of elapsed time awake (ca. 16:00 h the
afternoon) after the second night of sleep restriction
(Wilcoxon non-parametric test) (Figure 2, fifth panel).
Cognitive Performance
Analysis of the composite score of cognitive per-
formance revealed a significant main effect of ‘‘light
condition’’ when looking at the overall time course.
Nevertheless, analysis did not reveal a general signifi-
cant effect concerning the light treatment. Following
the first sleep restriction night, cognitive performance
was significantly better following morning DsL exposure
compared with morning BL exposure, in which per-
formance did not differ compared to DL. After the
second SR night, these differences were no longer
significant between DsL and DL. Interestingly, cognitive
performance started on a higher level the day following
the second SR compared to the level before this SR night
under the latter light conditions, whereas levels
remained similar for the blue light condition until the
end of the protocol. Post hoc analysis revealed a
significant difference between the DsL and the DL
exposure at 16 h of elapsed time awake (ca. 22:00 h the
afternoon) after the first night of sleep restriction
(Wilcoxon non-parametric test) (Figure 3).
Salivary Melatonin
During the baseline evening, before the first SR and light
intervention, melatonin levels were equal across all
conditions. However, analysis of the melatonin profile
during the first evening after morning light exposure
yielded a significant main effect of ‘‘light condition’’
(F
2,280
¼ 9.3, p ¼ 0.0001) and ‘‘time-of-day’’ (F
6,280
¼ 62.7,
p50.0001), as well as an interaction ‘‘light condition’’
versus ‘‘time-of-day’’ (F
10,280
¼ 2.0, p50.04). Although
melatonin levels were not affected by the DsL, neither
after the first, nor after the second SR; morning BL
exposure elicited a phase advance in salivary melatonin.
Melatonin secretion increased earlier after a BL expos-
ure than after a DsL or DL exposure (Figure 4A).
Congruently, we found a main effect of ‘‘light condi-
tion’’ (F
2,27.4
¼ 5.4, p ¼ 0.01) for the DLMO, which was
significantly earlier after morning BL (21:20 h 19 min)
FIGURE 2. Time course (left panel) and mean of all the time points
(right panel) of (top to bottom) subjective sleepiness, subjective
well-being, tension, positive mood, and negative mood in 17
participants under dim light (dark gray lines), monochromatic blue
LEDs (black lines with white circles), or dawn simulation light
(black lines with black circles). Data are plotted as a mean for each
2-h bin relative to elapsed time (h) after wake time, and the error
bars represent the standard error of the mean. Post hoc compari-
sons were carried out using the Wilcoxon-Mann-Whitney test
between the DsL and the DL (m, p50.05) and between the BL and
the DL (D, p50.05).
6 V. Gabel et al.
Chronobiology International
Chronobiol Int Downloaded from informahealthcare.com by Medizinbibliothek im Kantonsspital on 07/11/13
For personal use only.
exposure compared to DL (21:50 h 23 min; p ¼ 0.003)
and DsL (21:38 h 17 min; p ¼ 0.05) exposure.
Salivary Cortisol
Comparable to melatonin profile, cortisol levels were
similar across sessions on the first evening, before
intervening SR and light application. After light exposure
and SR, a main effect of ‘‘light condition’’ was observed,
irrespective of whether the morning after the first
(F
2,363
¼ 3.3, p ¼ 0.0383) or second (F
2,381
¼ 3.5,
p ¼ 0.0317) SR night was considered. Compared to
the DL condition, cortisol levels decreased during
the first evening after 13 to 16 h of elapsed time awake
(i.e., corresponding time-of-day: 18:00 h to 22:00 h)
after a morning BL exposure but not after a DsL
exposure (F
2,270
¼ 8.9, p ¼ 0.0002). Additionally, during
the first hour since awakening, a significant increase
in cortisol levels upon wake-up with the DsL was
observed during both mornings after SR (mean SEM:
DL ¼ 20.35 1.43 ng/mL; BL ¼ 22.96 1.49 ng/mL;
DsL ¼ 31.99 2.13 ng/mL) compared to the two other
conditions (F
2,32
¼ 15.65, p50.0001) (Figure 4B).
DISCUSSION
Here we investigated whether the exposure to artificial
light sources, differing in their dynamics and spectral
sensitivity, can facilitate the waking-up process and
allow the improvement of subjective parameters of well-
being, sleepiness, and tension, as well as cognitive
performance throughout a sustained period of wakeful-
ness, following sleep restriction. Our data suggest that
morning exposure to dawn simulation light can signifi-
cantly improve subjective perception of well-being,
mood, and tension, as well as cognitive performance.
Importantly, this effect can persist up to 18 h after light
exposure. In parallel, dawn light simulation did not
change the circadian phase of cortisol and melatonin
profiles, in contrast to exposure to blue monochromatic
light-emitting diodes (LEDs). In other words, although
the light effects on classical markers of circadian phase
showed maximal sensitivity to short-wavelength light
exposure (blue monochromatic LEDs), the sustained
effects on subjective well-being, mood, tension, and
cognitive performance were mostly driven by the
exposure to a broadband polychromatic light source
simulating dawn.
The strengths of this study are the strictly controlled
laboratory conditions and the selection criteria of the
volunteers (sleep-wake times were similar for all par-
ticipants), which allowed us to carefully quantify and
analyze the effects of dawn simulation light and blue
monochromatic light in contrast to a dim light condi-
tion, and to thus conclude that our light-induced effects
were not driven exclusively by prior differences in
circadian phase and sleep pressure levels.
FIGURE 3. Time course (left panel) and mean of all the time points
(right panel) of the composite of cognitive performance in 17
participants under dim light (dark gray lines), monochromatic blue
LEDs (black lines with white circles), or dawn simulation light
(black lines with black circles). Data are plotted as a mean for each
2-h bin relative to elapsed time (h) after wake time, and the error
bars represent the standard error of the mean. Post hoc compari-
sons were carried out using the Wilcoxon-Mann-Whitney test
between the DsL and the DL (m, p50.05) and between the BL and
the DL (D, p50.05).
FIGURE 4. Time course of salivary (A) melatonin and (B) cortisol
profiles in 17 participants under dim light (dark gray lines),
monochromatic blue LEDs (black lines with white circles), or dawn
simulation light (black lines with black circles). Data are plotted as
a mean for each 2-h bin relative to elapsed time (h) after wake
time, and the error bars represent the standard error of the mean.
Morning Light Exposure on Well-being and Cognition 7
!
