ArticlePDF Available

Towards an explanatory and computational theory of scientific discovery

  • College of Computing and Informatics, Drexel University

Abstract and Figures

We propose an explanatory and computational theory of transformative discoveries in science. The theory is derived from a recurring theme found in a diverse range of scientific change, scientific discovery, and knowledge diffusion theories in philosophy of science, sociology of science, social network analysis, and information science. The theory extends the concept of structural holes from social networks to a broader range of associative networks found in science studies, especially including networks that reflect underlying intellectual structures such as co-citation networks and collaboration networks. The central premise is that connecting otherwise disparate patches of knowledge is a valuable mechanism of creative thinking in general and transformative scientific discovery in particular. Comment: 32 pages, 6 figures. Journal of Informetirics, 2009, volume 3 (in press)
Content may be subject to copyright.
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
Towards an Explanatory and Computational Theory of
Scientific Discovery
Chaomei Chen1,2, Yue Chen2, Mark Horowitz1, Haiyan Hou2, Zeyuan Liu2, Donald Pellegrino1
1College of Information Science and Technology, Drexel University, USA
2The WISE Lab, Dalian University of Technology, China
We propose an explanatory and computational theory of transformative discoveries in science.
The theory is derived from a recurring theme found in a diverse range of scientific change,
scientific discovery, and knowledge diffusion theories in philosophy of science, sociology of
science, social network analysis, and information science. The theory extends the concept of
structural holes from social networks to a broader range of associative networks found in science
studies, especially including networks that reflect underlying intellectual structures such as co-
citation networks and collaboration networks. The central premise is that connecting otherwise
disparate patches of knowledge is a valuable mechanism of creative thinking in general and
transformative scientific discovery in particular. In addition, the premise consistently explains
the value of connecting people from different disciplinary specialties. The theory not only
explains the nature of transformative discoveries in terms of the brokerage mechanism but also
characterizes the subsequent diffusion process as optimal information foraging in a problem
space. Complementary to epidemiological models of diffusion, foraging-based
conceptualizations offer a unified framework for arriving at insightful discoveries and optimizing
subsequent pathways of search in a problem space. Structural and temporal properties of
potentially high-impact scientific discoveries are derived from the theory to characterize the
emergence and evolution of intellectual networks of a field. Two Nobel Prize winning
discoveries, the discovery of Helicobacter pylori and gene targeting techniques, and a discovery
in string theory demonstrated such properties. Connections to and differences from existing
approaches are discussed. The primary value of the theory is that it provides not only a
computational model of intellectual growth, but also concrete and constructive explanations of
where one may find insightful inspirations for transformative scientific discoveries.
Keywords: Theory of scientific discovery, transformative scientific discoveries, theory of
structural holes, intellectual brokerage, knowledge diffusion, information foraging
1 Introduction
The intellectual structure of a scientific field is an abstraction of the collective knowledge of
scientists in the field, including scholarly publications and other forms of intellectual assets.
Scientific change refers to profound changes of the intellectual structure of a field. In this article,
we will focus on the nature and key mechanisms of scientific discoveries that could lead to such
fundamental changes – transformative scientific discoveries.
The nature of scientific change has been studied from many distinct perspectives, notably
including philosophy of science (Collins, 1998; Laudan et al., 1986; Schaffner, 1992), sociology
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
(Fuchs, 1993; Griffith & Mullins, 1977), and history of science (Brannigan & Wanner, 1983).
Quantitative studies of the topic can be found in the fields of scientometrics, citation analysis,
and information science in general (Chen, 2003; Heinze & Bauer, 2007; Heinze, Shapira, Senker,
& Kuhlmann, 2007; Hummon & Doreian, 1989; Small & Crane, 1979; Sullivan, Koester, White,
& Kern, 1980; Wagner-Dobler, 1999). Scientific literature has increasingly become one of the
most essential sources for these studies. Social network analysis and complex network analysis
also provides valuable perspective (Barabási et al., 2002; Newman, 2001; Redner, 2004; Snijders,
2001; Valente, 1996; Wasserman & Faust, 1994).
What do these diverse perspectives have in common and how do they differ in terms of their
views of scientific change, scientific discovery, and knowledge diffusion? In this article, we
introduce an explanatory and computational theory of scientific discovery as a key step for
understanding and explaining the emergence and evolution of the intellectual structure of a field.
