Conference Paper

Analysis of the glycemic index and insulin response index of various carbohydrate gels

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... The remaining group served as a nonsupplemented control group. These forms of CHO were selected because prior research in our lab demonstrated that ingesting 50 g of gel forms of these CHO's resulted in significantly different glucose and insulin profiles [34]. The H powder (ADM Arkady, Olathe, KS, USA) contained a 95% mixed CHO source containing fructose (31.5%), glucose (26%), wheat starch (25.3%), soluble fiber (12.5%) and maltose (4.7%). ...
... Ingestion of CHO and PRO following intense exercise has been reported to increase insulin levels, optimize glycogen resynthesis, enhance PRO synthesis, and lessen the immuno-suppressive effects of intense exercise [2,3,8,14,16,35] . Since different forms of CHO have varying glycemic effects [28,29,34], the purpose of this study was to determine whether the type of CHO ingested with PRO following resistance-exercise affects blood glucose availability, insulin levels, markers of anabolism and catabolism, and/or general immune markers during the first two hours of recovery. The major findings of this study were: 1.) ingesting CHO with PRO following resistance-training promoted significant increases in insulin levels; 2.) no significant differences were observed among the forms of CHO ingested on insulin levels suggesting that each of these types of CHO can be an effective source of CHO for post-exercise CHO/PRO supplements; 3.) that glucose levels were maintained to a greater degree in subjects ingesting honey as the source of CHO; and, 4.) postexercise nutritional supplementation did not significantly affect the time course of testosterone, cortisol, the ratio of testosterone to cortisol, muscle and liver enzyme efflux, or general markers of immunity during the first two hours of recovery following resistance-exercise. ...
Article
Full-text available
Ingestion of carbohydrate (CHO) and protein (PRO) following intense exercise has been reported to increase insulin levels, optimize glycogen resynthesis, enhance PRO synthesis, and lessen the immuno-suppressive effects of intense exercise. Since different forms of CHO have varying glycemic effects, the purpose of this study was to determine whether the type of CHO ingested with PRO following resistance-exercise affects blood glucose availability and insulin levels, markers of anabolism and catabolism, and/or general immune markers. 40 resistance-trained subjects performed a standardized resistance training workout and then ingested in a double blind and randomized manner 40 g of whey PRO with 120 g of sucrose (S), honey powder (H), or maltodextrin (M). A non-supplemented control group (C) was also evaluated. Blood samples were collected prior to and following exercise as well as 30, 60, 90, and 120 min after ingestion of the supplements. Data were analyzed by repeated measures ANOVA or ANCOVA using baseline values as a covariate if necessary. Glucose concentration 30 min following ingestion showed the H group (7.12 +/- 0.2 mmol/L) to be greater than S (5.53 +/- 0.6 mmol/L; p < 0.03); M (6.02 +/- 0.8 mmol/L; p < 0.05), and C (5.44 +/- 0.18 mmol/L; p < 0.0002) groups. No significant differences were observed among groups in glucose area under the curve (AUC) values, although the H group showed a trend versus control (p = 0.06). Insulin response for each treatment was significant by time (p < 0.0001), treatment (p < 0.0001) and AUC (p < 0.0001). 30-min peak post-feeding insulin for S (136.2 +/- 15.6 uIU/mL), H (150.1 +/- 25.39 uIU/mL), and M (154.8 +/- 18.9 uIU/mL) were greater than C (8.7 +/- 2.9 uIU/mL) as was AUC with no significant differences observed among types of CHO. No significant group x time effects were observed among groups in testosterone, cortisol, the ratio of testosterone to cortisol, muscle and liver enzymes, or general markers of immunity. CHO and PRO ingestion following exercise significantly influences glucose and insulin concentrations. Although some trends were observed suggesting that H maintained blood glucose levels to a better degree, no significant differences were observed among types of CHO ingested on insulin levels. These findings suggest that each of these forms of CHO can serve as effective sources of CHO to ingest with PRO in and attempt to promote post-exercise anabolic responses.
... Our most recent study evaluated the effects of ingesting honey on blood glucose, insulin, and cycling performance prior to and during endurance cycling. Our rationale was based on results of our initial study in this series (3,6), which found that the carbohydrate profile and glycemic index response of honey was nearly identical to that of a popular sports gel. Moreover, contrary to anecdotal myth, we found honey did not promote physical or psychological signs of hypoglycemia in fasted subjects (3,5), during resistance training (1), or following resistance training (1,2). ...
Article
We examined the effect of low and high glycemic index (GI) carbohydrate (CHO) feedings during a simulated 64-km cycling time trial (TT) in nine subjects ([mean +/- SEM], age = 30 +/- 1 years; weight = 77.0 +/- 2.6 kg). Each rider completed three randomized, double blind, counter-balanced, crossover rides, where riders ingested 15 g of low GI (honey; GI = 35) and high GI (dextrose; GI = 100) CHO every 16 km. Our results showed no differences between groups for the time to complete the entire TT (honey = 128 minutes, 42 seconds +/- 3.6 minutes; dextrose = 128 minutes, 18 seconds +/- 3.8 minutes; placebo = 131 minutes, 18 seconds +/- 3.9 minutes). However, an analysis of total time alone may not portray an accurate picture of TT performance under CHO-supplemented conditions. For example, when the CHO data were collapsed, the CHO condition (128 minutes, 30 seconds) proved faster than placebo condition (131 minutes, 18 seconds; p < 0.02). Furthermore, examining the percent differences and 95% confidence intervals (CI) shows the two CHO conditions to be generally faster, as the majority of the CI lies in the positive range: placebo vs. dextrose (2.36% [95% CI; -0.69, 4.64]) and honey (1.98% [95% CI; -0.30, 5.02]). Dextrose vs. honey was 0.39% (95% CI; -3.39, 4.15). Within treatment analysis also showed that subjects generated more watts (W) over the last 16 km vs. preceding segments for dextrose (p < 0.002) and honey (p < 0.0004) treatments. When the final 16-km W was expressed as a percentage of pretest maximal W, the dextrose treatment was greater than placebo (p < 0.05). A strong trend was noted for the honey condition (p < 0.06), despite no differences in heart rate (HR) or rate of perceived exertion (RPE). Our results show a trend for improvement in time and wattage over the last 16 km of a 64-km simulated TT regardless of glycemic index.
ResearchGate has not been able to resolve any references for this publication.