Article

Evaluating the effect of food processing on the potential human allergenicity of novel proteins: Summary from a recent workshop

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
In order to support patients’ safety, the analytical methods should be able to quantify the allergenic proteins in food products. Analytical performance of the currently used ELISA methods is not always appropriate, particularly in case of processed foods. A possible way to investigate the sources of analytical errors is the utilisation of model food matrices that mimic the technology and behaviour of real food products. Consequently, factors affecting the analytical results were identified, their contribution to the whole analytical error was determined, and the underlying phenomena were interpreted in this study. Heat-treated model matrices incurred with gliadin, milk, egg, or soy proteins were produced and analysed with commercially available ELISA test kits. The data were evaluated with statistical tools. Results clearly show that the type of the food matrix, the level of processing, and the analytical methods (i.e. the type of the ELISA kit) are the three main factors that play a significant role in the uncertainty. The developed laboratory methodology seems to be suitable for generalising the investigation of other allergens, methods, matrices, and the scientific background of the phenomena.
Article
This guideline advises on the management of patients with cow's milk allergy. Cow's milk allergy presents in the first year of life with estimated population prevalence between 2 and 3%. The clinical manifestations of cow's milk allergy are very variable in type and severity making it the most difficult food allergy to diagnose. A careful age- and disease-specific history with relevant allergy tests including detection of milk specific IgE (by skin prick test or serum assay), diagnostic elimination diet and oral challenge will aid in diagnosis in most cases. Treatment is advice on cow's milk avoidance and suitable substitute milks. Cow's milk allergy often resolves. Reintroduction can be achieved by the graded exposure, either at home or supervised in hospital depending on severity, using a milk ladder. Where cow's milk allergy persists novel treatment options may include oral tolerance induction, although most authors do not currently recommend it for routine clinical practice. Cow's milk allergy must be distinguished from primary lactose intolerance. This guideline was prepared by the Standards of Care Committee (SOCC) of the British Society for Allergy and Clinical Immunology (BSACI) and is intended for clinicians in secondary and tertiary care. The recommendations are evidence-based but where evidence is lacking the panel of experts in the committee reached consensus. Grades of recommendation are shown throughout. The document encompasses epidemiology, natural history, clinical presentations, diagnosis and treatment. This article is protected by copyright. All rights reserved.
Article
Full-text available
Aim. Previous studies have shown a higher sensitization rate to hazelnut in processing workers but no relation was found between the respiratory symptoms in workplace and hazelnut sensitization. Material and Method. To evaluate the association between the hazelnut sensitization and workplace-related respiratory complaints, hazelnut processing workers had undergone a questionnaire included work-related respiratory symptoms, smoking history, pulmonary function testing, and measurement of serum IgE antibodies against hazelnut. Results. This study consisted of 88 hazelnut processing workers (79 females and 9 males), aged 14–59 years (Mean ± SD: 33.8 ± 10.5 years). The mean working duration was 38.8 ± 36.6 months (min: 1–max: 180). Specific IgE against hazelnut allergens was positive in 14 of cases (17.1%). There was no significant difference between the cases with and without specific IgE against hazelnut allergens regarding respiratory symptoms, history of allergy, smoking status and spirometric values. Conclusion. 17.1% of the hazelnut processing workers were seropositive against hazelnut. Being sensitized to hazelnut was not found to be associated with work-related respiratory symptoms in this study. Further studies are needed in hazelnut workers respiratory health to search topics other than asthma.
Article
Full-text available
Many patients assume that allergic reactions against foods are responsible for triggering or worsening their allergic symptoms. Therefore, it is important to identify patients who would benefit from an elimination diet, while avoiding unnecessary dietary restrictions. The diagnosis of food allergy depends on the thorough review of the patients's medical history, results of supplemented trials of dietary elimination, and in vivo and in vitro tests for measuring specific IgE levels. However, in some cases the reliability of such procedures is suboptimal. Oral food challenges are procedures employed for making an accurate diagnosis of immediate and occasionally delayed adverse reactions to foods. The timing and type of the challenge, preparation of patients, foods to be tested, and dosing schedule should be determined on the basis of the patient's history, age, and experience. Although double-blind, placebo-controlled food challenges(DBPCFC) are used to establish definitively if a food is the cause of adverse reactions, they are time-consuming, expensive and troublesome for physician and patients. In practice, An open challenge controlled by trained personnel is sufficient especially in infants and young children. The interpretation of the results and follow-up after a challenge are also important. Since theses challenges are relatively safe and informative, controlled oral food challenges could become the measure of choice in children.
Article
Full-text available
The manuscript reviews beneficial aspects of food processing with main focus on cooking/heat treatment, including other food-processing techniques (e.g. fermentation). Benefits of thermal processing include inactivation of food-borne pathogens, natural toxins or other detrimental constituents, prolongation of shelf-life, improved digestibility and bioavailability of nutrients, improved palatability, taste, texture and flavour and enhanced functional properties, including augmented antioxidants and other defense reactivity or increased antimicrobial effectiveness. Thermal processing can bring some unintentional undesired consequences, such as losses of certain nutrients, formation of toxic compounds (acrylamide, furan or acrolein), or of compounds with negative effects on flavour perception, texture or colour. Heat treatment of foods needs to be optimized in order to promote beneficial effects and to counteract, to the best possible, undesired effects. This may be achieved more effectively/sustainably by consistent fine-tuning of technological processes rather than within ordinary household cooking conditions. The most important identified points for further study are information on processed foods to be considered in epidemiological work, databases should be built to estimate the intake of compounds from processed foods, translation of in-vitro results to in-vivo relevance for human health should be worked on, thermal and non-thermal processes should be optimized by application of kinetic principles.