We are motivated for a number of reasons. First, despite of the perceived role of serendipity and
other unpredictable factors, it is evident that an important subset of scientific discoveries share
important and generic properties (Bradshaw, Langley, & Simon, 1983; H. A. Simon, P.W.
Langley, & G. L. Bradshaw, 1981). In order to obtain conclusive evidence, one will need a
theory of scientific discovery that can provide a unifying conceptual framework so that one can
characterize a variety of scientific discoveries from a consistent perspective. Second, given one
concrete case of scientific discovery, it may be studied from multiple and often not
interconnected perspectives. For example, a philosophical study of a scientific revolution may
have little overlap with a sociological study of the same process. Even two philosophical studies
of the same scientific revolution could appear to be unrelated in the eyes of laypersons. We need
a theory that can not only explain scientific change, but also relate to various existing theories.
Third, statistical models of network evolution have been used to identify statistical and
topological properties of scientific networks. However, such properties, although generic in
nature, do not readily offer further explanations of why scientists in a network behave in a
particular way. Motivations, decisions, and interpretations underlying such properties are often
detached or left out. Thus, we need a theory that not only identifies statistical and topological
properties of scientific networks, but also offers practical insights into the mechanisms that may
drive scientists’ observed behavioral patterns. The work described in this article is the first step
towards this long-term goal.
There are many types of theories, including descriptive, explanatory, generative, predictive, and
prescriptive (Bederson & Shneiderman, 2003). Our immediate goal is to develop a simple,
descriptive, explanatory, and generative theory of scientific discovery. We are interested in
identifying some generic mechanisms of discovery in order to explain transformative scientific
discoveries to begin with and other types of discoveries later on. Such generic mechanisms are in
fact generative in nature because scientists and computer simulation algorithms would be able to
emulate such mechanisms. We have a few expectations of our new theory. First, it should help us
to recognize the significance of new discoveries as soon as possible. Second, it should help us to
identify as many potential areas of growth as possible. Third, it should help us to explain both
the creation of knowledge and its diffusion within a consistent and unified framework.
The rest of the article is organized as follows. We will first review existing conceptualizations of
scientific change in the philosophy of science, sociological theories of scientific change,
sociological theories of creative ideas, information foraging theory, and a recurring theme among
these various views. The recurring theme is, simply speaking, that insights, creative ideas, and
transformative scientific discoveries are the work of a broad range of brokerage mechanisms.
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
Next, we will expand the recurring theme and construct a simple theory of scientific discovery to
explain the growth of a scientific field. We will then describe conjectures that one can derive
from the first principles of the theory, including structural and temporal properties of citation and
co-citation networks. We will include a brief analysis of Nobel Prize winning discoveries as
illustrative cases. Finally, we will outline ongoing and future work, including large-scale
computer simulation and a wider range of high-impact scientific discoveries.
2 ExistingConceptualizationsofScientificChange
2.1 Specialties and Scientific Change
Specialty is a key concept in the study of scientific change. A specialty is a group of researchers
and practitioners who have similar training, attend the same conferences, read and cite the same
body of literature (Fuchs, 1993). There are a variety of studies of specialty in the literature
(Chubin, 1976; Fuchs, 1993; Morris & Van der Veer Martens, 2008; Mullins, Hargens, Hecht, &
Kick, 1977; Small & Crane, 1979). For example, Mullins et al. studied author groups
corresponding to co-citation clusters using questionnaires and concluded that co-citation clusters
indeed represent the intellectual structure and that coauthors do form social groups (Mullins et al.,
1977). Co-author networks have also been studied in complex network analysis of community
structures (Girvan & Newman, 2002). These finding provide an empirical basis for the analysis
of scientific change based on co-citation networks as we shall introduce later in this article.
The dynamics of the structure of a specialty is a central issue in the context of scientific change.
Research has shown that major changes in a variety of disciplines tend to be originated within
small, socially coherent groups (Griffith & Mullins, 1977). Kuhn observed that new paradigms
are typically initiated by young scientists or newcomers to a crisis-laden field (Kuhn, 1962). In
addition, Crane (1969) found that the desire for originality motivates scientists to maintain
contacts with scientists and scientific work in areas different from their own in order to enhance
their ability to develop new ideas in their own areas. This observation underlines an intriguing
fact that many major scientific discoveries are often fundamentally inspired by external
influences, or from peripheral areas of established research specialties, which echoes Kuhn’s
earlier observation.
