ArticlePDF Available

An Interpretation Construction Approach to Constructivist Design

Authors:

Abstract

Study is a key concept in making design more fruitful in education. We propose that what students are doing when they construct knowledge is studying. Specifically, we think that the term study captures better what should be going on during knowledge construction then does the term learn. Thus, in designing for knowledge construction we see ourselves as designing Study Support Environments (SSEs) instead of "instructional systems" or "learning environments." Creating SSEs allows us to create "a place for study in a world of instruction" (McClintock, 1971, " Toward a Place for Study in a World of Instruction"). The core of study is the hermeneutic activity of constructing interpretations. Hermeneutics as a field focused initially on interpretation of texts, but has broadened to interpretation in general (Palmer, 1969; Gadamer, 1976). From this perspective, the basis for cognition (and being in general) is interpretation based on background knowledge and beliefs (Heidegger, 1962; Winograd and Flores, 1986). Consistent with these philosophical arguments for the centrality of interpretation in cognition are the many research results from cognitive psychology showing that understanding involves making a large number of inferences (Black, 1984; Black, 1985). Thus, the key consideration in designing a SSE is fostering the construction of interpretations based on observations and background contextual information. Teachers College, Columbia University has been collaborating with the Dalton School (a K-12 independent school in New York City) on the Dalton Technology Plan. The general aim of this plan is to develop a digital knowledge-base and information infrastructure for all aspects of the K-12 educational experience, and to implement educational strategies designed to make use of this infrastructure, enhancing significantly an already excellent educational experience. In this paper, we describe a framework for SSE design and describe its application to three specific SSEs created as part of the Dalton Technology Plan. After describing the SSEs we report evaluations that demonstrate their effectiveness.
An Interpretation Construction Approach to Constructivist Design
John B. Black and Robert O. McClintock
Teachers College, Columbia University
Original article published: In B. Wilson (Ed.) Constructivist learning environments. Englewood Cliffs,
NJ: Educational Technology Publications, 1995.
Study is a key concept in making design more fruitful in education. We propose that what students are
doing when they construct knowledge is studying. Specifically, we think that the term study captures
better what should be going on during knowledge construction then does the term learn. Thus, in
designing for knowledge construction we see ourselves as designing Study Support Environments (SSEs)
instead of "instructional systems" or "learning environments." Creating SSEs allows us to create "a place
for study in a world of instruction" (McClintock, 1971, "Toward a Place for Study in a World of
Instruction"). The core of study is the hermeneutic activity of constructing interpretations. Hermeneutics
as a field focused initially on interpretation of texts, but has broadened to interpretation in general
(Palmer, 1969; Gadamer, 1976). From this perspective, the basis for cognition (and being in general) is
interpretation based on background knowledge and beliefs (Heidegger, 1962; Winograd and Flores,
1986). Consistent with these philosophical arguments for the centrality of interpretation in cognition are
the many research results from cognitive psychology showing that understanding involves making a
large number of inferences (Black, 1984; Black, 1985). Thus, the key consideration in designing a SSE is
fostering the construction of interpretations based on observations and background contextual
information.
Teachers College, Columbia University has been collaborating with the Dalton School (a K-12
independent school in New York City) on the Dalton Technology Plan. The general aim of this plan is to
develop a digital knowledge-base and information infrastructure for all aspects of the K-12 educational
experience, and to implement educational strategies designed to make use of this infrastructure,
enhancing significantly an already excellent educational experience. In this paper, we describe a
framework for SSE design and describe its application to three specific SSEs created as part of the
Dalton Technology Plan. After describing the SSEs we report evaluations that demonstrate their
effectiveness.
Interpretation Construction (ICON) Design Model
Observation: Students make observations of authentic artifacts anchored in authentic situations1.
Interpretation Construction: Students construct interpretations of observations and construct
arguments for the validity of their interpretations
2.
Contextualization: Students access background and contextual materials of various sorts to aid
interpretation and argumentation
3.
Cognitive Apprenticeship: Students serve as apprentices to teachers to master observation,
interpretation and contextualization
4.
Collaboration: Students collaborate in observation, interpretation and contextualization5.
Multiple Interpretations: Students gain cognitive flexibility by being exposed to multiple
6.