Article
There are differences in stability to pepsin between the major allergens in peanut; however, data are from different reports using different digestion models. This study provides a comprehensive comparison of the digestibility of the major peanut allergens. Peanut allergens Ara h 1, Ara h 2, Ara h 3 and Ara h 6 were incubated with pepsin to mimic the effect of gastric digestion. Samples were analyzed using SDS-PAGE. To further investigate resistance to digestion, Ara h 2 was additionally subjected to digestion with trypsin and residual peptides were characterized. Ara h 1 and Ara h 3 were rapidly hydrolyzed by pepsin. On the contrary, Ara h 2 and Ara h 6 were resistant to pepsin digestion, even at very high concentrations of pepsin. In fact, limited proteolysis could only be demonstrated by SDS-PAGE performed under reducing conditions, indicating an important role for the disulfide bridges in maintaining the quaternary structure of Ara h 2 and Ara h 6. Trypsin digestion of Ara h 2 similarly resulted in large residual peptides and these were identified. Ara h 2 and Ara h 6 are considerably more stable towards digestion than Ara h 1 and Ara h 3.
Article
Full-text available
The hazelnut major allergens identified to date are an 18-kd protein homologous to Bet v 1 and a 14-kd allergen homologous to Bet v 2. No studies have reported hazelnut allergens recognized in patients with positive double-blind, placebo-controlled food challenge (DBPCFC) results or in patients allergic to hazelnut but not to birch. We characterized the hazelnut allergens by studying the IgE reactivity of 65 patients with positive DBPCFC results and 7 patients with severe anaphylaxis to hazelnut. Hazelnut allergens were identified by means of SDS-PAGE and IgE immunoblotting. Further characterization was done with amino acid sequencing, evaluation of the IgE-binding properties of raw and roasted hazelnut with enzyme allergosorbent test inhibition, assessment of cross-reactivity with different allergens by means of immunoblotting inhibition, and purification by means of HPLC. All the sera from the patients with positive DBPCFC results recognized an 18- and a 47-kd allergen; other major allergens were at molecular weights of 32 and 35 kd. Binding to the 18-kd band was inhibited by birch extract, indicating its homology with the birch major allergen, and abolished in roasted hazelnut. The 47-kd allergen is a sucrose-binding protein, the 35-kd allergen is a legumin, and the 32-kd allergen is a 2S albumin. Patients with severe anaphylactic reactions to hazelnut showed specific IgE reactivity to a 9-kd allergen, totally inhibited by purified peach lipid-transfer protein (LTP), which was heat stable and, when purified, corresponded to an LTP. The major allergen of hazelnut is an 18-kd protein homologous to Bet v 1, and the 9-kd allergen is presumably an LTP. Other major allergens have molecular weights of 47, 32, and 35 kd.
Article
Full-text available
Allergy to hazelnuts is a common example of birch pollen related food allergy. Symptoms upon ingestion are often confined to the mouth and throat, but severe systemic reactions have been described in some patients. The aim of the study was to evaluate the reduction in allergenicity by roasting of the nuts. Double-blind, placebo-controlled food challenges (DBPCFC) with roasted hazelnuts (140 degrees C, 40 min) were performed in 17 birch pollen allergic patients with DBPCFC-confirmed food allergy to raw hazelnuts. The effect of roasting was further evaluated by skin prick test (SPT), histamine release (HR), measurement of specific IgE, and IgE-inhibition experiments. In 5/17 patients the DBPCFC with the roasted nuts were positive. The symptoms were generally mild and included OAS (oral allergy syndrome) in all patients. Roasting of the nuts significantly reduced the allergenic activity evaluated by SPT, HR, specific IgE, and IgE-inhibition. Immunoblotting experiments with recombinant hazelnut allergens showed sensitization against Cor a 1.04 in 16/17 patients and against Cor a 2 in 7/17 patients. None of the patients were sensitized to Cor a 8. Challenge-positive patients did not differ from the rest in IgE-binding pattern. All the applied methods indicated that roasting of hazelnuts reduces the allergenicity, but since 5/17 birch pollen allergic patients were DBPCFC-positive to the roasted nuts, ingestion of roasted hazelnuts or products containing roasted hazelnuts can not be considered safe for a number of hazelnut allergic consumers. For patients with a history of severe allergic symptoms upon ingestion of hazelnuts, thorough and conscientious food labelling of hazelnuts and hazelnut residues is essential.
Article
Full-text available
The major 2S albumin allergen from Brazil nuts, Ber e 1, was subjected to gastrointestinal digestion using a physiologically relevant in vitro model system either before or after heating (100 degrees C for 20 min). Whilst the albumin was cleaved into peptides, these were held together in a much larger structure even when digested by using a simulated phase 1 (gastric) followed by a phase 2 (duodenal) digestion system. Neither prior heating of Ber e 1 nor the presence of the physiological surfactant phosphatidylcholine affected the pattern of proteolysis. After 2 h of gastric digestion, approximately 25% of the allergen remained intact, approximately 50% corresponded to a large fragment of M(r) 6400, and the remainder comprised smaller peptides. During duodenal digestion, residual intact 2S albumin disappeared quickly, but a modified form of the 'large fragment' remained, even after 2 h of digestion, with a mass of approximately 5000 Da. The 'large fragment' comprised several smaller peptides that were identified, by using different MS techniques, as deriving from the large subunit. In particular, sequences corresponding to the hypervariable region (Q37-M47) and to another peptide (P42-P69), spanning the main immunoglobulin E epitope region of 2S albumin allergens, were found to be largely intact following phase 1 (gastric) digestion. They also contained previously identified putative T-cell epitopes. These findings indicate that the characteristic conserved skeleton of cysteine residues of 2S albumin family and, particularly, the intrachain disulphide bond pattern of the large subunit, play a critical role in holding the core protein structure together even after extensive proteolysis, and the resulting structures still contain potentially active B- and T-cell epitopes.