Crane’s observation can be seen as a special case of what sociologist Burt called the social
capital of structural holes (Burt, 1992, 2001, 2004). Structural holes are voids in social structure.
According to Burt’s theory of structural hole, structural holes in a social network are
disconnected or poorly connected areas between tightly and densely connected groups of people.
The presence of such structural holes may influence the importance of positions in a social
network – some positions become more privileged and competitive than others. The value of a
person in a social network is therefore linked to the potential to establish connections between
groups that are separated by structural holes. People in positions with great brokerage potentials
are known as brokers and gatekeepers. Brokers are rewarded for their integrative work in terms
of more positive evaluations, higher compensations, and faster promotion. The underlying reason
for the difference is that information is more homogeneous within groups, whereas more
heterogeneous between groups. Brokers are in special positions to access heterogeneous
information from a broader range of sources. The privilege often leads to competitive advantage.
In the following sections, we will argue that the role of brokerage mechanisms not only goes
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
beyond social networks, but also underlines an important source of insight that leads to profound
scientific changes and discoveries.
The dynamics of theory-change in science is not only a philosophical issue, but also a historical
one. Brush investigated whether scientists give greater weight to novel predictions than to
explanations of known facts against historical cases in physical science (Brush, 1994). Several
theories were accepted after successful novel predictions but there is little evidence that extra
credit was given for novelty. Others were rejected despite, or accepted without, making
successful novel predictions. No examples were found of theories that were accepted primarily
because of successful novel predictions and would not have been accepted if those facts had been
previously known. Brush further examined the impact of predictions on theory acceptance
through several cases, including the Big Bang vs. steady-state cosmology, the origin of the Moon,
gravitational light bending, and Hannes Alven's plasma physics (Brush, 1995). Brush concluded
that confirmed predictions provide "corroboration" of a hypothesis, but only in the minimalist
sense of scientists voting with their publications. Corroboration "merely makes it more
reasonable to pursue that hypothesis than one that has not been corroborated," and thus "there
was a significant increase in publications on the theory [i.e., those theories in the case studies]
that led to the prediction" (p. 314). Brush also emphasized, however, that "if one's basic
assumptions and method are considered unacceptable by other scientists, no amount of empirical
confirmation will force them to accept it. It is said not as a criticism of the scientific community,
but simply as a fact about science which many philosophers of science ignore" (p. 307).
A mathematical approach to the prediction of scientific discovery was proposed in (William
Goffman & Harmon, 1971). Their approach is built on a four-state Markov chain model of
discovery. Discovery is conceptualized as a process of placing a set of information in the right
order. They were able to construct such a model based on an expert-annotated bibliography of
the field of symbolic logic. The discovery per se would be the ordered information, i.e. patterns.
The four states are defined in terms of the sufficiency and order of information. In State I,
information is insufficient and unordered. The problem at this stage is to acquire information, not
to order it. Observations are inadequate to establish patterns. In State II, information is
insufficient but available information is ordered. In State III, there are sufficient information
elements, but not in the right order. Finally, in state IV, information is both sufficient and
ordered. The discovery is established. From here, it can be elaborated, refined, or challenged.
2.2 Knowledge Diffusion
Knowledge diffusion, or the spread of knowledge, is an important aspect of the dynamics of a
specialty. As we will demonstrate in this article, knowledge diffusion can be explained as an
information foraging process stimulated by the original scientific discovery.
2.2.1 Quantitative Models of Diffusion
Quantitative models of how scientific ideas spread are proposed by many researchers
(Bettencourt, Castillo-Chavez, Kaiser, & Wojick, 2006; Bettencourt, Kaiser, Kaur, Castillo-
Chavez, & Wojick, 2008). Epidemic models are among the most popular ones (W. Goffman &
Newill, 1964; Liben-Nowell & Kleinberg, 2008; Nowakowska, 1973). Epidemic models
consider variables such as contact rates between scientists, latency and recovery times. The
contact rate between scientists is found to be the single important factor to speed up the diffusion
of knowledge.
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
Other potentially applicable models of diffusion include ant colony and random walk models. In
an ant colony model (Dorigo & Gambardella, 1997), ants travel between their home and food
sources. They leave scents as trails for others. Scents decrease over time unless being reinforced
by other ants. One can see a natural mapping from the ant colony model to a model of network
evolution. Ants are replaced by scientists. Their home is now the contemporary intellectual
structure. The food sources are new publications in the literature. Finding foods is equivalent to
making a reference to a new publication. Doing so also leaves trails for other scientists. Ant
colony is a self-organizing optimization mechanism. Unlike the preferential attachment approach,
which specifies the criteria of an addition to an existing network, ant colony is not limited to
preferences, although it can be tailored to make use of them.