ILTweb: ILTdocs: Cognition: ICON Paper
file:///D|/PublicationsILT/ICON_pdf.html (1 of 6) [11/30/2000 6:53:16 PM]
interpretations
Multiple Manifestations: Students gain transferability by seeing multiple manifestations of the
same interpretations
7.
Some of these constructive design principles are adaptations from proposals by others. For example, the
Cognitive Apprenticeship principle comes from Collins, Brown and Newman (1988), the Multiple
Interpretations one from Spiro, Feltovich, Jacobson and Coulson (1992), and the Collaboration one from
Johnson, Johnson, Holubec and Roy (1984). The Observation principle is a combination of
recommendations by Brown, Collins and Duiguid (1989) and the Cognition and Technology Group at
Vanderbilt (1990), but our focus on authentic artifacts is unique. Further, our emphasis on Interpretation
Construction, Contextualization, and Multiple Manifestations is distinctive.
Three Example SSEs
To illustrate the application of this design framework, we describe three SSE programs created for the
Dalton Technology Plan. Specifically, we describe how these constructive design principles apply to the
Archaeotype program used in 6th grade history, to the Galileo program used in 11th and 12th grade
science (particularly for students not scientifically oriented), and the Playbill program used in 10th grade
English at the Dalton School.
In the Archaeotype program, students study ancient Greek and Roman history by using observations of
simulated archaeological digs to construct interpretations of the history of these sites, while drawing
upon a wide variety of background information. The Archaeotype program (implemented in Supercard
on Apple Macintosh computers), which is the earliest and most fully-developed of the Dalton
Technology Plan projects, presents the students with a graphic simulation of an archaeological site, then
the students study the history of the site through simulated digging up of artifacts, making various
measurements of the artifacts in a simulated laboratory (Observation), and relating the objects to what is
already known using a wide variety of reference materials (Contextualization). The students work
cooperatively in groups (Collaboration), while the teacher models how to deal with such a site then
fades her involvement while coaching and supporting the students in their own study efforts (Cognitive
Apprenticeship). The students develop ownership of their work by developing their own interpretations
of the history of the site and mustering various kinds of evidence for their conclusions (Interpretation
Construction). By arguing with the other students and studying related interpretations in the historical
literature, they get a sense of other perspectives (Multiple Interpretations). By going through the
process a number of times bringing each contextual background to bear on a number of different
artifacts, the students learn and understand the many ways that the general principles behind what they
are doing become manifest (Multiple Manifestations).
In the Galileo program, students study astronomy and science in general by using observations of
telescopic plates and a computer simulation of the sky to construct and test interpretations of
astronomical phenomena. Students examine and make measurements on photographic plates from
observatory telescopes and computer simulations of the sky (Observation), then relate these analyses to
reference materials (Contextualization) containing what is know about astronomical objects (i.e., stars,
planets, etc.). The teacher initially talks through how he would analyze and interpret examples of such
astronomical data (Cognitive Apprenticeship) then the students form groups to work on some data
(Collaboration), while the teacher coaches and advises them as they proceed. The students develop their
ILTweb: ILTdocs: Cognition: ICON Paper
file:///D|/PublicationsILT/ICON_pdf.html (2 of 6) [11/30/2000 6:53:16 PM]
own hypotheses and test them against the astronomical data (Interpretation Construction). Students
defend their hypotheses using their analyses and reference materials both within and between the groups,
and such argumentation together with background readings exposes them to various ways to interpret the
data (Multiple Interpretations). As they proceed through the course, the students see how basic
principles of astronomy, physics and chemistry can be used to make sense of different sets of
astronomical data (Multiple Manifestations).
In the Playbill program, students study Shakespearean drama and English literature in general by using
the text of the play and two or more videos of performances of the play. Playbill provides the students
with highly indexed access to the text of Macbeth, two videos of performances of Macbeth and written
commentary on Macbeth. Using this multimedia indexing system (implemented in Supercard on Apple
Macintosh computers), students can read a portion of Macbeth (e.g., a scene) and then immediately jump
to see one or two performances of what they have read (Observation). The students can also use this
indexing system to jump to commentaries on the same portion of the play (Contextualization). Using
portions of the play, the teacher models how to integrate reading the play, watching the performance and
reading the commentaries (Cognitive Apprenticeship) and the students work together in groups
(Collaboration) to develop their own interpretations of the play and how it should be performed
(Interpretation Construction). Comparing their interpretations of the play with the other students both
within the same group and then in different groups gives the students a sense of the many different
reactions that people can have to a play like Macbeth (Multiple Interpretations). The multimedia
indexing system also facilitates the students jumping around in the text and videos to see how the same
entities (e.g., characters, themes, etc.) can be manifested in many different ways in the text and
performances (Multiple Manifestations).