Article
Full-text available
Recently, we have demonstrated that anti-ulcer drugs, such as H2-receptor blockers and proton pump inhibitors, promote the development of immediate type food allergy toward digestion-labile proteins in mice. The aim of this study was to examine the allergological relevance of these findings in humans. In an observational cohort study, we screened 152 adult patients from a gastroenterological outpatient clinic with negative case histories for atopy or allergy, who were medicated with H2-receptor blockers or proton pump inhibitors for 3 months. IgE reactivities to food allergens before and after 3 months of anti-acid treatment were compared serologically. Ten percent of the patients showed a boost of preexisting IgE antibodies and 15% de novo IgE formation toward numerous digestion-labile dietary compounds, like milk, potato, celery, carrots, apple, orange, wheat, and rye flour. Thus, the relative risk to develop food-specific IgE after anti-acid therapy was 10.5 (95% confidence interval: 1.44-76.48). The long-term effect was evaluated 5 months after therapy. Food-specific IgE could still be measured in 6% of the patients, as well as significantly elevated serum concentrations of ST2, a Th2-specific marker. An unspecific boost during the pollen season could be excluded, as 50 untreated control patients revealed no changes in their IgE pattern. In line with our previous animal experiments, our data strongly suggest that anti-ulcer treatment primes the development of IgE toward dietary compounds in long-term acid-suppressed patients.
Article
Full-text available
The ILSI Health and Environmental Sciences Institute (HESI) hosted an expert workshop 22–24 February 2005 in Mallorca, Spain, to review the state-of-the-science for conducting a sequence homology/bioinformatics evaluation in the context of a comprehensive allergenicity assessment for novel proteins, to obtain consensus on the value and role of bioinformatics in evaluating novel proteins, and to discuss the utility and methods of allergen-specific IgE testing in the diagnosis of food allergy. The workshop participants included over forty international experts from academia, industry, and government. The workshop was hosted by the HESI Protein Allergenicity Technical committee, which has established a long-term program whose mission is to advance the scientific understanding of the relevant parameters for characterizing the allergenic potential of novel proteins.
Article
Full-text available
Resistance to proteolytic enzymes and heat is thought to be a prerequisite property of food allergens. Allergens from peanut (Arachis hypogaea) are the most frequent cause of fatal food allergic reactions. The allergenic 2S albumin Ara h 2 and the homologous minor allergen Ara h 6 were studied at the molecular level with regard to allergenic potency of native and protease-treated allergen. A high-resolution solution structure of the protease-resistant core of Ara h 6 was determined by NMR spectroscopy, and homology modelling was applied to generate an Ara h 2 structure. Ara h 2 appeared to be the more potent allergen, even though the two peanut allergens share substantial cross-reactivity. Both allergens contain cores that are highly resistant to proteolytic digestion and to temperatures of up to 100 degrees C. Even though IgE antibody-binding capacity was reduced by protease treatment, the mediator release from a functional equivalent of a mast cell or basophil, the humanized RBL (rat basophilic leukaemia) cell, demonstrated that this reduction in IgE antibody-binding capacity does not necessarily translate into reduced allergenic potency. Native Ara h 2 and Ara h 6 have virtually identical allergenic potency as compared with the allergens that were treated with digestive enzymes. The folds of the allergenic cores are virtually identical with each other and with the fold of the corresponding regions in the undigested proteins. The extreme immunological stability of the core structures of Ara h 2 and Ara h 6 provides an explanation for the persistence of the allergenic potency even after food processing.
Article
Among vegetable foods peach (Prunus persica) has been recognized as a significant cause of allergy. The protein, which is considered to be the major peach allergen, has been named Pru p 1. Because peaches are consumed both as fresh fruits and after processing to obtain peach juice, nectar, jam, syrupy peach, etc., research was carried out to identify a technological process for production of hypo- or nonallergenic peach-based products. SDS−PAGE and immunoblotting analysis of extracts prepared from four commercial peach nectars showed that the Pru p 1 was not removed, and neither was its allergenic activity decreased by technological treatments carried out for nectar production. Some treatments oriented toward a removal of or, at least, a decrease in the allergenic power were assumed and verified at laboratory scale. A variable considered was heat treatment at 121 °C for 10 and 30 min:  this treatment was not able to decrease the allergenicity of the Pru p 1 protein. Furthermore, the protein band was still present even after 60-min reaction with two different acidic proteases. The two technological treatments that were found to decrease the major allergen of peach were chemical lye peeling of fruits and ultrafiltration of juice through membranes with suitable cutoff. On the basis of the results obtained from this research, a processing flow sheet was defined to obtain hypoallergenic or probably nonallergenic limpid juices and nectars. These products may represent, besides finished foods, intermediates to obtain various products after addition of further ingredients such as pectins, sugars, and fiber. Keywords: Allergy; fruit juice; nectar; peach
Article
Celery roots were processed by microwave heating, cooking, drying, γ-irradiation, ultra high pressure treatment and high voltage impulse treatment. The immunochemical stabilities of the three known allergenic structures of celery were tested with sera from patients who were sensitised to celery. In addition, rabbit antisera were used to detect the allergens profilin and Api g 1 on celery immunoblots. The specificity and reactivity of IgE from the patients' sera were investigated by immunoblotting, by an enzyme allergosorbent test (EAST) and by dose-related IgE inhibition experiments. The results of all three methods agreed closely and indicated high antigenic and allergenic activity in native celery which was reduced by thermal processing. The heat-stability of the known celery allergens decreased in the following order: carbohydrate epitopes> profilin>Api g 1. In contrast, the allergenicity was only mildly reduced by non-thermal processing. The results obtained with human IgE were confirmed by an in vitro mediator-release assay that is based on rat basophil leukemia cells (RBL cells) which were passively sensitised with celery-specific murine IgE. With sera from mice that had been immunised with native celery, the native sample and non-thermal celery preparations elicited the strongest mediator release, whereas a weak response was obtained with samples from heat-processed celery. These results agreed closely with the data obtained in allergic patients whose IgE antibodies were directed against the major protein allergen Api g 1. Our results may be helpful in risk assessment and in selecting food preparations which can be consumed without symptoms by a subgroup of celery-allergic patients with a known sensitisation pattern. ©1997 SCI
The allergenicity of food could be altered by several processing procedures. For various foods of animal and plant origin the available literature on this alteration is described. Investigations on hidden allergens in food products are also dealt with.
