This paper proposes a tri-band wide-angle polarization-insensitive absorber operating in the C-band and Ku-band, based on the design concept of metal–dielectric–metal. The absorber achieves absorption efficiencies of 99.05%, 99.3%, and 97.9% at 4.23 GHz, 7.403 GHz, and 14.813 GHz, respectively. The first two absorption frequencies are in the C-band, while the third absorption frequency is in the
... [Show full abstract] Ku-band, both of which are commonly used in satellite communication. The designed absorber consists of three differently sized regular hexagonal rings. To analyze the interaction mechanism between the electromagnetic wave and the absorber, we applied the theory of impedance matching and equivalent media to analyze the metamaterial properties of the absorber. In addition, the equivalent circuit model of the absorber has been analyzed. We then determined the existence of coupled electromagnetic resonances between the top and bottom surfaces by analyzing the distribution of the electric field, magnetic field, and surface currents on the absorber. By varying the polarization angle and incident angle of the incoming wave, we found that the absorber exhibits polarization insensitivity and wide-angle absorption characteristics. The TE and TM waves maintain more than 90% absorption efficiency up to incident angles of 50° and 60°, respectively. The absorber’s thickness is 1.07 mm, which is 0.0154 times the wavelength corresponding to the lowest resonant frequency (λ0), and the edge length of the subunit’s regular hexagon is 7.5 mm (0.108λ0), making the absorber sub-wavelength in scale while maintaining its compactness. The proposed absorber operates in the C-band and Ku-band, and can be applied in the field of satellite communications, achieving functions such as electromagnetic shielding and stealth.