Informa Healthcare USA, Inc.
Chronobiol Int Downloaded from informahealthcare.com by Medizinbibliothek im Kantonsspital on 07/11/13
For personal use only.
Our data are in line with previous observations
indicating that 30 min of artificial dawn light exposure
in the morning hours improves subjective well-being
during the time window of sleep inertia (Gimenez et al.,
2010). Similarly, we found that light exposure around
wake-up time counteracted the detrimental effects of
sleep inertia, resulting in higher subjective well-being,
but also in more positive (respectively less negative)
mood as assessed by a validated affect scale (PANAS).
Importantly, our data show for the first time that these
effects are sustained over a whole waking day after one
sleep-restricted night (for mood measures) and are even
still operational after two nights of partial sleep restric-
tion for subjective well-being and tension.
Beneficial effects of light on mood may be mediated
through long-term circadian effects (Avery et al., 2001;
Lewy et al., 1987). Another possible neuroanatomical
modulator for these effects is the amygdala, a key
component of the limbic system, which encompasses
brain areas related to emotion processing, with direct
projections from melanopsin-containing intrinsic
photosensitive retinal ganglion cells (ipRGCs), and is
acutely affected by light exposure (Vandewalle et al.,
2010).
Our data suggest that dawn simulation light could
induce facilitation of the wake-up process and allows a
sustained beneficial effect throughout the entire waking
day. Interestingly, the observed increase of subjective
well-being, tension, and mood was associated with
higher cortisol levels after wake-up with the dawn
simulation light, in comparison with dim light and
monochromatic blue LED exposure, which was most
likely applied too late to induce any cortisol response.
Light after wake-up (Scheer & Buijs, 1999), and espe-
cially dawn simulation light (Thorn et al., 2004), has
previously been reported to affect cortisol levels upon
awakening. Furthermore, bright light seems to trigger
maximal effects on cortisol secretion when applied
during the upward portion of cortisol secretion, i.e., in
the early morning hours, close to wake-up time (Jung
et al., 2010). It may be assumed that these increased
cortisol levels upon wake-up reflect a light-induced
stress response. However, we observed that our volun-
teers felt subjectively more relaxed after DsL exposure as
compared to BL and DL. Alternatively, and in line with
what we observed at the subjective level, DsL before and
after wake-up could facilitate the wake-up process per
se and positively affect the process of sleep inertia by
increased cortisol levels immediately after wake-up.
Such an effect might be mediated by the suprachias-
matic nuclei (SCN), which have direct multisynaptic
neural pathways to the adrenal cortex (Buijs et al., 1999).
Dawn simulation light increased cognitive perform-
ance levels over the first day after SR. This beneficial
effect was no longer maintained after the second SR
night. It may thus be assumed that artificial dawn
simulation light is beneficial for the maintenance of
cognitive performance, but only if homeostatic sleep
pressure, as challenged by SR, is not sufficiently high to
be ‘‘unresponsive’’ to light. Recent functional magnetic
resonance imaging (fMRI) studies propose a cerebral
network underlying beneficial non-image-forming
effects of light on cognition (Vandewalle et al., 2009a).
It is suggested that the light irradiance signal impinges
onto the SCN, indirectly communicating with the
brainstem locus coeruleus, which in turn presents
thalamic and cortical connections allowing modulation
over widespread cortical networks implicated in suc-
cessful cognitive performance (Vandewalle et al.,
2009b). However, little is known about the magnitude,
dynamics, and regional brain distribution of such non-
image-forming effects and how properties, such as dose,
duration, intensity, and for instance different light
dynamics impact on the above mentioned networks
(Chellappa et al., 2011a). Subcortical regions are thought
to be more promptly activated and display short-lasting
responses to light, whereas the long-lasting and wide-
spread cortical task-related brain responses appear
when light exposure is longer and at a higher intensity
(Perrin et al., 2004). It may be speculated that the
duration of light exposure, here indexed by 30 min of
gradually increasing polychromatic light exposure
(dawn simulation light) followed by 20 min of moderate
light exposure (light duration of 50 min), results in such
long-lasting optimal cognitive performance across the
day.
Spectral sensitivity of non-image-forming effects of
light on circadian physiology has repeatedly been shown
to be highest in the short-wavelength range of the visible
light spectrum (Brainard et al., 2001; Gooley et al., 2010).
In our study, we observed that a 20-min exposure
to monochromatic blue LEDs 2 h after wake-up did
not affect subjective sleepiness, tension, and cognitive
performance compared to a dim light condition.
However, we did not have a control light condition at
equal time-of-day with the same duration as compari-
son. We also did not measure during the blue light
exposure but only 40 min later for the KSS and 10 min
later for mood and cognition. Moreover, most of the
studies reporting specific spectral sensitivity of blue
light on alertness in humans administered light either
during nighttime or the evening hours (Cajochen, 2007;
Chellappa et al., 2011a), except for the fMRI study
(Vandewalle et al., 2006).
Concomitant to the absence of effects at the subject-
ive and cognitive levels after BL exposure as compared
with the DL control condition, we observed a significant
phase advance in the circadian phase markers of
melatonin and cortisol after morning blue LED expos-
ure. Our results are in line with previously observed
phase advances for melatonin after 6.5 h bright light
exposure centered after the core body temperature nadir
(Khalsa et al., 2003). Exposure to intermittent blue LED
light (three 30-min pulses over 2 h) over 3 days induced
melatonin phase shifts, such that the phase advances
extend later in the day and the phase delays start earlier
8 V. Gabel et al.
Chronobiology International
Chronobiol Int Downloaded from informahealthcare.com by Medizinbibliothek im Kantonsspital on 07/11/13
For personal use only.
relative to white light (Revell et al., 2012). Very recently,
a phase response curve (PRC) for short-wavelength
(monochromatic blue 480 nm) light was constructed to
assess DLMO phase shifts (Ruger et al., 2013). Exposure
to 6.5 h of 480 nm light indicated fitted maximum delays
and advances of 2.6 and 1.3 h, respectively.