Article
Because of the widespread use of peanut products, peanut allergenicity is a major health concern in the United States. The effect or effects of thermal processing (roasting) on the allergenic properties of peanut proteins have rarely been addressed. We sought to assess the biochemical effects of roasting on the allergenic properties of peanut proteins. Competitive inhibition ELISA was used to compare the IgE-binding properties of roasted and raw peanut extracts. A well-characterized in vitro model was used to test whether the Maillard reaction contributes to the allergenic properties of peanut proteins. The allergic properties were measured by using ELISA, digestion by gastric secretions, and stability of the proteins to heat and degradation. Here we report that roasted peanuts from two different sources bound IgE from patients with peanut allergy at approximately 90-fold higher levels than the raw peanuts from the same peanut cultivars. The purified major allergens Ara h 1 and Ara h 2 were subjected to the Maillard reaction in vitro and compared with corresponding unreacted samples for allergenic properties. Ara h 1 and Ara h 2 bound higher levels of IgE and were more resistant to heat and digestion by gastrointestinal enzymes once they had undergone the Maillard reaction. The data presented here indicate that thermal processing may play an important role in enhancing the allergenic properties of peanuts and that the protein modifications made by the Maillard reaction contribute to this effect.
Article
The myriad of systemic manifestations induced by food hypersensitivity responses is testament to the ability of localized exposure to foods in the gastrointestinal tract to result in symptoms in distal target organs. Cow's milk protein, for example, may induce hives (urticaria), atopic dermatitis, isolated gastrointestinal symptoms, or severe generalized anaphylaxis in different individuals or in the same person at different times. These diverse manifestations are the result of complex interactions among the causal food protein, gut, immune system, and target organs. The dynamic state of these interactions is demonstrated by the development of food tolerance in most subjects and by the ability to experience the development of new allergies in some subjects. This review explores the variety of clinical manifestations of food hypersensitivity disorders in the context of the question: What determines the local or systemic expression of food allergy in a given individual at a particular time? Evidence is provided for both systemic and local immune activation. The role of food-protein chemistry, absorption and processing of ingested allergen, immune responses (type, degree, and specificity), and target organ hyperreactivity are considered as determinants in the expression of food allergic disorders.
Article
Lipid transfer proteins (LTPs) are stable and highly conserved proteins of around 10 kD. They have recently been identified as allergens in fruits of the Rosaceae family. The aim of this study was to investigate whether the highly conserved structure of LTPs justifies a designation as a true pan-allergen, and to study the role of protein stability in allergenicity. Thirty-eight patients with a positive skin prick test to Rosaceae fruit extracts were characterized by interviews and skin prick tests. To investigate IgE cross-reactivity between Rosaceae and non-Rosaceae LTPs, RAST and RAST inhibition as well as ELISA and ELISA inhibition were performed, using whole food extracts and purified natural and recombinant LTPs. To address the role of protein stability in the allergenicity of LTP, fruit extracts and LTPs were digested with pepsin. IgE antibodies to Rosaceae LTPs cross-reacted with a broad range of non-Rosaceae vegetable foods. Inhibition studies with purified natural and recombinant LTPs confirmed the role of LTP in this cross-reactivity. Many of the patients with this type of cross-reactive IgE antibodies had a clinical food allergy. In contrast to the typical birch Rosaceae cross-reactive patients, the oral allergy syndrome was frequently accompanied by more severe and systemic reactions. IgE reactivity to LTP was shown to be resistant to pepsin treatment of the allergen. LTP is a true pan-allergen with a degree of cross-reactivity comparable to profilin. Due to its extreme resistance to pepsin digestion, LTP is a potentially severe food allergen.
Article
Anaphylactic reactions to soy products have been attributed to stable class 1 food allergens. IgE- mediated reactions to a soy-containing dietary food product in patients allergic to birch pollen were investigated. Detailed case histories were taken from 20 patients. Their sera were analyzed for IgE (UniCAP) specific for birch, grass, mugwort, the recombinant birch allergens rBet v 1 and rBet v2, and soy protein. Extracts from birch pollen, soy isolate, rBet v 1, and the recombinant PR-10 soy protein rSAM22 were coupled to paper disks or nitrocellulose for IgE measurements (enzyme allergosorbent test) or Western blot analysis. Enzyme allergosorbent testing, Western blot inhibition, and histamine release studies were performed with the same allergens. Most patients (17/20) experienced facial, oropharyngeal, and/or systemic allergic symptoms within 20 minutes after ingesting the soy product for the first time. Birch pollen allergy (16/20) was common, along with oral allergy syndrome to apple (12/20) or hazelnut (11/20). IgE levels to birch and Bet v 1 but not to other inhalants were high in 18 of 20 patients. Significant IgE binding to rSAM22 occurred in 17 of 20 patients. Blot experiments with the soy isolate revealed IgE-binding bands at 17 kd (15/20), 22 kd (1/20), and 35 to 38 kd (2/20); the former was inhibited by preincubation of the sera with rBet v 1 or rSAM22. Birch extract and soy isolate, rBet v 1, and rSAM22 induced dose-dependent histamine release in the nanomolar range. Immediate-type allergic symptoms in patients with birch pollen allergy after ingestion of soy protein-containing food items can result from cross-reactivity of Bet v 1 -specific IgE to homologous pathogenesis-related proteins, particularly the PR-10 protein SAM22.