As these programs spanning history, science and literature show, while the basic material or data
observed is widely different in different fields of study, our design framework is applicable to all.
Another perspective on these programs is provided by the five facets of learning environments proposed
by Perkins (1992). Specifically, Perkins proposed that one can analyze any learning environment from
traditional classroom settings to futuristic technology-based settings according into how they implement
the following five facets: information banks (traditionally encyclopedias and dictionaries), symbol pads
(traditionally notebooks and blackboards), construction kits (traditionally TinkerToys and Legos),
phenomenaria (traditionally aquariums and terrariums) and task managers (traditionally the teachers
scheduling of classroom activities). The Archaeotype, Galileo and Playbill programs focus mainly on the
information bank and phenomenaria facets. In particular, the archaeological site simulation, the sky
simulation and telescopic plates and the multimedia play text and video indexing system are all
phenomenaria designed to give the students the basic observational information they need to do their
interpretation construction. However, to make these interpretations intelligently and to defend them well,
the students in all three of these programs also make extensive use of various kinds of information banks
varying from background texts, to on-line databases, to individual experts (including teachers), to
videodisks (e.g., the National Gallery videodisk) and to museums (e.g., the Metropolitan Museum of
Art). The symbol pads used are mostly standard word processing programs, although there has been
some use of Hypercard as a more advanced form of symbol pad. There are no particular construction kits
in the three programs we have covered here and the task managers are a combination of the traditional
teacher scheduling (for the overall class scheduling) and the time management within the student groups.
Another interesting distinction that Perkins (1992) makes is between BIG (Beyond the Information
Given) constructivism and WIG (Without the Information Given) constructivism. Our focus is on WIG
ILTweb: ILTdocs: Cognition: ICON Paper
file:///D|/PublicationsILT/ICON_pdf.html (3 of 6) [11/30/2000 6:53:16 PM]
constructivism since we give the students the raw material for their observations but they have to analyze
this raw material, come up with interpretations, present the interpretations and defend them.
Evaluation of Study Support Environments
Since we believe that interpretation is central to cognition and learning, we evaluated whether the
Archaeotype and Galileo SSE programs would increase students' interpretation skills. Specifically, we
tested whether the students who had been through these programs could make observations and
interpretations in a completely new area better than students who had not been through the programs. For
these studies, we chose an area unlikely to be familiar to precollege students -- namely, experimental
psychology.
In the Archaeotype evaluation study, 6th grade students who had participated in the Archaeotype
program and a comparable group of students that had not participated were each given a booklet
describing four psychology experiments examining how people remember lists of words. The students
had to examine the basic observations report on the results of the studies, find patterns in the results,
devise explanations and argue for those explanations. They were also given some background readings in
the psychology of memory. The reports the students wrote were then scored for how many they got of
the 60 possible points they could have gotten for recognizing the patterns in the data, representing the
data in insightful ways, explaining the patterns of results and arguing for the explanations. The students
who had been through the Archaeotype program were able to get 42% of the possible points after 4 hours
work, whereas the non-Archaeotype students were only able to get 32%. Most striking, almost all of this
superiority was due to the Archaeotype students getting 45% of the possible points on the explanation
and argumentation part of the scoring, while the non-Archaeotype students only got 26% on this portion
(these two differences are highly significant statistically). Clearly, in addition to learning about
archeology and ancient history, the Archaeotype students were acquiring a general ability to interpret and
argue in new areas of study.
Similarly, the 11th and 12th grade students who had been through the Galileo program were compared to
a comparable group on how well they could interpret and link three related cognitive psychology studies
and their underlying principles. The students were given booklets containing descriptions of basic
observations made in these three psychology studies together with various informational resources
including relevant and irrelevant background material. The students were given three hours to perform
the task and write a final report. As in the previous study, these reports were scored for the possible
points that could be covered recognizing patterns in the data, representing the data insightfully,
interpreting the data, and arguing for the interpretations. Here again the students who had been through
the Galileo program were much better than students who had not -- with the Galileo students getting
44% of the possible points whereas the non-Galileo students only got 32% (this difference is highly
significant statistically). In fact, the Galileo students showed this superiority in all the areas we scored for
-- namely, pattern recognition, data representation, interpretation and argumentation. Clearly, the Galileo
program like the Archaeotype one teaches students general interpretation skills in addition to specific
content.