Furthermore, the 6.5 h of 480 nm, 11.2 lux light PRC
resulted in approximately 75% of the response of the
6.7 h of 10 000 lux white light PRC. This capacity for blue
light (during the phase-advancing portion of the human
PRC) to significantly advance DLMO may thus explain
our earlier melatonin onset following a 20-min morning
light exposure to monochromatic blue LED relative to
DSL and DL. One likely explanation is the higher
irradiance and melanopic values in the short wave-
length, since the mechanisms involved in melatonin
suppression are mostly sensitive to this wavelength
(Brainard et al., 2001, 2008). Blue light impinges onto
the non-image-forming pathway, involving melanopsin-
containing intrinsic photosensitive retinal ganglion cells
(ipRGCs), which then modulates responses in the
ventrolateral preoptic nucleus (VLPO) and the SCN
via a specialized non-image-forming retinohypothala-
mic tract with direct neuronal connections to the
SCN (Tsai et al., 2009). Given that the SCN is directly
involved in the circadian timing system, with direct
neuronal projections to the pineal gland (central site
for melatonin production), nocturnal melatonin secre-
tion would then phase advance, as would be predicted
by the classical phase response curve of light to the
circadian system (Khalsa et al., 2003; Minors et al.,
1991).
Nevertheless, the magnitude of which our data can be
extrapolated to real-life settings should be viewed with
caution, since under those conditions, other concomi-
tant effects such as social constraint, exposure to
outdoor light, and different types of artificial lighting,
may mask, minimize, or perhaps even enhance the
effects of our current results. Future studies under real-
life settings may be required to probe the extent to
which morning light devices may impact on mood
and cognitive performance, particularly on a long-term
perspective.
CONCLUSION
Our data indicate that exposure to artificial morning
dawn simulation light improves subjective perception
of well-being and mood, as well as cognitive per-
formance, under conditions of mild sleep restriction.
Concomitantly, it did not result in phase advances of
cortisol and melatonin profiles, as induced by the
blue light, thus resulting in a minimal impact on the
circadian timing system. In a broader context, these
light conditions may provide an effective rationale for
enhancing performance and mood in individuals who
experience conditions of mild sleep restriction.
ACKNOWLEDGEMENTS
We thank Dr. Go
¨
tz for medical screenings; Claudia
Renz, Marie-France Dattler, and Giovanni Balestrieri
for their help in data acquisition; and Amandine
Valomon for her help in recruiting volunteers and the
volunteers to participating.
DECLARATION OF INTEREST
This research was supported by Philips Consumer
Lifestyle, Drachten, The Netherlands.
The authors report no conflicts of interest. The
authors alone are responsible for the content and
writing of the paper.
REFERENCES
Aeschbach D, Cajochen C, Landolt H, Borbely AA. (1996).
Homeostatic sleep regulation in habitual short sleepers and
long sleepers. Am J Physiol, 270, R41–53.
Akerstedt T, Hume K, Minors D, Waterhouse J. (1994).
The subjective meaning of good sleep, an intraindividual
approach using the Karolinska Sleep Diary. Percept Mot Skills,
79, 287–96.
Avery DH, Eder DN, Bolte MA, et al. (2001). Dawn simulation and
bright light in the treatment of SAD: A controlled study. Biol
Psychiatry, 50, 205–16.
Beck AT, Ward CH, Mendelson M, et al. (1961). An inventory for
measuring depression. Arch Gen Psychiatry, 4, 561–71.
Birchler-Pedross A, Schroder CM, Munch M, et al. (2009).
Subjective well-being is modulated by circadian phase, sleep
pressure, age, and gender. J Biol Rhythms, 24, 232–42.
Brainard GC, Hanifin JP, Greeson JM, et al. (2001). Action spectrum
for melatonin regulation in humans: Evidence for a novel
circadian photoreceptor. J Neurosci, 21, 6405–12.
Brainard GC, Sliney D, Hanifin JP, et al. (2008). Sensitivity of the
human circadian system to short-wavelength (420-nm) light.
J Biol Rhythms, 23, 379–86.
Buijs RM, Wortel J, Van Heerikhuize JJ, et al. (1999). Anatomical
and functional demonstration of a multisynaptic suprachias-
matic nucleus adrenal (cortex) pathway. Eur J Neurosci, 11,
1535–44.
Buysse DJ, Reynolds CF, Monk TH, et al. (1989). The Pittsburgh
Sleep Quality Index: A new instrument for psychiatric practice
and research. Psychiatry Res, 28, 193–213.
Cajochen C. (2005). Sleep disruption in shift work and jet lag: The
role of the circadian timing system. Praxis (Bern 1994), 94,
1479–83.
Cajochen C. (2007). Alerting effects of light. Sleep Med Rev, 11,
453–64.
Cajochen C, Brunner DP, Krauchi K, et al. (2000). EEG and
subjective sleepiness during extended wakefulness in seasonal
affective disorder: Circadian and homeostatic influences. Biol
Psychiatry, 47, 610–17.
Cajochen C, Frey S, Anders D, et al. (2011). Evening exposure to a
light-emitting diodes (LED)-backlit computer screen affects
circadian physiology and cognitive performance. J Appl Physiol,
110, 1432–8.
Cajochen C, Munch M, Kobialka S, et al. (2005). High sensitivity
of human melatonin, alertness, thermoregulation, and heart
rate to short wavelength light. J Clin Endocrinol Metab, 90,
1311–16.
Chellappa SL, Gordijn MC, Cajochen C. (2011a). Can light make us
bright? Effects of light on cognition and sleep. Prog Brain Res,
190, 119–33.
Morning Light Exposure on Well-being and Cognition 9
!
Informa Healthcare USA, Inc.
Chronobiol Int Downloaded from informahealthcare.com by Medizinbibliothek im Kantonsspital on 07/11/13
For personal use only.
Chellappa SL, Steiner R, Blattner P, et al. (2011b). Non-visual
effects of light on melatonin, alertness and cognitive perform-
ance: Can blue-enriched light keep us alert? PLoS ONE, 6,
e16429.
Chellappa SL, Viola AU, Schmidt C, et al. (2012). Human melatonin
and alerting response to blue-enriched light depend on a
polymorphism in the clock gene PER3. J Clin Endocrinol Metab,
97, E433–7.
Curran-Everett D. (2000). Multiple comparisons: Philosophies and
illustrations. Am J Physiol Regul Integr Comp Physiol, 279,
R1–8.
Feinstein A, Brown R, Ron M. (1994). Effects of practice of serial
tests of attention in healthy subjects. J Clin Exp Neuropsychol,
16, 436–47.
Gimenez MC, Hessels M, Van de Werken M, et al. (2010). Effects of
artificial dawn on subjective ratings of sleep inertia and dim
light melatonin onset. Chronobiol Int, 27, 1219–41.
Gooley JJ, Rajaratnam SM, Brainard GC, et al. (2010). Spectral
responses of the human circadian system depend on the
irradiance and duration of exposure to light. Sci Transl Med, 2,
31ra33.
