Tai YH, Tsai RY, Lin SL, Yeh CC, Wang JJ, Tao PL et al. Amitriptyline suppresses neuroinflammation-dependent interleukin-10-p38 mitogen-activated protein kinase-heme oxygenase-1 signaling pathway in chronic morphine-infused rats. Anesthesiology 110: 1379-1389

Nociception Signal Transduction Laboratory, Department of Anesthesiology, Tri-Service General Hospital and the National Defense Medical Center, Taipei, Taiwan.
Anesthesiology (Impact Factor: 5.88). 06/2009; 110(6):1379-89. DOI: 10.1097/ALN.0b013e31819fccd5
Source: PubMed


This study explores the underlying mechanism of the antiinflammatory effect of amitriptyline in chronic morphine-infused rats.
Male Wistar rats were implanted with two intrathecal catheters. One catheter was for the continuous infusion of saline, amitriptyline (15 microg/h), morphine (15 microg/h), p38 mitogen-activated protein kinase inhibitor SB203580 (0.5 microg/h), morphine plus amitriptyline, or morphine plus amitriptyline plus SB203580 for 5 days. The other catheter was used for daily intrathecal injection of anti-interleukin-10 (IL-10) antibody or heme oxygenase-1 inhibitor zinc protoporphyrin for 5 days.
Amitriptyline/morphine coinfusion upregulated IL-10 protein expression in microglia; this was not observed in morphine-infused rats. Anti-IL-10 antibody effectively neutralized the amitriptyline-induced IL-10 expression in chronic morphine-infused rats. In addition, coinfusion of amitriptyline restored the antinociceptive effect of morphine (a 4.8-fold right-shift of the morphine dose-response curve compared to a 77.8-fold right-shift in its absence), and the injection of anti-IL-10 antibody or coinfusion of SB203580 partially reversed the effect of amitriptyline on the antinociceptive effect of morphine in morphine-infused rats (a 17.9-fold and 15.1-fold right-shift in morphine dose-response curves). Anti-IL-10 antibody and SB203580 significantly inhibited the amitriptyline-induced p38 mitogen-activated protein kinase and heme oxygenase-1 expression and the associated antiinflammatory effect of amitriptyline. Daily injection of zinc protoporphyrin also demonstrated that it reverses the effect of amitriptyline in morphine's antinociception and antiinflammation in chronic morphine-infused rats.
These results suggest that the antiinflammatory effect of amitriptyline on morphine tolerance, probably acting by increasing IL-10 expression, is mediated by p38 mitogen-activated protein kinase heme oxygenase-1 signal transduction cascade.