Article
Information on the comparative digestibility of food allergens and nonallergenic proteins is crucial when stability to digestion is to be used as a criterion to assess the allergenic potential of novel proteins. In this work, we compared the digestive stability of a number of food allergens and proteins of unproven allergenicity and examined whether allergens possess a higher stability than nonallergenic proteins of similar cellular functions, and whether there is a correlation between protein digestibility and allergenicity. The stability of groups of storage proteins, plant lectins, contractile proteins, and enzymes, both allergens and proteins with unproven allergenicity, in a standard simulated gastric fluid and a standard simulated intestinal fluid was measured. Food allergens were not necessarily more resistant to digestion than nonallergenic proteins. There was not a clear relationship between digestibility measured in vitro and protein allergenicity.
Article
Allergic reactions to legumes are generally thought to be acquired by means of primary sensitization through the gastrointestinal tract. Recently, Gly m 4 (starvation-associated message 22), a Bet v 1-related pathogenesis-related protein 10 from soy, was suggested to be an allergen in patients with allergic reactions to a dietary product containing a soy protein isolate. We sought to evaluate the clinical relevance of Gly m 4 in subjects allergic to birch pollen with soy allergy and to assess the risk for subjects allergic to birch pollen to acquire soy allergy. Twenty-two patients allergic to birch pollen with soy allergy confirmed by means of positive double-blind, placebo-controlled food challenge results (n = 16) or a convincing history (n = 6) were investigated for IgE reactivity to birch pollen and soy allergens by using the Pharmacia CAP system and immunoblot analysis. Cross-reactivity was assessed by means of enzyme allergosorbent test inhibition. Ninety-four patients with birch pollen allergy were interviewed to assess soy tolerance and screened for IgE reactivity to Gly m 4 by means of immunoblotting. The Gly m 4 content in soy foods and soybean varieties was investigated by means of quantitative evaluation of immunoblots. During double-blind, placebo-controlled food challenge, 10 patients experienced symptoms localized to the oral cavity, and 6 patients had a more severe reaction. CAP analysis revealed Gly m 4-specific IgE in 96% (21/22) of the patients. All patients had Bet v 1-specific IgE antibodies, and 23% (5/22) had positive Bet v 2 results. In IgE immunoblotting 25% (6/22) of the patients recognized soy profilin (Gly m 3), and 64% (14/22) recognized other soy proteins. IgE binding to soy was at least 80% inhibited by birch pollen and 60% inhibited by rGly m 4 in 9 of 11 sera tested. Seventy-one percent (67/94) of highly Bet v 1-sensitized patients with birch pollen allergy were sensitized to Gly m 4, and 9 (9.6%) of those patients reported soy allergy. The Gly m 4 content in soy products ranged between 0 and 70 ppm (milligrams per kilogram). Our results confirm that soybean is another birch pollen-related allergenic food. Gly m 4 is the major soy allergen for patients allergic to birch pollen with soy allergy. The content of Gly m 4 in soy food products strongly depends on the degree of food processing.
Article
A population study was performed to identify the prevalence of all kinds of adverse reactions to food. In a representative cross-sectional survey performed in 1999 and 2000 in Berlin, 13 300 inhabitants of all ages were addressed by questionnaire. This questionnaire was answered by 4093 persons. All respondents mentioning any sign of food intolerance or the existence of allergic diseases (n = 2298) were followed up by telephone and, in case food intolerance could not be ruled out by patient history, were invited to attend to the clinic for personal investigation including double-blind, placebo-controlled food challenge tests (DBPCFC). The self-reported lifetime prevalence of any adverse reaction to food in the Berlin population (mean age 41 years) was 34.9%. Eight hundred and fourteen individuals were personally investigated according to the guidelines. The point prevalence of adverse reactions to food confirmed by DBPCFC tests in the Berlin population as a mean of all age groups was 3.6% (95% confidence interval [3.0-4.2%]) and 3.7% in the adult population (18-79 years, 95% confidence interval [3.1-4.4.%]). Two and a half percent were IgE-mediated and 1.1% non-IgE-mediated, females were more frequently affected (60.6%). Based on a statistical comparison with available data of adults from the nationwide German Health Survey from 1998, adverse reactions to food in the adult population of Germany (age 18-79) were calculated with 2.6% [2.1-3.2%]). The study gives for the first time information about the point prevalence of both immunological and nonimmunological adverse reactions to food and underlines the relevance of this issue in public health. The data also show that an individualized stepwise approach including provocation tests is mandatory to confirm the diagnosis.
Article
Rationale. Evaluation of the potential allergenicity of proteins derived from genetically modified foods has involved a weight of evidence approach that incorporates an evaluation of protein digestibility in pepsin. Currently, there is no standardized protocol to assess the digestibility of proteins using simulated gastric fluid. Potential variations in assay parameters include: pH, pepsin purity, pepsin to target protein ratio, target protein purity, and method of detection. The objective was to assess the digestibility of a common set of proteins in nine independent laboratories to determine the reproducibility of the assay when performed using a common protocol.