While we designed the evaluation studies as appropriate for what we were trying to accomplish with the
SSEs, it is instructive to examine them in terms of the constructivist learning evaluation criteria proposed
by Jonassen (1992). Our evaluations are goal-free since we did not look for particular interpretations by
students but merely how well formulated and argued their interpretations were. Our evaluations also met
ILTweb: ILTdocs: Cognition: ICON Paper
file:///D|/PublicationsILT/ICON_pdf.html (4 of 6) [11/30/2000 6:53:16 PM]
Jonassen's criteria of using authentic tasks (the students interpreted actual psychology experiments and
results), involving knowledge construction (the students constructed the interpretations and
argumentation), being context-driven (students were evaluated in the context of making sense of
psychological observations), involving multiple perspectives (different interpretations were proposed and
argued by different students) and involving socially-constructed meaning (the students worked in groups
to make sense out of the observations).However, Jonassen also proposed three criteria that our
evaluations did not meet -- namely, that the evaluations should be process oriented and multimodal (for
simplicity we merely evaluated the end-product report of the students' deliberations), and that the goals
of the evaluation should be set by the learners (we were looking for whether these programs fostered
interpretation construction and argumentation skills). Our evaluation studies could probably be improved
by including process data and multimodal products (although that would have made it much harder to
conduct the studies), but we are unsure how letting the learners set the goals of the evaluation would
apply to our situation.
Conclusions
We have proposed an approach to constructivist design (ICON) that makes interpretation construction of
authentic artifacts in the context of rich background materials the central focus. We have shown how this
approach can be applied to Study Support Environment programs in widely different fields of study --
namely, history, science and literature. We have also shown that in addition to learning specific content,
students using these programs acquire generalizable interpretation and argumentation skills. Thus, our
constructivist design framework is useful both for guiding design and for producing valuable learning
results.
References
Black, J.B. (1984) Understanding and remembering stories. In J.R. Anderson and S.M. Kosslyn (Eds.)
Tutorials in learning and memory. New York: W.H. Freeman.
Black, J.B. (1985) An exposition on understanding expository text. In B.K. Britton and J.B. Black (Eds.)
Understanding expository text. Hillsdale, NJ: LEA.
Brown, J.S., Collins, A. and Duguid, P. (1989). Situated cognition and the culture of learning.
Educational Researcher, 18, 32-42.
Cognition and Technology Group at Vanderbilt (1990). Anchored instruction and its relation to situated
cognition. Educational Researcher, 20, 2-10.
Collins, A., Brown, J.S., and Newman, S.E. (1988). Cognitive apprenticeship: teaching the craft of
reading, writing and mathematics. In L.B. Resnick (Ed.) Cognition and instruction: Issues and agendas.
Hillsdale, NJ: LEA.
Gadamer, H. (1976) Philosophical hermeneutics (translated and edited by D. Linge). Berkeley, CA:
University of California Press.
Heidegger, M. (1962) Being and time (translated by J. Macquarrie and E. Robinson). New York: Harper
and Row.
ILTweb: ILTdocs: Cognition: ICON Paper
file:///D|/PublicationsILT/ICON_pdf.html (5 of 6) [11/30/2000 6:53:16 PM]
Johnson, D., Johnson, R., Holubec, E. and Roy, P. (1984). Circles of learning. Alexandria, VA: ASCD.
Jonassen, D.H. (1992) Evaluating constructivist learning. In T.M. Duffy and D.H. Jonassen (Eds.)
Constructivism and the technology of instruction: A conversation. Hillsdale, NJ: LEA.
McClintock, R. (1971) Toward a place for study in a world of instruction. Teachers College Record, 72,
405-416.
Palmer, R.E. (1969) Hermeneutics. Evanston, IL Northwestern University Press.
Perkins, D.N. (1992) Technology meets constructivism: Do they make a marriage? In T.M. Duffy and
D.H. Jonassen (Eds.) Constructivism and the technology of instruction: A conversation. Hillsdale, NJ:
LEA.