Hattar S, Liao HW, Takao M, et al. (2002). Melanopsin-containing
retinal ganglion cells: Architecture, projections, and intrinsic
photosensitivity. Science, 295, 1065–70.
Horne JA, O
¨
stberg O. (1976). A self-assessment questionnaire to
determine morningness-eveningness in human circadian
rhythms. Int J Chronobiol, 4, 97–110.
Johns MW. (1991). A new method for measuring daytime sleepi-
ness: The Epworth sleepiness scale. Sleep, 14, 540–5.
Jung CM, Khalsa SB, Scheer FA, et al. (2010). Acute effects of bright
light exposure on cortisol levels. J Biol Rhythms, 25, 208–16.
Khalsa SB, Jewett ME, Cajochen C, Czeisler CA. (2003). A phase
response curve to single bright light pulses in human subjects. J
Physiol, 549, 945–52.
Kubat-Silman AK, Dagenbach D, Absher JR. (2002). Patterns of
impaired verbal, spatial, and object working memory after
thalamic lesions. Brain Cogn, 50, 178–93.
Lewy AJ, Sack RL, Miller LS, Hoban TM. (1987). Antidepressant
and circadian phase-shifting effects of light. Science, 235,
352–4.
Lockley SW, Evans EE, Scheer FA, et al. (2006). Short-wavelength
sensitivity for the direct effects of light on alertness, vigilance,
and the waking electroencephalogram in humans. Sleep, 29,
161–8.
Minors DS, Waterhouse JM, Wirz-Justice A. (1991). A human
phase-response curve to light. Neurosci Lett, 133, 36–40.
Mu
¨
nch M, Kobialka S, Steiner R, et al. (2006). Wavelength-
dependent effects of evening light exposure on sleep architec-
ture and sleep EEG power density in men. Am J Physiol Regul
Integr Comp Physiol, 290, R1421–8.
Partonen T, Lonnqvist J. (2000). Bright light improves vitality
and alleviates distress in healthy people. J Affect Disord, 57,
55–61.
Perrin F, Peigneux P, Fuchs S, et al. (2004). Nonvisual responses to
light exposure in the human brain during the circadian night.
Curr Biol, 14, 1842–6.
Phipps-Nelson J, Redman JR, Dijk DJ, Rajaratnam SM. (2003).
Daytime exposure to bright light, as compared to dim light,
decreases sleepiness and improves psychomotor vigilance
performance. Sleep, 26, 695–700.
Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and
methods for biological rhythm research on animals and
human beings. Chronobiol Int, 27, 1911–29.
Revell VL, Arendt J, Fogg LF, Skene DJ. (2006). Alerting effects of
light are sensitive to very short wavelengths. Neurosci Lett, 399,
96–100.
Revell VL, Molina TA, Eastman CI. (2012). Human phase response
curve to intermittent blue light using a commercially available
device. J Physiol, 590, 4859–68.
Robertson IH, Manly T, Andrade J, et al. (1997). ‘Oops!’:
Performance correlates of everyday attentional failures in
traumatic brain injured and normal subjects.
Neuropsychologia, 35, 747–58.
Roenneberg T, Wirz-Justice A, Merrow M. (2003). Life between
clocks: Daily temporal patterns of human chronotypes. J Biol
Rhythms, 18, 80–90.
Ruger M, Gordijn MC, Beersma DG, et al. (2005). Weak relation-
ships between suppression of melatonin and suppression of
sleepiness/fatigue in response to light exposure. J Sleep Res, 14,
221–7.
Ruger M, St Hilaire MA, Brainard GC, et al. (2013). Human phase
response curve to a single 6.5 h pulse of short-wavelength
light. J Physiol, 591, 353–63.
Scheer FA, Buijs RM. (1999). Light affects morning salivary cortisol
in humans. J Clin Endocrinol Metab, 84, 3395–8.
Smolders KC, de Kort YA, Cluitmans PJ. (2012). A higher illumin-
ance induces alertness even during office hours: Findings on
subjective measures, task performance and heart rate meas-
ures. Physiol Behav, 107, 7–16.
Thorn L, Hucklebridge F, Esgate A, et al. (2004). The effect of dawn
simulation on the cortisol response to awakening in healthy
participants. Psychoneuroendocrinology, 29, 925–30.
Tsai JW, Hannibal J, Hagiwara G, et al. (2009). Melanopsin as a
sleep modulator: Circadian gating of the direct effects of light
on sleep and altered sleep homeostasis in Opn4(/) mice.
PLoS Biol, 7, e1000125.
Van de Werken M, Gimenez MC, De Vries B, et al. (2010). Effects of
artificial dawn on sleep inertia, skin temperature, and the
awakening cortisol response. J Sleep Res, 19, 425–35.
Vandewalle G, Balteau E, Phillips C, et al. (2006). Daytime light
exposure dynamically enhances brain responses. Curr Biol, 16,
1616–21.
Vandewalle G, Archer SN, Wuillaume C, et al. (2009a). Functional
magnetic resonance imaging-assessed brain responses during
an executive task depend on interaction of sleep homeostasis,
circadian phase, and PER3 genotype. J Neurosci, 29, 7948–56.
Vandewalle G, Maquet P, Dijk DJ. (2009b). Light as a modulator of
cognitive brain function. Trends Cogn Sci, 13, 429–38.
Vandewalle G, Schwartz S, Grandjean D, et al. (2010). Spectral
quality of light modulates emotional brain responses in
humans. Proc Natl Acad Sci USA, 107, 19549–54.
Viola AU, Archer SN, James LM, et al. (2007). PER3 polymorphism
predicts sleep structure and waking performance. Curr Biol, 17,
613–18.
Viola AU, James LM, Schlangen LJ, Dijk DJ. (2008). Blue-enriched
white light in the workplace improves self-reported alertness,
performance and sleep quality. Scand J Work Environ Health,
34, 297–306.
Watson D, Clark LA, Tellegen A. (1988). Development and valid-
ation of brief measures of positive and negative affect: The
PANAS scales. J Pers Soc Psychol, 54, 1063–70.
Weber JM, Schwander JC, Unger I, Meier D. (1997). A direct
ultrasensitive RIA for the determination of melatonin in human
saliva: Comparison with serum levels. J Sleep Res, 26, 757.
Wirz-Justice A, Bucheli C, Schmid AC, Graw P. (1986). A dose
relationship in bright white light treatment of seasonal depres-
sion. Am J Psychiatry, 143, 932–3.
