M-spotty byte error control codes are very effective for correcting/detecting errors in semiconductor memory systems that employ recent high-density RAM chips with wide I/O data (e.g., 8, 16, or 32 bits). In this case, the width of the I/O data is one byte. A spotty byte error is defined as random t-bit errors within a byte of length b bits, where 1 <= t <= b. Then, an error is called an
... [Show full abstract] in-spotty byte error if at least one spotty byte error is present in a byte. M-spotty byte error control codes are characterized by the m-spotty distance, which includes the Hamming distance as a special case for t = 1 or t = b. The MacWilliams identity provides the relationship between the weight distribution of a code and that of its dual code. The present paper presents the MacWilliams identity for the m-spotty weight enumerator of m-spotty byte error control codes. In addition. the present paper clarifies that the indicated identity includes the MacWilliams identity for the Hamming weight enumerator as a special case.