Article

Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey

1] Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, USA [2] California National Primate Research Center, University of California, Davis, Sacramento, CA, USA [3] The MIND Institute, University of California, Davis, Sacramento, CA, USA.
Translational Psychiatry (Impact Factor: 5.62). 07/2013; 3(7):e278. DOI: 10.1038/tp.2013.47
Source: PubMed

ABSTRACT

Antibodies directed against fetal brain proteins of 37 and 73 kDa molecular weight are found in approximately 12% of mothers who have children with autism spectrum disorder (ASD), but not in mothers of typically developing children. This finding has raised the possibility that these immunoglobulin G (IgG) class antibodies cross the placenta during pregnancy and impact brain development, leading to one form of ASD. We evaluated the pathogenic potential of these antibodies by using a nonhuman primate model. IgG was isolated from mothers of children with ASD (IgG-ASD) and of typically developing children (IgG-CON). The purified IgG was administered to two groups of female rhesus monkeys (IgG-ASD; n=8 and IgG-CON; n=8) during the first and second trimesters of pregnancy. Another control group of pregnant monkeys (n=8) was untreated. Brain and behavioral development of the offspring were assessed for 2 years. Behavioral differences were first detected when the macaque mothers responded to their IgG-ASD offspring with heightened protectiveness during early development. As they matured, IgG-ASD offspring consistently deviated from species-typical social norms by more frequently approaching familiar peers. The increased approach was not reciprocated and did not lead to sustained social interactions. Even more striking, IgG-ASD offspring displayed inappropriate approach behavior to unfamiliar peers, clearly deviating from normal macaque social behavior. Longitudinal magnetic resonance imaging analyses revealed that male IgG-ASD offspring had enlarged brain volume compared with controls. White matter volume increases appeared to be driving the brain differences in the IgG-ASD offspring and these differences were most pronounced in the frontal lobes.

  • Source
    • "Our hypothesis may explain why a small percentage of mothers give birth to multiple ASD children (Bauman et al., 2013; Braunschweig and Van de Water, 2012;Braunschweig et al., 2013;Fox et al., 2012). However, we do not discount the possibility that other antigens, after an infection with microorganisms that cross react with a fetal brain antigens may not play a role in development of ASD (Ahmed et al., 2015;Bauman et al., 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorders (ASD) are highly heterogeneous developmental conditions characterized by deficits in social interaction, verbal and nonverbal communication, and obsessive/stereotyped patterns of behavior and repetitive movements. Social interaction impairments are the most characteristic deficits in ASD. There is also evidence of impoverished language and empathy, a profound inability to use standard nonverbal behaviors (eye contact, affective expression) to regulate social interactions with others, difficulties in showing empathy, failure to share enjoyment, interests and achievements with others, and a lack of social and emotional reciprocity. In developed countries, it is now reported that 1%–1.5% of children have ASD, and in the US 2015 CDC reports that approximately one in 45 children suffer from ASD. Despite the intense research focus on ASD in the last decade, the underlying etiology remains unknown. Genetic research involving twins and family studies strongly supports a significant contribution of environmental factors in addition to genetic factors in ASD etiology. A comprehensive literature search has implicated several environmental factors associated with the development of ASD. These include pesticides, phthalates, polychlorinated biphenyls, solvents, air pollutants, fragrances, glyphosate and heavy metals, especially aluminum used in vaccines as adjuvant. Importantly, the majority of these toxicants are some of the most common ingredients in cosmetics and herbicides to which almost all of us are regularly exposed to in the form of fragrances, face makeup, cologne, air fresheners, food flavors, detergents, insecticides and herbicides. In this review we describe various scientific data to show the role of environmental factors in ASD.
    Full-text · Article · Mar 2016 · Environment International
  • Source
    • "Maternal antibodies from the human mother of a child with ASD were injected into a pregnant mouse and the offspring of the mouse demonstrated behavioral changes, despite the fact that the pregnant mouse did not exhibit any abnormalities [35] [36] [37]. Similar studies were performed on rhesus monkeys with similar results [38] [39]. Additionally, recent research of maternal immune activation models suggests lasting changes in macrophage function [40]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies of Autism Spectrum Disorders (ASD) highlight hyperactivity of the immune system, irregular neuronal growth and increased size and number of microglia. Though the small sample size in many of these studies limits extrapolation to all individuals with ASD, there is mounting evidence of both immune and nervous system related pathogenesis in at least a subset of patients with ASD. Given the disturbing rise in incidence rates for ASD, and the fact that no pharmacological therapy for ASD has been approved by the Food and Drug Administration (FDA), there is an urgent need for new therapeutic options. Research in the therapeutic effects of mesenchymal stem cells (MSC) for other immunological and neurological conditions has shown promising results in preclinical and even clinical studies. MSC have demonstrated the ability to suppress the immune system and to promote neurogenesis with a promising safety profile. The working hypothesis of this paper is that the potentially synergistic ability of MSC to modulate a hyperactive immune system and its ability to promote neurogenesis make it an attractive potential therapeutic option specifically for ASD. Theoretical mechanisms of action will be suggested, but further research is necessary to support these hypothetical pathways. The choice of tissue source, type of cell, and most appropriate ages for therapeutic intervention remain open questions for further consideration. Concern over poor regulatory control of stem cell studies or treatment, and the unique ethical challenges that each child with ASD presents, demands that future research be conducted with particular caution before widespread use of the proposed therapeutic intervention is implemented.
    Full-text · Article · Dec 2014 · Medical Hypotheses
  • Source
    • "Some of the antibodies that cross the fetal developing blood brain barrier recognize and attack the brain (138). The presence of fetal brain protein antibodies in ASD can result in an inappropriate approach to unfamiliar peers (143). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorders (ASDs) are complex, heterogeneous disorders caused by an interaction between genetic vulnerability and environmental factors. In an effort to better target the underlying roots of ASD for diagnosis and treatment, efforts to identify reliable biomarkers in genetics, neuroimaging, gene expression, and measures of the body's metabolism are growing. For this article, we review the published studies of potential biomarkers in autism and conclude that while there is increasing promise of finding biomarkers that can help us target treatment, there are none with enough evidence to support routine clinical use unless medical illness is suspected. Promising biomarkers include those for mitochondrial function, oxidative stress, and immune function. Genetic clusters are also suggesting the potential for useful biomarkers.
    Full-text · Article · Aug 2014 · Frontiers in Psychiatry
Show more