Random walk algorithms are also useful for modeling the spread of information. A random walk
model over a network is built on state transition probabilities. Each node in the network
represents a state. Moving from one node to another is governed by a state transition probability,
which can be updated based on available evidence in Bayesian rules. The spread of knowledge is
thus translated into a question of how easy or how hard it would be to make such moves.
The ant colony and random walk models have a more profound connection to the information
foraging theory (Pirolli, 2007). The fundamental premise of the information foraging theory is
that the behavior of a forager, namely, information searchers and, in this case, scientists, is
driven by a perceived or calculated profitability of the potential move. The profitability takes
into account the expected returns as well as potential risks or costs involved. For example, if
online access to an article costs $30, then the cost is only part of the equation. Whether the article
is worth your paying the $30 depends on what you can do with the article and how urgently you
need it.
Sandstrom argued that information seekers are very much like foragers, especially in terms of
how and where they forage for valued resources (Sandstrom, 1999). She introduced the notion of
bibliographic microhabitats to underline the similarity between hunters and information seekers.
She further argued that if some empirical cost-benefit currency can be established, then analysts
would be able to rank foragers’ preferences, predict which resources will be pursued, and specify
the net returns associated with particular choices.
In summary, unlike epidemic models, foraging models emphasize not only structural properties
of an information space for information seekers or a problem space for scientists, but also the
interplay between perceived values, handling costs, and various competing and probably
conflicting factors in a broader context of decision making. In other words, one may incorporate
foraging models into existing workflows so that one can recognize and act upon vital clues that
may lead them to a fruitful path.
2.2.2 Searching for Indicators of Great Discoveries
What is the extent to which quantitative rankings of highly cited authors confirm or, even more
ambitiously, predict Nobel Prize awards? Between 1977 and 1992, Garfield published a series of
studies of Nobel Prize winners’ publications and their citations and made predictions of future
Nobel Prize laureates based on existing citation data. He reported that eight Nobel laureates were
found on a list of 100 most cited authors from 1981 through 1990(Garfield & Welljamsdorof,
1992). Others on the list were seen as potential Nobel Prize winners in the future. On the other
hand, it was noted that the undifferentiated rankings of the most cited authors in a given period
of time could be further fine-tuned to increase the accuracy of its coverage of Nobel Prize awards.
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
For example, the Nobel Committee sometimes selects relatively small specialties. Further
dividing the list according to specialties shows that Nobel laureates in relatively small specialties
are among the most cited authors in their specialties.
Methods papers of Nobel Prize winners tend to attract a disproportionably high amount of
citations. More recent examples of methodological contributions include the 2007 Nobel Prize
for the British embryonic stem cell research architect Martin Evans. Garfield coined the
phenomenon the Lowry Phenomenon, referring to the classic example of Oliver Lowry’s 1951
methods paper, which was cited 205,000 times up to 1990.
Research has shown that citation frequency has a low predictive power for Nobel awards because
there are so many other scientists with the same or even higher citations as the few Nobel Prize
winners. The greatest value of counting citations is its simplicity. Subsequent attempts to
improve the accuracy of the method tend to lose the simplicity. Hirsch’s h-index has drawn much
interest also because of its simplicity despite its known limitations (Hirsch, 2005a). Antonakis
and Lalive intended to capture both the quality and productivity of a scholar with a new index
IQp (Antonakis & Lalive, 2008). They compared the new index of Nobel winners in physics,
chemistry, medicine, and economics. It is worth noting here that one should always be cautious
when using quantitative indicators in qualitative decisions. The authors found about two third of
Nobel winners have an IQp over 60. The authors showed that in several examples, IQp
differentiated Nobel class and others more accurately than the h-index, including physicist Ed
Witten (h=115 and IQp=230) and others who have high h-index but relatively low IQp index, S.
H. Snyder (h=198, IQp=117) and R. C. Gallo (h=155, IQp=75).
Börner and her coauthors proposed a co-evolution model of networks of authors and networks of
papers based on growth mechanisms such as preferential attachment (Börner, Maru, & Goldstone,
2004). They validated their model with real-world data from the Proceedings of the National
Academy of Science of the United States of America. Small studied tracking and predicting
growth areas in science based on co-citation clusters and relative ages of clusters (Small, 2006).