Article
While the ingestion of small amounts of an offending food can elicit adverse reactions in individuals with IgE-mediated food allergies, little information is known regarding these threshold doses for specific allergenic foods. While low-dose challenge trials have been conducted on an appreciable number of allergic individuals, a variety of different clinical protocols were used making the estimation of the threshold dose very difficult. A roundtable conference was convened to develop a consensus clinical protocol for low-dose challenge trials for the estimation of threshold doses for specific allergenic foods. In May 2002, 20 clinical allergists and other interested parties were invited to participate in a roundtable conference to develop consensus of the key elements of a clinical protocol for low-dose challenge trials. A consensus protocol was developed. Patients with convincing histories of food allergies and supporting diagnostic evidence including past challenge trials or high CAP-RAST scores can be enrolled in low-dose challenge trials. Care must be taken with younger patients to assure that they have not outgrown their food allergy. An approach was developed for the medication status of patients entering such trials. Challenge materials must be standardized, for example, partially defatted peanut flour composed of equal amounts of the three major varieties of peanuts (Florunner, Virginia, Spanish). Challenge materials must be appropriately blinded with sensory evaluation used to confirm the adequacy of blinding. A double-blind, placebo-controlled design should be used for low-dose challenge trials. Low-dose challenge trials would begin at doses of 10 microg of the allergenic food and would continue with doses of 100 microg and 1 mg followed by specific higher doses up to 100 mg depending upon the expert judgement of the physician; even higher doses might be applied to assure that the patient is indeed reactive to the particular food. A 30-min time interval would be used between doses, and reactive doses would be expressed as both discrete and cumulative doses. The goal of each challenge would be to develop objective symptoms; trials should not be discontinued on the basis of subjective symptoms only. Statistically, a minimum of 29 patients would be enrolled in low-dose challenge trials for each allergenic food because 0 reactors out of 29 patients at a particular dose allow the conclusion that there is 95% certainty that 90% of allergic individuals will not react to that dose. A consensus protocol was developed. Using this protocol, it will be possible to estimate threshold doses for allergenic foods, the lowest amount that elicits mild, objective symptoms in highly sensitive individuals.
Article
The influence of thermal processing and nonenymatic as well as polyphenoloxidase-catalyzed browning reaction on the allergenicity of the major cherry allergen Pru av 1 was investigated. After thermal treatment of the recombinant protein rPru av 1 in the absence or presence of carbohydrates, SDS-PAGE, enzyme allergosorbent tests, and inhibition assays revealed that thermal treatment of rPru av 1 alone did not show any influence on the IgE-binding activity of the protein at least for 30 min, thus correlating well with the refolding of the allergen in buffer solution as demonstrated by CD spectroscopic experiments. Incubation of the protein with starch and maltose also showed no effect on IgE-binding activity, whereas reaction with glucose and ribose and, even more pronounced, with the carbohydrate breakdown products glyceraldehyde and glyoxal induced a strong decrease of the IgE-binding capacity of rPru av 1. In the second part of the study, the effect of polyphenoloxidase-catalyzed oxidation of polyphenols on food allergen activity was investigated. Incubation of rPru av 1 with epicatechin in the presence of tyrosinase led to a drastic decrease in IgE-binding activity of the protein. Variations of the phenolic compound revealed caffeic acid and epicatechin as the most active inhibitors of the IgE-binding activity of rPru av 1, followed by catechin and gallic acid, and, finally, by quercetin and rutin, showing significantly lower activity. On the basis of these data, reactive intermediates formed during thermal carbohydrate degradation as well as during enzymatic polyphenol oxidation are suggested as the active chemical species responsible for modifying nucleophilic amino acid side chains of proteins, thus inducing an irreversible change in the tertiary structure of the protein and resulting in a loss of conformational epitopes of the allergen.
Article
Nonspecific lipid transfer proteins (nsLTPs) have been identified as major fruit allergens in patients from the Mediterranean area. Sensitization to nsLTPs is accompanied by severe reactions, possibly because of specific biophysical and biochemical properties of this allergen family. To assess the protein stability and allergenic potency of nsLTP from fruits in comparison with birch pollen-related allergens from the same allergenic source. Stability of natural and recombinant cherry allergens Pru av 3 (nsLTP), Pru av 1 (Bet v 1 homologue), and Pru av 4 (profilin) to pepsin digestion and to thermal processing and stability of allergens in skin prick test reagents was investigated by immunoblotting and/or circular dichroism spectroscopy. Moreover, allergenicity of processed and fresh fruits in regard to Pru av 1 and Pru av 3 was analyzed by histamine release assays. Lipid transfer proteins showed the highest resistance to digestion by pepsin (rPru av 3 > rPru av 1 > rPru av 4). Immunologically active Pru av 3 was detectable after 2 hours of digestion by pepsin, whereas IgE reactivity of Pru av 1 and Pru av 4 was abolished within less than 60 minutes. In contrast with Pru av 1, IgE reactivity to nsLTPs was not diminished in thermally processed fruits, and secondary structures of purified Pru av 3 were more resistant to heating. Moreover, nsLTPs were stable components in skin prick test reagents. Histamine release assays confirmed the strong allergenicity of nsLTPs, which was not affected by protease treatment or thermal processing of fruits. In contrast with birch pollen-related allergens, nsLTPs are highly stable to pepsin treatment and thermal processing and show higher allergenic potency. Therefore, nsLTPs have the potential to act as true food allergens, probably eliciting severe systemic reactions by reaching the intestinal mucosa in an intact and fully active form.
