Loss of Protein Kinase Cγ in Knockout Mice and Increased Retinal Sensitivity to Hyperbaric Oxygen

Department of Biochemistry, 141 Chalmers Hall, Kansas State University, Manhattan, Kansas 66506, USA.
Archives of ophthalmology (Impact Factor: 4.4). 05/2009; 127(4):500-6. DOI: 10.1001/archophthalmol.2009.31
Source: PubMed


To determine if loss of protein kinase Cgamma (PKCgamma) results in increased structural damage to the retina by hyperbaric oxygen (HBO), a treatment used for several ocular disorders.
Six-week-old mice were exposed in vivo to 100% HBO 3 times a week for 8 weeks. Eyes were dissected, fixed, embedded in Epon, sectioned, stained with toluidine blue O, and examined by light microscopy.
The thicknesses of the inner nuclear and ganglion cell layers were increased. Destruction of the outer plexiform layer was observed in the retinas of the PKCgamma-knockout mice relative to control mice. Exposure to HBO caused significant degradation of the retina in knockout mice compared with control mice. Damage to the outer segments of the photoreceptor layer and ganglion cell layer was apparent in central retinas of HBO-treated knockout mice.
Protein kinase Cgamma-knockout mice had increased retinal sensitivity to HBO. Results demonstrate that PKCgamma protects retinas from HBO damage.
Care should be taken in treating patients with HBO, particularly if they have a genetic disease, such as spinocerebellar ataxia type 14, a condition in which the PKCgamma is mutated and nonfunctional.

Download full-text


Available from: Frank Giblin
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine the role of PKCγ in the regulation of gap junction coupling in the normal lens, we have compared the properties of coupling in lenses from wild type (WT) and PKC-γ knockout (KO) mice. Western blotting, confocal immunofluorescence microscopy, immunoprecipitation, RT-PCR and quantitative real time PCR were used to study gap junction protein and message expression; gap junction coupling conductance and pH gating were measured in intact lenses using impedance studies. There were no gross differences in size, clarity, or expression of full-length Cx46 or Cx50 in lenses from WT and PKCγ KO mice. However, total Cx43 protein expression was ~150% higher in the KO lenses. In WT lenses, Cx43 was found only in epithelial cells whereas in KO lenses, its expression continued into the fiber cells. Gap junction coupling conductance in the differentiating fibers (DF) of PKCγ KO lenses was 34% larger than that of WT. In the mature fiber (MF), the effect was much larger with the KO lenses having an 82% increase in coupling over WT. pH gating of the DF fibers was not altered by the absence of PKCγ. PKCγ has a major role in the regulation of gap junction expression and coupling in the normal lens.
    Full-text · Article · Jul 2011 · Current eye research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hyperglycemia-linked oxidative stress and/or consequent endoplasmic reticulum (ER) stress are the causative factors of pathogenesis of diabetic retinopathy. Dietary bioactive components which mitigate oxidative stress may serve as potential chemopreventive agents to prevent or slow down the disease progression. Wolfberry is a traditional Asian fruit consumed for years to prevent aging eye diseases in Asian countries. Here we report that dietary wolfberry ameliorated mouse retinal abnormality at the early stage of type 2 diabetes in db/db mice. Male mice at six weeks of age were fed the control diet with or without 1% (kcal) wolfberry for eight weeks. Dietary wolfberry restored the thickness of the whole retina, in particular the inner nuclear layer and photoreceptor layer, and the integrity of the retinal pigment epithelia (RPE), and the ganglion cell number in db/db mice. Western blotting of whole retinal cell lysates revealed that addition of wolfberry lowered expression of ER stress biomarkers binding immunoglobulin protein (BiP), protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6) and caspase-12, and restored AMP-activated protein kinase (AMPK), thioredoxin, Mn superoxide dismutase (Mn SOD) and forkhead O transcription factor 3 α (FOXO3α) activities. To determine if our observations were due to the high contents of zeaxanthin and lutein in wolfberry, additional studies using these carotenoids were conducted. Using the human adult diploid RPE cell line ARPE-19, we demonstrated that both zeaxanthin and lutein could mimic the wolfberry preventive effect on activation of AMPK, thioredoxin, Mn SOD, FOXO3α activities, normalize cellular reactive oxygen species and attenuate ER stress in ARPE-19 cells exposed to a high glucose challenge. The zeaxanthin preventive effect was abolished by small interfering RNA knockdown of AMPKα. These results suggested that AMPK activation appeared to play a key role in upregulated expression of thioredoxin and Mn SOD, and mitigation of cellular oxidative stress and/or ER stress by wolfberry and zeaxanthin and/or lutein. Taken together, dietary wolfberry on retinal protection in diabetic mice is, at least partially, due to zeaxanthin and/or lutein.
    Full-text · Article · Jul 2011 · Experimental Biology and Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The γ isoform of protein kinase C (PKCγ), which is concentrated in interneurons in the inner part of lamina II (IIi ) of the dorsal horn, has been implicated in the expression of tactile allodynia. Lamina IIi PKCγ interneurons were shown to be activated by tactile inputs and to participate in local circuits through which these inputs can reach lamina I, nociceptive output neurons. That such local circuit is gated by glycinergic inhibition and that A- and C-fibers low threshold mechanoreceptors (LTMRs) terminate in lamina IIi raise the general issue of synaptic inputs to lamina IIi PKCγ interneurons. Combining light and electron microscopic immunochemistry in the rat spinal trigeminal nucleus, we show that PKCγ-immunoreactivity is mostly restricted to interneurons in lamina IIi of the medullary dorsal horn, where they constitute 1/3 of total neurons. The majority of synapses on PKCγ-immunoreactive interneurons are asymmetric (likely excitatory). PKCγ-immunoreactive interneurons appear to receive exclusively myelinated primary afferents in type II synaptic glomeruli. Neither large dense core vesicle terminals nor type I synaptic glomeruli, assumed to be the endings of unmyelinated nociceptive terminals, were found on these interneurons. Moreover, there is no vesicular glutamate transporter 3-immunoreactive bouton, specific of C-LTMRs, on PKCγ-immunoreactive interneurons. PKCγ-immunoreactive interneurons contain GABAA ergic and glycinergic receptors. At subcellular level, PKCγ-immunoreactivity is mostly concentrated on plasma membranes, close to, but not within, postsynaptic densities. That only myelinated primary afferents were found to contact PKCγ-immunoreactive interneurons suggests that myelinated, but not unmyelinated, LTMRs play a critical role in the expression of mechanical allodynia. J. Comp. Neurol. , 2013. © 2013 Wiley Periodicals, Inc.
    Full-text · Article · Feb 2014 · The Journal of Comparative Neurology