1 Follower
6 Reads
  • Source
    • "Additional studies have demonstrated that the powerful anti-inflammatory effect of IL-10 is associated with heme-oxygenase (HO)-1. In murine macrophages, IL-10 induces the expression of HO-1, a stress-induced protein with a potent anti-inflammatory effect, which enhances the anti-inflammatory capacity of IL-10, and anti-10 antibody reversed the amitriptyline-induced upregulation of HO-1 expression in morphine-tolerant rats (Drechsler et al. 2006; Tai et al. 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we investigated the anti-inflammatory mechanisms by which gabapentin enhances morphine anti-nociceptive effect in neuropathic pain in rats and the interaction between the anti-nociceptive effects of gabapentin on morphine and the interleukin (IL)-10-heme-oxygenase (HO)-1 signal pathway in a rat model of neuropathic pain. The neuropathic pain model was induced via a left L5/6 spinal nerve ligation (SNL) in rats. The anti-nociceptive effect of gabapentin and IL-10 on morphine was examined over a 7-day period, and the effects of the anti-IL-10 and HO-1 inhibitor zinc protoporphyrin (ZnPP) on gabapentin/morphine co-injection were assessed. Drug administration was given over 7 days, and on day 8, both anti-inflammatory cytokine IL-10, a stress-induced protein HO-1 and pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were measured. Gabapentin attenuated morphine tolerance over 7 days of co-administration, and reduced the expression of pro-inflammatory cytokines but increased IL-10 and HO-1 expression. The effect of gabapentin on morphine was partially blocked using the anti-IL-10 antibody or the HO-1 inhibitor zinc protoporphyrin. Our findings indicated that the anti-nociceptive effects of gabapentin on morphine might be caused by activation of the IL-10-HO-1 signalling pathway, which resulted in the inhibition of the expression of pro-inflammatory cytokines in neuropathic pain in the rat spinal cord.
    Preview · Article · Feb 2014 · Journal of Molecular Neuroscience
  • Source
    • "Interestingly, levels of other anti-inflammatory cytokines, such as IL-1ra and IL-13, were increased in the MBP1-ha-syn tg mice when compared to non-tg controls, suggesting that antiinflammatory compensatory mechanisms might be at play. Antidepressants, acting on serotonin, norepinephrine and dopamine receptors, are anti-inflammatory against proinflammatory cytokine processes, specifically by regulating IFN-c (Yuan et al., 2012), IL-10 (Song et al., 2009; Tai et al., 2009), TNF-a (Sadeghi et al., 2011; Song et al., 2009) and IL-6 (Liu et al., 2011). Fluoxetine protects neurons against microglia-mediated neurotoxicity in vitro, by inhibiting microglial NF-jB activation and the consequent decrease in the production of proinflammatory factors (Zhang et al., 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple system atrophy (MSA) is a neurodegenerative disease characterized by the pathological accumulation of alpha-synuclein (α-syn) within oligodendroglial cells. This accumulation is accompanied by neuroinflammation with astrogliosis and microgliosis, that leads to neuronal death and subsequent parkinsonism and dysautonomia. Antidepressants have been explored as neuroprotective agents as they normalize neurotrophic factor levels, increase neurogenesis and reduce neurodegeneration, but their anti-inflammatory properties have not been fully characterized. We analyzed the anti-inflammatory profiles of three different antidepressants (fluoxetine, olanzapine and amitriptyline) in the MBP1-hα-syn transgenic (tg) mouse model of MSA. We observed that antidepressant treatment decreased the number of α-syn-positive cells in the basal ganglia of 11-month-old tg animals. This reduction was accompanied with a similar decrease in the colocalization of α-syn with astrocyte markers in this brain structure. Consistent with these results, antidepressants reduced astrogliosis in the hippocampus and basal ganglia of the MBP1-hα-syn tg mice, and modulated the expression levels of key cytokines that were dysregulated in the tg mouse model, such as IL-1β. In vitro experiments in the astroglial cell line C6 confirmed that antidepressants inhibited NF-κB translocation to the nucleus and reduced IL-1β protein levels. We conclude that the anti-inflammatory properties of antidepressants in the MBP1-hα-syn tg mouse model of MSA might be related to their ability to inhibit α-syn propagation from oligodendrocytes to astroglia and to regulate transcription factors involved in cytokine expression. Our results suggest that antidepressants might be of interest as anti-inflammatory and α-syn-reducing agents for MSA and other α-synucleinopathies. GLIA 2013.
    Full-text · Article · Feb 2014 · Glia
  • Source
    • "We have also reported that increased HO-1 expression in glial cells may contribute to anti-neuroinflammatory responses and exert neuroprotection [15], [32]. Importantly, the expression of anti-oxidative enzyme HO-1 exerts neuroprotective effect by protecting dopaminergic neurons [66]–[69] and might characterize the antidepressant mechanisms [32], [49], [70]–[72]. Previous study also reveal that fluoxetine, an antidepressant of the SSRIs class, attenuates brain injury via enhancement of HO-1 expression [73]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Desipramine is known principally as a tricyclic antidepressant drug used to promote recovery of depressed patients. It has also been used in a number of other psychiatric and medical conditions. The present study is the first to investigate the neuroprotective effect of desipramine. Mes23.5 dopaminergic cells were used to examine neuroprotective effect of desipramine. Western blot, reverse transcription-PCR, MTT assay, siRNA transfection and electrophoretic mobility shift assay (EMSA) were carried out to assess the effects of desipramine. Desipramine induces endogenous anti-oxidative enzyme, heme oxygenase-1 (HO-1) protein and mRNA expression in concentration- and time-dependent manners. A different type of antidepressant SSRI (selective serotonin reuptake inhibitor), fluoxetine also shows similar effects of desipramine on HO-1 expression. Moreover, desipramine induces HO-1 expression through activation of ERK and JNK signaling pathways. Desipramine also increases NF-E2-related factor-2 (Nrf2) accumulation in the nucleus and enhances Nrf2-DNA binding activity. Moreover, desipramine-mediated increase of HO-1 expression is reduced by transfection with siRNA against Nrf2. On the other hand, pretreatment of desipramine protects neuronal cells against rotenone- and 6-hydroxydopamine (6-OHDA)-induced neuronal death. Furthermore, inhibition of HO-1 activity by a HO-1 pharmacological inhibitor, ZnPP IX, attenuates the neuroprotective effect of desipramine. Otherwise, activation of HO-1 activity by HO-1 activator and inducer protect 6-OHDA-induced neuronal death. These findings suggest that desipramine-increased HO-1 expression is mediated by Nrf2 activation through the ERK and JNK signaling pathways. Our results also suggest that desipramine provides a novel effect of neuroprotection, and neurodegenerative process might play an important role in depression disorder.
    Full-text · Article · Nov 2012 · PLoS ONE
Show more