Article
The influence of thermal processing and nonenzymatic browning reactions on the IgE-binding activity of rAra h 2 was studied and compared to findings recently reported for the allergen's natural counterpart. ELISA experiments as well as inhibition assays revealed that thermal treatment of rAra h 2 in the presence of reactive carbohydrates and carbohydrate breakdown products induces a strong increase of the IgE-binding activity, thus collaborating with the data reported for the natural protein isolated from peanuts. To localize the Ara h 2 sequences responsible for the formation of highly IgE-affine glycation sites, model peptides have been synthesized mimicking sequences which contain possible targets for glycation as well as the immunodominant epitopes. Immunological evaluation of these peptides heated in the absence or presence of reducing sugars and carbonyls, respectively, revealed that neither the two lysine residues of Ara h 2 nor its N-terminus are involved in the formation of IgE-affine structures by Maillard reaction. Also, the cysteine-containing major epitope 3 (aa 27-36) was found to lose its IgE-binding capacity upon heating. By contrast, the overlapping major epitopes 6 and 7, which do not contain any lysine or arginine moieties, showed a distinct higher level of IgE binding when subjected to Maillard reaction, thus giving the first evidence that nonbasic amino acids might be accessible for nonenzymatic glycation reactions and that these posttranslational modifications might induce increased IgE binding of the glycated Ara h 2. Analogous experiments were performed with peanut agglutinin, considered in the literature as a minor allergen. ELISA experiments revealed that the majority of tested sera samples from peanut-sensitive patients showed a high level of IgE binding to the lectin even after heat treatment. In contradiction to published data, nonenzymatic browning reactions seem to deteriorate the IgE affinity of the lectin.
Article
The effect of fermentation by Lactobacilli and of proteolytic hydrolysis of whole milk on the IgE binding ability of beta-lactoglobulin was studied using an ELISA inhibition assay. Sera from nine adult milk allergic patients were tested. The individual sera showed a similar inhibition pattern in the changes during fermentation and proteolysis. The degradation of beta-lactoglobulin was studied with liquid chromatography. In general, fermentation with Lactobacilli gave little effect on IgE binding, even though chromatography data showed a gradual degradation of beta-lactoglobulin. Proteolysis with trypsin, however, gave extensive degradation of beta-lactoglobulin and strongly decreased IgE binding. In addition, we measured the inhibition pattern of beta-lactoglobulin in various selected commercially available fermented milk products. These showed an IgE binding capacity similar to that of nonfermented high pasteurized milk.
Article
The aim of this article is to review recent clinical and molecular findings related to the oral allergy syndrome in order to define its relevance in the field of food allergy, describe current diagnostic approaches and discuss attempts to use specific immunotherapy for treatment. New allergenic sources causing the oral allergy syndrome have been reported. Their allergenic molecules have been identified. In most of those studies oral allergy syndrome is reported as a clinical manifestation among more severe ones. Some of the molecules generally considered not to be at risk for severe reactions have been demonstrated to pose a threat for inducing generalized reactions. Some studies tried to assess the usefulness of immunotherapy with birch pollen extract by either subcutaneous or sublingual routes for the treatment of associated food allergies. In most of the cases, a well defined study design and a molecular approach at different study levels are lacking and thus the value of the obtained results is limited. To date, no final conclusion can be drawn on the basis of reported results. The knowledge about the highly prevalent phenomenon of oral allergy syndrome is still incomplete, in respect to both, epidemiology and foods inducing symptoms. It is very important to reach consensus on several aspects of this food-induced allergic disease. Further studies are required to highlight whether immunotherapy using co-recognized inhalant allergens is an effective way of curative treatment, or if co-treatment with purified pollen-related food allergens will be required to obtain a long-lasting effect.
Article
Peanuts are one of the most common and severe food allergens. Nevertheless, the occurrence of peanut allergy varies between countries and depends on both the exposure and the way peanuts are consumed. Processing is known to influence the allergenicity of peanut proteins. The aim of this study was to assess the effect of thermal processing on the IgE-binding capacity of whole peanut protein extracts and of the major peanut allergens Ara h 1 and Ara h 2. Whole proteins, Ara h 1, and Ara h 2 were extracted and purified from raw, roasted and boiled peanuts using selective precipitation and multiple chromatographic steps, and were then characterized by electrophoresis and mass spectrometry. The immunoreactivity of whole peanut extracts and purified proteins was analyzed by the enzyme allergosorbent test (EAST) and EAST inhibition using the sera of 37 peanut-allergic patients. The composition of the whole protein extracts was modified after heat processing, especially after boiling. The electrophoretic pattern showed protein bands of low molecular weight that were less marked in boiled than in raw and roasted peanuts. The same low-molecular-weight proteins were found in the cooking water of peanuts. Whole peanut protein extracts obtained after the different processes were all recognized by the IgE of the 37 patients. The IgE-binding capacity of the whole peanut protein extracts prepared from boiled peanuts was 2-fold lower than that of the extracts prepared from raw and roasted peanuts. No significant difference was observed between protein extracts from raw and roasted peanuts. It is noteworthy that the proteins present in the cooking water were also recognized by the IgE of peanut-allergic patients. IgE immunoreactivity of purified Ara h 1 and Ara h 2 prepared from roasted peanuts was higher than that of their counterparts prepared from raw and boiled peanuts. The IgE-binding capacity of purified Ara h 1 and Ara h 2 was altered by heat treatment and in particular was increased by roasting. However, no significant difference in IgE immunoreactivity was observed between whole protein extracts from raw and roasted peanuts. The decrease in allergenicity of boiled peanuts results mainly from a transfer of low-molecular-weight allergens into the water during cooking.
Article
The ubiquitous presence of allergens in the human food supply coupled with increased awareness of food allergies warrants undertaking appropriate preventive measures to protect sensitive consumers from unwanted exposure to offending food allergens. Attempts to reduce or eliminate food allergenicity through food processing have met with mixed results. The rationale for using food processing to reduce/eliminate allergenicity and limitations to using this approach are discussed.
