Comparison of distinct protein isoforms of the receptor for advanced glycation end-products expressed in murine tissues and cell lines

ArticleinCell and Tissue Research 337(1):79-89 · June 2009with13 Reads
Impact Factor: 3.57 · DOI: 10.1007/s00441-009-0791-0 · Source: PubMed


    The receptor for advanced glycation end-products (RAGE) is thought to be expressed ubiquitously as various protein isoforms. Our objective was to use Northern blotting, immunoblotting, and sensitivity to N-glycanase digestion to survey RAGE isoforms expressed in cell lines and mouse tissues in order to obtain a more comprehensive view of the RAGE expressome. Pulmonary RAGE mRNA (1.4 kb) was smaller than cell-line and tissue RAGE mRNA (6 kb-10 kb). Three anti-RAGE antibodies that recognized three distinct RAGE epitopes were used for protein studies (N-16, H-300, and alphaES). Lung expressed three predominant protein isoforms with apparent molecular masses of 45.1, 52.6, and 57.4 kDa (N-16/H-300) and four isoforms at 25.0, 46.9, 52.5, and 54.2 kDa (alphaES). These isoforms were expressed exclusively in lung. Heart, ileum, and kidney expressed a 44.0-kDa isoform (N-16), whereas aorta and pancreas expressed a 53.3-kDa isoform (alphaES). Each of these isoforms were absent in tissue extracts prepared from RAGE(-/-) mice. Cell lines expressed a 70.0-kDa isoform, and a subset expressed a 30.0-kDa isoform (alphaES). Lung RAGE appeared to contain two N-linked glycans. Tissue and cell-line RAGE isoforms were completely insensitive to PNGase F digestion. Thus, numerous RAGE protein isoforms are detectable in tissues and cell lines. Canonical transmembrane and soluble RAGE appear to be expressed solely in lung (N-16/H-300). Non-pulmonary tissues and cell lines, regardless of the source tissue, both express distinct RAGE protein isoforms containing the N-terminal N-16 epitope or the alphaES RAGE epitope encoded by alternate exon 9, but lacking the H-300 epitope.