Spiro, R.J., Feltovich, P.J., Jacobson, M.J. and Coulson, R.L. (1992) Cognitive flexibility, constructivism
and hypertext: Random access instruction for advanced knowledge acquisition in ill-structured domains.
In T.M. Duffy and D.H. Jonassen (Eds.) Constructivism and the technology of instruction: A
conversation. Hillsdale, NJ: LEA.
Winograd, T. and Flores, F. (1986) Understanding computers and cognition: A new foundation for
design. Norwood, NJ: Ablex.
ILTweb: ILTdocs: Cognition: ICON Paper
file:///D|/PublicationsILT/ICON_pdf.html (6 of 6) [11/30/2000 6:53:16 PM]
... This study focuses on the implementation of interpretation-construction design model (ICON), the achievement and enhancement of students' mathematical modeling ability. ICON consists of seven principles, namely: authentic observation, interpretation construction, contextualization, cognitive apprenticeship, collaboration, multiple interpretation, and multiple manifestation [11,12]. ICON emphasizes the importance of students' learning activities in constructing interpretations from authentic observations, discussing about interpretations, reflecting, analyzing, and summarizing the interpretations. ...
... The different between ICON and conventional in term of mathematical modeling abilities as indicated in tabel 2 caused by several factors, such as characteristics of the learning model. ICON has a constructivism paradigm [11,12] and constructivist perspective contended that students understand mathematics better if they are more actively involved in their own learning. In addition, the other differing factors include teaching strategies, students' interaction with teachers, students' interaction with other students, and students' interaction with the teaching material. ...
... Therefore, most of student still find difficulties in interpret solution and mathematical model of a situation. Mathematical learning using the ICON requires learning activities related to the real world, through authentic situation observation and contextualized activities [11]. Hands-on activities is structured in such a way as to involve situations and contexts of real world problems that are familiar to students. ...
Article
Full-text available
Students’ difficulties in mathematical modeling are in understanding problems, making assumptions in simplifying problem situations into a mathematical problem, recalling concepts in mathematics for solving problems, and checking solution of the problem situation. The study aims at investigating whether interpretation-construction design model (ICON) enhances students’ mathematical modeling abilities. This study is experimental in nature and it was conducted in a public senior high school in Bogor, West Java, Indonesia. The sample of this research consists of the 10th grade students. The teaching materials given were quadratic equations and functions. The instrument used in this research covers mathematical modeling test, and the data were analysed by using Mann-Whitney test and t-test. The results show that students’ mathematical modeling abilities who received learning treatment using ICON is better than those who received conventional learning. The achievement and enhancement of students’ mathematical modeling abilities who received ICON are in medium level. However, the result of the research indicates that the students found difficulties in interpreting solution and mathematical model of situation.
... There is a relevance of interpretation in cognition and learning. The Interpretation Creation Design (ICON) and Study Supported Environments (SSEs) are built on constructivist design ideas focused primarily on the interpretative construction of real objects in the context of rich background resources, covering several disciplines of study [16]. It was found that students were able to develop argumentation and reasoning abilities in addition to learning specific content. ...
... Students who worked in groups had to dig out objects through simulation, examine and measure them in virtual laboratories, and eventually arrive at an understanding of the concepts underpinning what they were doing through interpretation and debate. A follow-up evaluation research discovered that students who participated in the study made considerable increases in their interpretive and argumentative abilities when compared to a control group [16]. ...
Article
Technology and constructivism are closely intertwined with the application of one assisting the other. Constructivism is a school of thought that holds that learning occurs in contexts, whereas technology refers to the designs and situations that engage learners. Recent initiatives to incorporate technology in the classroom have used a constructivist approach. This article aims to understand the interaction between constructivism and technology by reviewing various studies conducted in this regard. Further, it tries to determine whether technology is a crucial component of constructivist pedagogy and how it fits in with our contemporary classrooms. Last, the article presents the implications of technology and constructivism for teachers and teacher educators.
... Interpretation-construction design model (ICON-model) was developed by [8]. ICON emphasizes the importance of students' building interpretations from authentic observation, discussion of interpretations, reflection, analysis, and conclusion of interpretations [9]. ...