Article
Non-specific lipid transfer proteins (LTPs) are involved in allergy to fresh and processed fruits. We have investigated the effect of thermal treatment and glycation on the physico-chemical and IgE-binding properties of the LTP from apple (Mal d 3). Mal d 3 was purified from apple peel and the effect of heating in the absence and presence of glucose investigated by CD spectroscopy, electrospray and MALDI-TOF mass spectrometry. IgE reactivity was determined by RAST and immunoblot inhibition, SPT and basophil histamine release test. The identity and IgE reactivity of purified Mal d 3 was confirmed. Mild heat treatment (90 degrees C, 20 min) in the absence or presence of glucose did not alter its IgE reactivity. More severe heat treatment (100 degrees C, 2 h) induced minor changes in protein structure, but a significant decrease in IgE-binding (30-fold) and biological activity (100- to 1000-fold). Addition of glucose resulted in up to four glucose residues attached to Mal d 3 and only a 2- and 10-fold decrease of IgE-binding and biological activity, respectively. Only severe heat treatment caused a significant decrease in the allergenicity of Mal d 3 but glycation had a protective effect. The presence of sugars in fruits may contribute to the thermostability of the allergenic activity of LTP in heat-processed foods.
Article
A rising prevalence of food hypersensitivity (FHS) and severe allergic reactions to food has been reported the last decade. To estimate the prevalence of FHS to the most common allergenic foods in an unselected population of children and adults. We investigated a cohort of 111 children <3 yr of age, 486 children 3 yr of age, 301 children older than 3 yr of age and 936 adults by questionnaire, skin prick test, histamine release test and specific immunoglobulin E followed by oral challenge to the most common allergenic foods. In total, 698 cases of possible FHS were recorded in 304 (16.6%) participants. The prevalence of FHS confirmed by oral challenge was 2.3% in the children 3 yr of age, 1% in children older than 3 yr of age and 3.2% in adults. The most common allergenic foods were hen's egg affecting 1.6% of the children 3 yr of age and peanut in 0.4% of the adults. Of the adults, 0.2% was allergic to codfish and 0.3% to shrimp, whereas no challenges with codfish and shrimp were positive in the children. The prevalence of clinical reactions to pollen-related foods in pollen-sensitized adults was estimated to 32%. This study demonstrates the prevalence of FHS confirmed by oral challenge to the most common allergenic foods in an unselected population of children and adults.
Article
Current documents on risk assessment of genetically modified foods recommend including IgE-binding tests on sera from allergic patients. However, there is no generally accepted recommendation on technical aspects of the testing procedures or on the interpretation of the results, despite that fact that both false positive and false-negative results may be caused by variability of the test procedures. The present article discusses the state-of-the-art of serological test procedures for qualitative and quantitative determination of specific IgE and interpretation of test results. It is emphasized that the use of sera from clinically well-characterized subjects is of high importance. In the case of a positive test result, the biological activity of the detected IgE antibodies, i. e., the potential to trigger mediator release from basophils or mast cells in an allergen-specific manner, should be taken into account. However, present data also indicate that validation of such mediator release tests is required, both in terms of experimental protocols and with respect to correlation of the test results with the clinical situation. Further studies are also required to prove the usefulness of targeted serum screening, i. e., the testing of gene products from organisms not known to be allergenic with sera from subjects allergic to related species.
Article
The major birch pollen allergen Bet v 1 cross-reacts with homologous food allergens, resulting in IgE-mediated oral allergy syndromes (OASs). To avoid this food, allergy allergologists and guidebooks advise patients to consume birch pollen-related foods after heating. We sought to evaluate whether cooked Bet v 1-related food allergens induce IgE- and T cell-mediated reactions in vitro and in vivo. Recombinant Bet v 1, Mal d 1 (apple), Api g 1 (celery), and Dau c 1 (carrot) were incubated at increasing temperatures. Protein structures were determined by means of circular dichroism. Mediator release was tested in basophil activation assays. PBMCs and Bet v 1-specific T-cell lines with known epitope specificity were stimulated with native and cooked food allergens. Patients with birch pollen allergy who experienced OAS and the exacerbation of atopic dermatitis (AD) on ingestion of fresh apple, celery, or carrot were retested in double-blind, placebo-controlled food challenges with the respective foods in cooked form. In vitro, cooked food allergens lost the capacity to bind IgE and to induce mediator release but had the same potency to activate Bet v 1-specific T cells as native proteins. In vivo, ingestion of cooked birch pollen-related foods did not induce OAS but caused atopic eczema to worsen. T-cell cross-reactivity between Bet v 1 and related food allergens occurs independently of IgE cross-reactivity in vitro and in vivo. In patients with AD, the resulting immune reaction can even manifest as late eczematous skin reactions. Therefore the view that cooked pollen-related foods can be consumed without allergologic consequences should be reconsidered. Symptom-free consumed pollen-related food allergens might cause T cell-mediated late-phase skin reactions in patients with pollen allergy and AD.
Alinorm 03 Codex Alimentarius Commission, Appendix III, Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants and Appendix IV, Annex on the assessment of possible allergenicity, 25th Session
CAC (Codex Alimentarius Commission), 2003. Alinorm 03/34: Joint FAO/ WHO Food Standard Programme, Codex Alimentarius Commission, Appendix III, Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants and Appendix IV, Annex on the assessment of possible allergenicity, 25th Session, Rome, Italy 30 June – 5 July, 2003. pp. 47–60.
Evaluation of the allergenicity of genetically modified foods Report of a joint FAO/WHO Expert Consultation
FAO (Food and Agriculture Organization)/WHO (World Health Organization ), 2001. Evaluation of the allergenicity of genetically modified foods. Report of a joint FAO/WHO Expert Consultation, Rome, Italy, 22–25 January 2001. c o p y