We will introduce a different growth mechanism in our theory. Our mechanism provides an
alternative approach to the preferential attachment one.
In the context of scientific discovery, we will expand the information foraging theory to describe
the behavior of scientists in searching for novel hypotheses and theories. This will help us to
explain how a scientist would maximize the profitability of the next move.
2.3 Common Mechanisms for Scientific Discovery
There is evidence in the literature that scientific discoveries do share some common mechanisms,
especially in light of research in computer simulation of discoveries, cognitive studies of
scientific change, and the nature of insight.
2.3.1 Scientific Discovery as Problem Solving
The most prominent work in this area has been done by Herbert Simon and his colleagues using
computer simulation to study and reconstruct scientific discoveries (Bradshaw et al., 1983). A
long list of examples of automated discoveries was given in (Glymour, 2004). He used the
metaphor of finding a needle in a haystack to characterize the problems faced by scientists in
discovery. Rather than sifting through things in the haystack one by one, automated discovery is
akin to either setting the haystack on fire and blowing away the ashes to find the needle, or
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
running a magnet through the haystack. There are advantages and limitations. Following the
metaphor, for example, the fire may melt the needle.
Many studies have addressed the nature of insight in scientific discovery. For example, Gestalt
psychologists suggest that insight occurs when problem solvers see the original problem from a
fresh perspective (Mayer, 1995). Other researchers have emphasized that the complexity of
searching in a problem space has more to do with the structure of a problem space than the
searcher (Perkins, 1995; Simon, 1981). In particular, Perkins distinguished two types of problem
spaces. In a Homing Space, there are many clues and signposts such that navigating in such
spaces is relatively easy. In contrast, a Klondike Space has very few such clues. The sparseness
of clues is illustrated by Perkins (p. 498) in a widely known case of sudden insight – Charles
Darwin’s discovery of the principle of natural selection. According to Darwin’s autobiography,
in October 1838, he conceived the principle while he “happened to read for amusement ‘Malthus
on Population.’ What is remarkable is that the next person arrived at the same principle 20 years
later. What is even more remarkable is that the person, Alfred Russell Wallace, arrived to the
idea while reading the same 1826 book by Malthus!
How could one increase the odds of stumbling on such clues? It becomes clear, from
Sandstrom’s notion of bibliographic microhabitats to Perkins’ characterizations of Homing and
Klondike spaces, that finding and recognizing clues is essential for both information foragers and
problem solvers. Research in the data mining community on interestingness is particularly
relevant (Hilderman & Hamilton, 2001; Liqiang & Howard, 2006). Interestingness is a
quantitative measure of where a set of scientific ideas fit on the spectrum which ranges from the
practice of normal science to that of paradigm-shifting ideas (Davis, 1971). In this regard,
interestingness lies between order and complete randomness, or chaos. We posit that three
distinct ranges of scientific reports and ideas are those which are (1) either confirmatory or
boring – there is nothing new for the scientific reader; the previously stated hypotheses have not
been falsified yet, and are less and less likely to be so determined; (2) the interesting ideas or
work, which denies widely accepted assumptions, states new relationships between old ideas,
proposes new mechanisms, but do not require the reader to adopt wholly new ways of thinking;
and (3) paradigm shifts and transformative discoveries. Interesting ideas are enlightening and
surprising in a non-threatening way; in fact, the surprise is generally a pleasant one, in contrast to
the experience of living through a shift of paradigm, especially when one’s accepted paradigm is
being replaced by a more successful one.
2.3.2 Literature-Based Discovery
Swanson and his colleagues pioneered a literature-based discovery approach to identify
potentially valuable hypotheses (Swanson, 1986a, 1986b; Swanson, 1987; Swanson &
Smalheiser, 1999). In essence, according to Swanson, the model of discovery from public
knowledge is the A-B-C model, where the connections of A-B and B-C are known, but the
connection of A-C is unknown. Thus A-C has the potential to become a candidate hypothesis for
domain experts to evaluate. Using this template, a series of such candidate associations have
been identified, including the connections between fish oil and Raynaud’s syndrome (Swanson,
1986a), magnesium and migraine (Swanson, 1988), indomethacin and Alzheimer’s disease
(Smalheiser & Swanson, 1996).