... ICON emphasizes the importance of students' building interpretations from authentic observation, discussion of interpretations, reflection, analysis, and conclusion of interpretations [9]. The principles of ICON consist of observations in authentic activities, interpretation of construction, contextualization, cognitive apprenticeship, collaboration, multiple interpretations, and multiple manifestations [8,10]. ...
Article
Full-text available
Students’ beliefs and attitudes towards mathematics influences learning process. In other words students who have a positive disposition towards mathematics tend to study and learn mathematics seriously and confidently. Students have the abilities to assess and perceive, and assess themselves in solving mathematical problem, comparing their learning process with other students, communicating with teachers or other students, academic achievement. Self-perception related to academic aspects is called academic self-concept (ASC). This study aims at investigating aspects of students’ ASC in the constructivism learning model. This study is experimental in nature and was conducted in a public senior high school in Bogor, West Java, Indonesia. The sample of this research consists of 10th-grade students. The instrument used in this research covers ASC questionnaire, and the data were analyzed by using one-way ANOVA. The results show that learning models encourage students to construct mathematics knowledge independently through activities in real-world observation, contextualization, and collaborative influencing the self-assessment in grade and effort dimension, peer-evaluation of academic ability, self-evaluation with the external standard.
... Mode Neutral Convergence or promotion learning where online and classroom learners can coexist within one learning environment thus encouraging interconnectivity and the harnessing of collective intelligence. By using newer generation web 2.0 services (Black, & McClintock, 1995;Smith, Reed, & Jones, 2008;Tam, & Eastwood, 2012). For that the web based learning, accomplishes the best educational results and encourages students to learn. ...
Article
Full-text available
We are going to present in this paper future and prospects of E-learning as it's becoming increasingly prominent in education system of India, with increasing provisions by teaching institutions for e-learning. Failures of e-learning operations have overshadowed the prospects of widened and flexible access to education. As universities are gradually bringing e-learning into the mainstream of their educational programmes, and it has now treated as an integral part of a classroom-based course. We are going to discuss in detail about the abilities of E-learning standards with E-learning frame work. And in the last we are giving main emphasis on E-learning application and objectives which is very helpful in providing all benefits of education to students, research scholars, teachers and students living in remote areas.
Chapter
This chapter challenges the readers’ thinking forward in some essential areas of educational change driven by the international imperative for Information and Communication technologies (ICT). It grapples realistically but also hopefully and creatively with many of the seemingly intractable difficulties that people involved in African change encounter, especially during this ICT age: Government policy makers and their usually politically handpicked higher-education administrators who see education reform as a national security priority, but, nevertheless, cede the responsibility of not only financing, but also implementing reform to international donors, who seldom serve Africa’s interests, but push their own agendas disguised as global development “aid.” These international “development” agencies inadvertently subvert equity oriented change efforts and substitute them with those of a comprador team of global and local state elite gainers, who push the responsibility of development through the state’s means of coercion down to the local, scarcely funded entities, such as the African higher education institutions (HEI). This wanton, undemocratic devolution or “structural adjustment,” results in the African HEIs, and governments’ extensive and deep-seated failings that make any hope of improvement appear to be far beyond reach. This chapter illustrates how and why that happens and makes suggestions for solutions.
Thesis
Full-text available
The concept of using one's hand to learn music dates back over 1000 years to The Guidonian hand, which used the palm and fingers to indicate note names. The Guidonian method was effective in teaching musical structures and is one of the primary concepts behind KAiKU Music Glove. KAiKU Music Glove is a wearable device designed for music education. This thesis explores how iPad and KAiKU Music Glove technology affect academic performance in elementary school children by testing both technologies in the music classroom. The study gathers attitudinal responses, a test of knowledge and includes qualitative observations of students using the technology. The study was conducted in an elementary classroom with two classes. Motivation levels to use the two technologies scored high in both classes, showing non-significance when compared with one another. The hypothesis that KAiKU Music Glove users will respond higher in motivation than iPad users is not supported. Ease of use response levels scored high in both classes showing non-significance when compared with one another. The hypothesis that KAiKU Music Glove users will respond with higher variance than iPad users in ease of use is not supported. The students viewed the technologies as musical instruments similarly with non-significance reported, however a close to significant result is registered, suggesting a distinction in how the technologies appeared to the students periodically during the study. Qualitative findings suggest technical problems experienced by KAiKU Music Glove users influenced how the technology appeared to the students. Overall, iPad scored comparatively higher in total attitudinal response and registered a 2% margin of improvement in the test of knowledge compared to KAiKU Music Glove. This confirms iPad to affect academic performance in elementary school children with greater magnitude than KAiKU Music Glove. KAiKU Music Glove's promising performance indicate it is achieving the balance in learning and innovation many educational technologies strive for.