Zeitzer JM, Daniels JE, Duffy JF, et al. (1999). Do plasma melatonin
concentrations decline with age? Am. J Med, 107, 432–6.
Zhu L, Zee PC. (2012). Circadian rhythm sleep disorders. Neurol
Clin, 30, 1167–91.
10 V. Gabel et al.
Chronobiology International
Chronobiol Int Downloaded from informahealthcare.com by Medizinbibliothek im Kantonsspital on 07/11/13
For personal use only.
... Moreover, early morning exposure to light was found to decrease the secretion of melatonin (e.g., [2]) and increase cortisol levels (e.g., [6,7]), thus mitigating morning drowsiness. Similarly, artificial dawn awakenings in healthy persons can result in enhancing wakefulness, which reduces sleep inertia complaints (e.g., [8][9][10]). Hilditch et al. [11] also indicated that light can be utilized as a countermeasure to sleepiness. ...
Article
Full-text available
In this paper, our design aims to assist in sleep inertia reduction and avoid the startle response and irritation caused by alarm-made unpleasant wakeup stimuli. Thus, we propose an approach that employs a soft and alerting sunrise simulation, conditionally utilizes natural light, and appropriately lowers the bedroom temperature for awakening a sleeper tenderly and gradually to gain full alertness. This approach is inspired by known scientific implications confirming the effectiveness of lights and temperatures on wakefulness. In this regard, we present an economical do-it-yourself digital tech-assisted system for bedroom lighting and temperature control. The system design is based on the smartphone and Internet of Things (IoT) technology. We develop the hardware and software in the system for implementing three IoT-based control tasks. One is the tuning of artificial light brightness using the pulse width modulation technique. Another is the opening of the window curtain using stepper motor control and light detection. The other is the activation of the air-conditioning setting using an infrared remote control and temperature detection. We construct a testbed for conducting experiments. Experimental results demonstrate that the proposed system can execute task requirements satisfactorily. The proposed system is promising for achieving our goal. It embodies features of sustainability.
... Daytime exposure to blue light is important for suppressing the secretion of melatonin-a hormone produced by the pineal gland, which plays a critical role in the regulation of the circadian rhythm. While exposure to blue light is necessary for maintaining proper performance, alertness and cognitive function during the day hours, chronic exposure to low-intensity blue light before bed and at night can have serious consequences for sleep quality, circadian phase and cycle duration [10,11]. Changes in the structure of biological rhythms resulting from the effect of certain environmental factors on the body are associated with the pathogenesis of a number of modern diseases, in particular, essential hypertension [12]. ...
Article
Full-text available
Artificial light is characterized by certain features of its impact on the body in terms of its spectral distribution of power, duration of exposure and intensity. Short waves, perceived as blue light, are the strongest synchronizing agent for the circadian system. In the present work, we investigated the features of the circadian rhythms of blood pressure (BP), heart rate (HR), the excretion of electrolytes and the secretion of melatonin in normotensive (Wistar–Kyoto) and hypertensive (SHR) rats under the action of monochromatic blue light in the daytime period. It was found that the exposure of Wistar–Kyoto rats to monochromatic blue light was accompanied by a significant decrease in nighttime and 24h systolic BP. The most remarkable changes are characteristic of the HR in SHR rats under monochromatic light. A significant decrease in HR in each time period was found, but the predominance of nighttime over daytime values remained in SHR animals. There was also a significant increase in the mesor of the HR in SHR rats. Additionally, the amplitude of diastolic BP and HR, as well as the range of oscillations in HR, were significantly increased compared with the standard light pattern. In contrast to SHR rats, the regulation of the circadian rhythms in Wistar–Kyoto rats was more flexible and presented more changes, which may be aimed at the adaptation of the body to environmental conditions. For Wistar–Kyoto rats, an increase in the level of excreted electrolytes was observed under the action of monochromatic light, but no similar changes were found in SHR rats. For Wistar–Kyoto rats, a significant decrease in the urine concentration of aMT6s in the daytime and nighttime periods is characteristic, which results in the loss of the circadian rhythm. In SHR rats, there was a significant decrease in the nighttime content of aMT6s in the urine, while the daytime concentration, on the contrary, increased. The obtained data demonstrate that prolonged exposure to monochromatic blue light in the daytime period affects the circadian structure of the rhythms of the cardiovascular system, the rhythm of electrolyte excretion and the production of epiphyseal melatonin in wild-type and hypertensive animals. In SHR rats, the rhythms of BP and HR exhibit a more rigid pattern.
... The tunnel sidewall with high luminance can optimize the driving environment and improve the visual parameters of drivers (40). From the perspective of non-visual effects, it is generally believed that short wavelengths and light can affect the circadian system of humans (24), especially in inhibiting melatonin, thus reducing fatigue and activating body functions (41). The headlights of the vehicle used in the test were white LED with a color temperature of 6,500 K. Therefore, this paper considers that in addition to the increase of the perceptual environment brightness, the perceptual light environment composed of mixed light may also be one of the factors to improve the driver's comprehensive fatigue. ...
Article
Full-text available
In tunnels, lighting not only affects visual performance, but also non-visual aspects such as drivers' physiological fatigue and mental stress. The non-visual impacts in the interior zone of long tunnels are particularly prominent as drivers are confined for a long time. To alleviate this problem, this study aims to investigate the relationship between drivers' physiological and psychological states and lighting environments. The physiological signal test system (MP150) breathing belt was used to record the changes of heart rate variability (HRV) of drivers when passing through the interior zone of a long tunnel under various lighting conditions. In particular, sympathetic indicators of physiological fatigues and the ratio of low frequency and high frequency (LF/HF) representing mental load were obtained. By analyzing the temporal variation in these two indicators, it is found that environmental luminance perception can more accurately reflect drivers' physiological and psychological states in the long tunnel than road luminance. An increase in road luminance or background luminance will result in a decrease in the mental stress, thereby reducing fatigue sense. Compared to simply increasing road luminance, mental stress of drivers decreased more obviously when the background luminance of long tunnel increased. Based on this, this paper proposed a method to regulate non-visual effect by adding contour markers without increasing light source intensity for the improvement in lighting performance, driving safety, and energy efficiency in long tunnels.
... Future studies should assess mental health and cognitive performances in athletes during home confinement. Under lockdown circumstances athletes and their coaching staff should enhance sleep hygiene strategies to maintain the correct sleep-wake patterns [52,53] and plan a priori training sessions. The ultimate aim would be to avoid training load fluctuations potentially increasing the injury risk factors [54]. ...
