Article

Application of Renyi entropy for ultrasonic molecular imaging

Department of Medicine, Cardiovascular Division, Washington University School of Medicine, Campus Box 8086, 660 South Euclide Avenue, St. Louis, Missouri 63110-1093, USA.
The Journal of the Acoustical Society of America (Impact Factor: 1.5). 06/2009; 125(5):3141-5. DOI: 10.1121/1.3097489
Source: PubMed

ABSTRACT

Previous work has demonstrated that a signal receiver based on a limiting form of the Shannon entropy is, in certain settings, more sensitive to subtle changes in scattering architecture than conventional energy-based signal receivers [M. S. Hughes et al., J. Acoust. Soc. Am. 121, 3542-3557 (2007)]. In this paper new results are presented demonstrating further improvements in sensitivity using a signal receiver based on the Renyi entropy. (C) 2009 Acoustical Society of America. [DOI: 10.1121/1.3097489]

Download full-text

Full-text

Available from: Jeffrey M Arbeit, Apr 08, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previously a new method for ultrasound signal characterization using entropy H(f) was reported, and it was demonstrated that in certain settings, further improvements in signal characterization could be obtained by generalizing to Renyi entropy-based signal characterization I(f)(r) with values of r near 2 (specifically r=1.99) [M. S. Hughes et al., J. Acoust. Soc. Am. 125, 3141-3145 (2009)]. It was speculated that further improvements in sensitivity might be realized at the limit r-->2. At that time, such investigation was not feasible due to excessive computational time required to calculate I(f)(r) near this limit. In this paper, an asymptotic expression for the limiting behavior of I(f)(r) as r-->2 is derived and used to present results analogous to those obtained with I(f)(1.99). Moreover, the limiting form I(f,infinity) is computable directly from the experimentally measured waveform f(t) by an algorithm that is suitable for real-time calculation and implementation.
    Full-text · Article · Nov 2009 · The Journal of the Acoustical Society of America
  • [Show abstract] [Hide abstract]
    ABSTRACT: Perfluorocarbons (PFCs) are fluorinated compounds that have been used for many years in clinics mainly as gas/oxygen carriers and for liquid ventilation. Besides this main application, PFCs have also been tested as contrast agents for ultrasonography and magnetic resonance imaging since the end of the 1970s. However, most of the PFCs applied as contrast agents for imaging were gaseous. This class of PFCs has been recently substituted by liquid PFCs as ultrasound contrast agents. Additionally, liquid PFCs are being tested as contrast agents for (19)F magnetic resonance imaging (MRI), to yield dual contrast agents for both ultrasonography and (19)F MRI. This review focuses on the development and applications of the different contrast agents containing liquid perfluorocarbons for ultrasonography and/or MRI: large and small size emulsions (i.e. nanoemulsions) and nanocapsules.
    No preview · Article · Nov 2009 · Pharmaceutical Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular imaging agents are extending the potential of noninvasive medical diagnosis from basic gross anatomical descriptions to complicated phenotypic characterizations based upon the recognition of unique cell-surface biochemical signatures. Although originally the purview of nuclear medicine, "molecular imaging" is now studied in conjunction with all clinically relevant imaging modalities. Of the myriad of particles that have emerged as prospective candidates for clinical translation, perfluorocarbon nanoparticles offer great potential for combining targeted imaging with drug delivery, much like the "magic bullet" envisioned by Paul Ehrlich 100 years ago. Perfluorocarbon nanoparticles, once studied in Phase III clinical trials as blood substitutes, have found new life for molecular imaging and drug delivery. The particles have been adapted for use with all clinically relevant modalities and for targeted drug delivery. In particular, their intravascular constraint due to particle size provides a distinct advantage for angiogenesis imaging and antiangiogenesis therapy. As perfluorocarbon nanoparticles have recently entered Phase I clinical study, this review provides a timely focus on the development of this platform technology and its application for angiogenesis-related pathologies.
    Full-text · Article · Jun 2010 · Angiogenesis
Show more