Article
Full-text available
The study sought to find out the role of computer technology in music education in Colleges of Education in the Volta Region of Ghana. It aimed at surveying the use of computer technology for teaching music and exploring the instructional prospects for computer technology usage in music in Colleges of Education. The study employed Rogers’ Diffusion Innovation theory and descriptive survey research method. Data was collected from the respondents using questionnaire, interview, and observation. The study revealed that even though about 90% of the music tutors have good academic qualification and over five years teaching experience, lack of competence in handling computer technology in teaching music among some music tutors and incoherent ICT initiatives hindered proper application of computer technology in the field of music education. It is however envisaged that increasing access and coherent computer technology initiatives will be paramount for the teaching of music in the Colleges of Education.
Thesis
Full-text available
The term "constructivist" has become increasingly prominent in the field of education. The purpose of this investigation was to examine some fundamental concepts associated with constructivism in order to determine how constructivist pedagogy might inform the theory and practice of elementary school music education, with particular focus on the ideas of John Dewey. To that end, this investigation first explored a brief history of the concepts associated with constructivism. Thereafter, it considered distinct branches of constructivism as well as current applications in contemporary education, including descriptions of four studies that linked music in some manner to constructivism. This study then examined John Dewey's concept of"art as experience" as a theoretical perspective by which music educators might employ a constructivist approach in the elementary music classroom. The author suggested how Dewey's perspective might inform specific learning experiences in elementary music education, and discussed current approaches to music education in a constructivist framework in terms of some specific benefits and challenges. This analysis concluded that Dewey's concept of experience could both nurture and criticize contemporary constructivist thought as it may relate to music education. Specifically, the author suggested that certain premises of music education as aesthetic education, particularly to the extent that they are centered in a philosophy of music per se and tend to negate the interconnectedness of environment and organism, may be fundamentally incompatible with a constructivist pedagogy informed by Dewey's ideas.
Conference Paper
Full-text available
Abstract Introduction of Gardner’s theory of multiple intelligence brought paradigm shift in the education system. Gardner (1983) suggests the existence of nine relatively autonomous but interdependent intelligence. The eighth intelligence is naturalistic intelligence which is defined as having sensitivity to nature and all its details and intricacies. Gardener had identified the naturalistic intelligence as the ability to recognize and make distinctions about living things and artifacts. The people with naturalistic intelligence have an affinity for everything living and non-living. Naturalistic learners learn best by studying natural phenomenon in natural settings, learning about how things work. School gardens would be a wonderful way of nurturing naturalistic intelligence among students. It would be best to adopt integrated curriculum and constructivist based approach to nurture naturalistic intelligence. This paper highlights how school garden would be source for integrating various subjects, values, skills through constructivist approach. For this purpose the author has presented a model to nurture naturalist intelligence through school gardening by following integrated curriculum and constructivist based approach. Key words: Naturalistic intelligence, integrated curriculum, constructivist based curriculum
Article
In a recent Educational Researcher article, Brown, Collins, and Duguid (January-February 1989) discussed the concept of situated cognition. We explore relationships between this concept and our Technology Center’s work on anchored instruction. In the latter, instruction is anchored (situated) in videodisc-based, problem-solving environments that teachers and students can explore. We argue that situated cognition provides a broad, useful framework that emphasizes the importance of focusing on everyday cognition, authentic tasks, and the value of in-context apprenticeship training. Anchored instruction provides a way to recreate some of the advantages of apprenticeship training in formal educational settings involving groups of students. In addition, some of the principles of anchored instruction may make it possible to create learning experiences that are more effective than many that occur in traditional apprenticeship training. Together, the situated cognition and anchored instruction perspectives suggest ways to think differently about instruction, and they suggest important issues for future research.
Chapter
Collins, A., Brown, J.S., & Newman, S.E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick (Ed.) Knowing, learning, and instruction: E...