Article
The Covid-19 outbreak forced many governments to enter a nationwide lockdown. The aim of this study was to evaluate, by means of a survey, changes in sleep parameters and physical activity characteristics of elite track and field athletes in three periods: before the lockdown (T0), during the lockdown (09th March – 03rd May 2020, T1) and the first month after the lockdown (T2). This study was conducted from May 2020 to June 2020 and data were collected using an offline survey with 89 elite track and field athletes (mean age: 24.7±5.4; n = 43 males; n = 46 females). The survey consisted of demographic data and questions on physical activity and sleep behavior at T0, T1 and T2. Athletes reported lower sleep quality scores at T1 compared to T0 and T2 (p < 0.0001) and registered delayed bedtime, wake-up time and longer sleep latency during the lockdown compared to pre-lockdown and post-lockdown whereas no changes in total sleep time were reported. No inter-group differences were detected in sleep characteristics between short- and long-term disciplines and between genders. The weekly training volume decreased from 16.1±5.7 hours at T0 to 10.7±5.7 hours at T1 (p < 0.0001) whereas no significant differences were detected in training volume during the lockdown in relation to the square footage of the house (p = 0.309). Alcohol (p = 0.136) and caffeine intake (p = 0.990) and use of electronic devices (p = 0.317) were similar pre-, during, and post-lockdown. The unprecedented circumstances of the Covid-19 pandemic had negative impacts on the Italian track and field athletes’ sleep and
... Participants were free to move as they wished outdoors; however, they were exposed to very low levels of light compared to the level of sunlight. In other words, during the daytime, the participants spent most of their time indoors, and so their melatonin levels may therefore be significantly upregulated, which can lead to increased subjective sleepiness or decreased attention, even when their rooms were sufficiently bright [27,28]. ...
Article
Full-text available
Given that light is known to function as a zeitgeber, having the greatest influence on the human circadian rhythm, it is necessary to assess the effects of light on humans with the goal of maintaining the circadian rhythm. Herein, we fabricated a simple circadian light meter that directly measures the non-visual effects of light using optical filters that mimic the non-visual action spectrum. The fabricated light meter was calibrated and verified through the values obtained from a conventional illuminance spectrophotometer. Furthermore, during 24 h of everyday life, 11 participants wore hats equipped with the developed light meter so that we could investigate the effects of the light environment to which they were exposed to, both indoors and outdoors. For comparison, natural outdoor illumination was also measured with the same light meter. Based on the considerable difference between the light exposure levels during the daytime and nighttime, it is possible that the participant’s melatonin levels would be impacted by the light exposure measured by the light meter. Consequently, based on the light exposure measurements made in this study, the proposed circadian light meter would be a valuable tool for real world circadian lighting studies that require actual light dose to the eyes of the test subjects.
... Human follows the light cycle for daily activities such as sleep. Artificial illumination affects our rhythm in increasing alertness and cognitive performance [11] and also in suppressing sleep [12]. Higher illuminance of light exposure, especially blueenriched light before bedtime, was associated with more alertness, delayed phase, less slow-wave sleep, and prolonged sleep latency [13][14][15]. ...
Article
Full-text available
Using electronic devices before bedtime impacts sleep quality and has become a major public health issue. This study aims to investigate the associations between electronic devices (EDs) use before bedtime and sleep quality in Vietnamese university students. A total of 369 university students from three departments were recruited. Participants completed self-report surveys, including demographic characteristics, lifestyle, ED-use behaviors, the Pittsburgh Sleep Quality Index, and the Center for Epidemiologic Studies Depression Scale. A total of 48.8% of the students experienced poor sleep quality, and 98.1% reported using at least one type of ED every day within two hours before bedtime. Smartphones are the most used devices (92.3%). ED usage within two hours before bedtime (p = 0.031), lack of exercise (p = 0.006), alcohol consumption (p = 0.025), and coffee intake after 4 pm (p = 0.018) were associated with poor sleep quality. ED use near bedtime for a duration longer than 30 min (p = 0.001) and depression (p < 0.001) were associated with poorer sleep quality among university students. ED use near bedtime more than 30 min was significantly associated with poorer sleep quality after adjusting depression status, exercise, and caffeine/alcohol intake in the latter part of the day. This study emphasizes the importance of adequate sleep and restriction of ED use near bedtime, which are necessary for better sleep in university students.
Article
As interest in circadian rhythms and their effects continues to grow, there is an increasing need to perform circadian studies in humans. Although the constant routine is the gold standard for these studies, there are advantages to performing more naturalistic studies. Here, a review of protocols for such studies is provided along with sample inclusion and exclusion criteria. Sleep routines, drug use, shift work, and menstrual cycle are addressed as screening considerations. Regarding protocol, best practices for measuring melatonin, including light settings, posture, exercise, and dietary habits are described. The inclusion/exclusion recommendations and protocol guidelines are intended to reduce confounding variables in studies that do not involve the constant routine. Given practical limitations, a range of recommendations is provided from stringent to lenient. The scientific rationale behind these recommendations is discussed. However, where the science is equivocal, recommendations are based on empirical decisions made in previous studies. While not all of the recommendations listed may be practical in all research settings and with limited potential participants, the goal is to allow investigators to make well informed decisions about their screening procedures and protocol techniques and to improve rigor and reproducibility, in line with the objectives of the National Institutes of Health.
Article
Introduction: light intensity and duration are physical factors that affect hormone secretion and circadian rhythms. This study aimed to determine the effects of various light intensities on serum melatonin and cortisol levels. Materials and methods: This experimental study was carried out on 32 male rats: Group 1 as the control group, received a brightness of 150 lux, and groups 2, 3, and 4 as the exposure groups received light intensities of 300, 5000, and 8000 lux for 14 days, respectively. To evaluate hormone levels, blood samples were taken on before and after 7 and 14 days of exposure. Then cortisol and melatonin levels were determined by ELISA. Data were analyzed using SPSS. Results: The results showed that cortisol levels after seven days of exposure in the groups exposed to the light intensity of 300, 5000, and 8000 lux increased significantly compared to the control group, and after 14 days, the level of cortisol in the groups. Exposure to a light intensity of 5000 and 8000 lux increased significantly compared to the control. Also, melatonin levels in the group of rats exposed to the light intensity of 5000 lux and 8000 lux after 7 and 14 days of exposure compared to the control significantly decreased. Conclusion: Increased light intensity is associated with increased melatonin suppression and cortisol levels. It is suggested that more studies be done to prove the effect of different light intensities on changes in the levels of these hormones at varying hours of the day.
Thesis
Background: Since the discovery of ipRGCs (intrinsic photosensitive retinal ganglion cells) in the retina, new research possibilities for studying the effects of light on the regulation of various behavioral and physiological functions that are independent of image formation arose. As ipRGCs are most sensitive to light of short wavelengths (460-480nm), this dissertation focuses on current topics related to the use of blue light, emphasizing its influence on circadi-an rhythms, sleep and cognitive performance and possible applications in clinical and non-clinical settings. Aims: The first study aimed to explore the effects of 20 minutes of narrow-bandwidth light exposure of different wavelengths on various neuropsychological and neurophysiological parameters of vigilance in healthy volunteers. The objective of the second study was to assess the effect of combining CBT-I (cognitive-behavioral therapy for insomnia) with wearing blue-light blocking glasses 90 minutes before bedtime on subjective and objective sleep pa-rameters and daily symptoms (anxiety, depression, hyperarousal). The third study aimed to examine subjective sleep quality in a population of healthy volunteers and its association with evening and night light exposure to screens of media devices. Methods: In the first study, twelve healthy volunteers went through 3 sessions of 20 minutes of light exposure of different wavelengths (455, 508, and 629 nm, with an irradiance of 14 μW/cm2), while EEG was recorded (including ERP (event-related potential) P300 and spec-tral characteristics) and behavioral data (subjective sleepiness, reaction time) gathered. In the second study, 30 patients completed a CBT-I group therapy program, with groups randomly assigned to either active (blue-light filtering glasses) condition, or placebo (glasses without filtering properties) condition. Patients were continually monitored by wristwatch actigraphy, kept their sleep diaries, and completed a standard questionnaire battery at admission and after the end of the program. Lastly, 693 participants in total completed an online questionnaire battery consisting of several sleep-related questionnaires: PSQI, FSS, MCTQ, MEQ and add-ed questions assessing the timing and character of the evening and night exposure to electron-ic devices (TV, PC, tablets and phones) and the use of various filters blocking short-wavelength light. Results: Our analyses showed that the short-wavelength light condition (455nm) in the first study, was found to be the most effective in terms of its alerting effect for the following vari-ables: subjective sleepiness, the latency of P300 response and absolute EEG power in higher beta (24-34 Hz) and gamma (35-50 Hz) range. The second study showed a greater reduction of anxiety symptoms in the active vs. placebo group of patients and significant prolongation of subjective total sleep time in the active group. When pre- and post-treatment results were compared in both groups separately, significant differences were observed for the scores in the depression and hyperarousal scales in the active group only. In the active group, there was also a significant reduction of subjective sleep latency and an increase of subjective total sleep time without a change in objective sleep duration, which was significantly shortened in the placebo group. In the third study, our analyses showed that longer cumulative exposure to screen light in the evening was associated with greater sleep inertia in the morning and longer sleep latency on workdays. Furthermore, exposure to screen light 1.5h before sleep or during night awakenings was also associated with a decreased chance to wake up before the alarm time, larger social jet-lag, more pronounce daytime dysfunction, decreased subjective sleep quality, and more fatigue. A statistical trend for an increase in the duration of sleep on week-days was also found in participants using blue-light filters in the evening hours. Conclusion: Our results provide valuable insight into the alerting effects of short-wavelength (blue) light. We also show that avoiding blue light in the evening may help reduce the phase-delaying effect of light and facilitate an improvement in sleep parameters and psychiatric symptoms. Altogether, these results may contribute to the development of new lighting or light-filtering systems and may also be applicable for healthy sleep promotion in both the general and clinical populations.
Article
Indoor light environment has altered dramatically and exposure to light at night (LAN) potential leads to the progression of cardiometabolic conditions. However, few studies have investigated the effect of bedroom LAN exposure on cardiometabolic risk. To estimate the associations between multi-period bedroom LAN exposure with cardiometabolic risk among Chinese young adults. We objectively measured multi-period bedroom LAN intensity using portable illuminance meter in an ongoing prospective cohort (n = 484). At one-year follow-up, 230 young adults provided fasting blood samples for quantification of cardiometabolic parameters. Cardiometabolic (CM)-risk score was derived as the sum of standardized sex-specific z-scores for waist circumference (WC), mean arterial pressure (MAP), high-density lipoprotein cholesterol (HDL-C), triglyceride (TG) and homeostasis model assessment for insulin resistance (HOMA-IR), with HDL-C multiplied by – 1. Multivariate and univariable linear regression models were used to examine associations of multi-period bedroom LAN exposure with cardiometabolic risk. Exposure to higher bedroom LAN intensity is associated with 1.47-unit increase in CM-risk score (95% CI: 0.69–2.25; P < 0.001). Besides, post-bedtime light exposure was associated with elevated fasting insulin (PBL-1h: β = 0.06, 95% CI: 0.01–0.10; PBL-4h: β = 0.33, 95% CI: 0.19–0.47) and HOMA-IR (PBL-1h: β = 0.013, 95% CI: 0–0.03; PBL-4h: β = 0.07, 95% CI: 0.04–0.11) while pre-awake light exposure was associated with elevated total cholesterol (PAL-1h: β = 0.03, 95% CI: 0.02–0.04; PAL-2h: β = 0.02, 95% CI: 0.01–0.03), triglyceride (PAL-1h: β = 0.015, 95% CI: 0.01–0.02; PAL-2h: β = 0.01, 95% CI: 0–0.02) and low-density lipoprotein cholesterol (PAL-1h: β = 0.02, 95% CI: 0.01–0.03; PAL-2h: β = 0.02, 95% CI: 0.01–0.03). Among young adults, bedroom LAN exposure was significantly associated with higher cardiometabolic risk. Furthermore, different periods of bedroom light exposure have time-dependent effect on cardiometabolic risk. Further research is needed to confirm our findings and to elucidate potential mechanisms.
Article
Statistical procedures underpin the process of scientific discovery. As researchers, one way we use these procedures is to test the validity of a null hypothesis. Often, we test the validity of more than one null hypothesis. If we fail to use an appropriate procedure to account for this multiplicity, then we are more likely to reach a wrong scientific conclusion-we are more likely to make a mistake. In physiology, experiments that involve multiple comparisons are common: of the original articles published in 1997 by the American Physiological Society, approximately 40% cite a multiple comparison procedure. In this review, I demonstrate the statistical issue embedded in multiple comparisons, and I summarize the philosophies of handling this issue. I also illustrate the three procedures-Newman-Keuls, Bonferroni, least significant difference-cited most often in my literature review; each of these procedures is of limited practical value. Last, I demonstrate the false discovery rate procedure, a promising development in multiple comparisons. The false discovery rate procedure may be the best practical solution to the problems of multiple comparisons that exist within physiology and other scientific disciplines.
Article
Endogenous circadian rhythms in physiology and behavior are ubiquitous among mammals and are regulated by a master circadian clock, the suprachiasmatic nucleus of the hypothalamus. These intrinsic circadian rhythms are synchronized by light, melatonin, and social or physical activity to the 24-hour external light and dark cycles. Circadian rhythm sleep disorders (CRSD) occur when there is an alteration of the internal circadian timing mechanisms or a misalignment between the timing of sleep and the 24-hour social and physical environments. CRSDs, such as delayed sleep phase, advanced sleep phase and shift work sleep disorder, are often under-recognized, yet should be considered in the differential of patients presenting with symptoms of insomnia and/or hypersomnia. Because behavioral and environmental factors often are involved in the development and maintenance of these disorders, a multimodal treatment approach that combines behavioral and/or pharmacologic approaches is usually required. In addition to good sleep habits, timed exposure to bright light and melatonin can be used for the treatment of CRSD. Rapid advances in understanding the physiologic, cellular, and molecular basis of circadian rhythm and sleep regulation will likely lead to improved diagnostic tools and treatments for CRSDs.
Article
The difficulties inherent in obtaining consistent and adequate diagnoses for the purposes of research and therapy have been pointed out by a number of authors. Pasamanick12 in a recent article viewed the low interclinician agreement on diagnosis as an indictment of the present state of psychiatry and called for "the development of objective, measurable and verifiable criteria of classification based not on personal or parochial considerations, but on behavioral and other objectively measurable manifestations."Attempts by other investigators to subject clinical observations and judgments to objective measurement have resulted in a wide variety of psychiatric rating scales.4,15 These have been well summarized in a review article by Lorr11 on "Rating Scales and Check Lists for the Evaluation of Psychopathology." In the area of psychological testing, a variety of paper-and-pencil tests have been devised for the purpose of measuring specific
Article
In view of mounting evidence that the suprachiasmatic nucleus (SCN) is directly involved in the setting of sensitivity of the adrenal cortex to ACTH, the present study investigated possible anatomical and functional connections between SCN and adrenal. Transneuronal virus tracing from the adrenal revealed first order labelling in neurons in the intermedio-lateral column of the spinal cord that were shown to receive an input from oxytocin fibres and subsequently second-order labelling in neurons of the autonomic division of the paraventricular nucleus. The latter neurons were shown to receive an input from vasopressin or vasoactive intestinal peptide (VIP) containing SCN efferents. The true character of this SCN input to second-order neurons was also demonstrated by the fact that third-order labelling was present within the SCN, vasopressin or VIP neurons. The functional presence of the SCN–adrenal connection was demonstrated by a light-induced fast decrease in plasma corticosterone that could not be attributed to a decrease in ACTH. Using intact and SCN-lesioned animals, the immediate decrease in plasma corticosterone was only observed in intact animals and only at the beginning of the dark period. This fast decrease of corticosterone was accompanied by constant basal levels of blood adrenaline and noradrenaline, and is proposed to be due to a direct inhibition of the neuronal output to the adrenal cortex by light-mediated activation of SCN neurons. As a consequence, it is proposed that the SCN utilizes neuronal pathways to spread its time of the day message, not only to the pineal, but also to other organs, including the adrenal, utilizing the autonomic nervous system.
Article
Menschen reagieren unterschiedlich stark auf die Auswirkungen von Schichtarbeit und Jetlag. Viele jedoch zeigen Symptome, welche die Gesundheit erheblich beeinträchtigen und sogar gefährden. Diese Probleme können zu einer «Schichtarbeit-Schlafstörung» führen, welche die Lebensqualität erheblich verschlechtern kann. Die Bewältigung dieser Probleme hängt von der Interaktion vieler Faktoren ab, wobei der zirkadiane Faktor, Schlaf und das soziale Umfeld die Hauptfaktoren bilden. Die Schichtarbeits- bzw. Jetlag- Problematik zeigt auf, wie relevant die Berücksichtigung zirkadianer Rhythmen in der Medizin ist.
Article
In recent studies of the structure of affect, positive and negative affect have consistently emerged as two dominant and relatively independent dimensions. A number of mood scales have been created to measure these factors; however, many existing measures are inadequate, showing low reliability or poor convergent or discriminant validity. To fill the need for reliable and valid Positive Affect and Negative Affect scales that are also brief and easy to administer, we developed two 10-item mood scales that comprise the Positive and Negative Affect Schedule (PANAS). The scales are shown to be highly internally consistent, largely uncorrelated, and stable at appropriate levels over a 2-month time period. Normative data and factorial and external evidence of convergent and discriminant validity for the scales are also presented. (PsycINFO Database Record (c) 2010 APA, all rights reserved)
Article
The photic resetting response of the human circadian pacemaker depends on the timing of exposure, and the direction and magnitude of the resulting shift is described by a Phase Response Curve (PRC). Previous PRCs in humans have utilized high intensity polychromatic white light. Given that the circadian photoreception system is maximally sensitive to short-wavelength visible light, the aim of the current study was to construct a PRC to blue (480 nm) light and compare it to a 10,000 lux white light PRC constructed previously using a similar protocol. Eighteen young healthy participants (18-30 years) were studied for 9-10 days in a time-free environment. The protocol included 3 baseline days followed by a constant routine (CR) to assess initial circadian phase. Following CR1 participants were exposed to a 6.5-h 480 nm light exposure (11.8 μW/cm2, 11.2 lux) following mydriasis via a modified Ganzfeld dome. A second CR was conducted following the light exposure to re-assess circadian phase. Phase shifts were calculated from the difference in Dim Light Melatonin Onset (DLMO) between CRs. Exposure to 6.5 hours of 480 nm light reset the circadian pacemaker according to a conventional Type 1 PRC with fitted maximum delays and advances of -2.55 h and 1.29 h, respectively. The 480 nm PRC induced ~75% of the response of the 10,000 lux white light PRC.. These results may contribute to a re-evaluation of dosing guidelines for clinical light therapy and the use of light as a fatigue countermeasure.