Many researchers have subsequently adapted and refined Swanson’s techniques. For example,
Gordon and Lindsay conducted experiments with the MEDLINE medical literature database and
extended the work of Swanson (Gordon & Lindsay, 1996; Lindsay & Gordon, 1999). They used
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
lexical statistics to discover hidden connections in the medical literature. They argued that
hidden connections are those that are unlikely to be found by examination of bibliographic
citations or the use of standard indexing methods and yet establish a relationship between topics
that might profitably be explored by scientific research. They also mentioned that literature-
based discovery cannot replace traditional empirical scientific research or even literature search,
but rather supports them by providing the scientist with a means to organize more easily a
potentially overwhelming amount of information.
Recently, Kostoff and his colleagues published a series of studies of literature-based discovery.
These special studies presented a comprehensive approach for systematic acceleration of
discovery and innovation, and demonstrated the generation of large amounts of potential
discovery through five case studies describing the application of literature-based discovery to
Raynaud's syndromes, cataracts, Parkinson's disease, multiple sclerosis, and water purification.
He described the lessons learned from each application, and how the techniques can be improved
further (Kostoff, 2008).
Where can we go from here? How often could a Nobel Prize award be characterized in terms of
this A-B-C pattern of transitivity? Are there other patterns of scientific discoveries? If literature-
based discovery is a computer-aided search in a problem space, what would it miss?
2.3.3 Thinking Outside the Box
Effective strategies for making scientific discoveries have highlighted the ability to think
creatively and look at a problem from a fresh perspective. Dunbar, for example, compared two
different strategies of hypothesis generation using a Nobel Prize winning discovery as the test
case (Dunbar, 1993). He found that it is a more effective discovery strategy to encourage
researchers to consider novel alternative hypotheses. A 1992 special issue of Theoretical
Medicine examined the mechanisms of scientific revolution and how the Nobel Prize committee
selected scientific discoveries (Lindahal, 1992).
A longitudinal study of highly creative scientists in nano science and technology has found that it
is not only the sheer quantity of publications that enables scientists to produce creative work but
also their ability to effectively communicate with otherwise disconnected peers and to address a
broader work spectrum (Heinze & Bauer, 2007). Why is it possible that communicating with
otherwise disconnected scientists can lead to more creative work? What can one do specifically
to come up with novel alternative hypotheses? How do we think outside the box?
2.4 Connecting Diverse Perspectives
There are many philosophical theories of scientific change. Philosophers of science (Laudan et
al., 1986) argue that it would be useful to compare rival theories of scientific change against the
history of science. Proponents suggest that conjectures of philosophical theories should be
organized into theses so that one can compare these theories in terms of individual theses.
Laudan et al. recommended rephrasing Lakatos’ research programme, Laudan’s research
tradition, and Kuhn’s paradigm in terms of a more generic notion of guiding assumptions. A
superior theory of scientific change would be the one that has the most matches from the
historical data. This idea was later criticized by (Radder, 1997), suggesting that it was far too
Our needs here are different. Our goal is not to evaluate the value of individual philosophical
theories of scientific change. Rather, what we need is an explanatory theory that can clarify the
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
underlying mechanisms of specific scientific discoveries. In addition, we need a theory that can
be instrumental for quantitative studies of scientific change.
Kuhn’s paradigm-shift model of scientific revolutions (Kuhn, 1962, 1970) is probably the most
widely known theory. It describes how science advances through a path of normal science, crisis,
revolution, and new normal science. A revolution involves a shift of world views from an old
paradigm to a new paradigm. The paradigm-shift model has drawn criticism. Critics argue that
scientific change is often a lengthy process instead of a swift change as the paradigm-shift model
Cognitive scientists consider scientific discovery in common with everyday problem solving
(Herbert A. Simon, Patrick W. Langley, & Gary L. Bradshaw, 1981). In (Klahr & Simon, 1999),
four approaches to research on scientific discovery were identified; namely, historical accounts
of scientific discoveries, psychological experiments with nonscientists working on tasks related
to scientific discoveries, direct observation of ongoing scientific laboratories, and computational
modeling of scientific discovery processes—by viewing them through the lens of the theory of
human problem solving. The authors then considered these types of studies against a list of
evaluative criteria, such as face validity, fine or coarse-grained, new phenomena, rigor and
precision, social and motivational factors.
Many scholars have studied information and discovery pathways. Small presented a series of
examples from the history of science in which discoveries can be modeled as navigation between
pairs of established experimental or theoretical findings (Small, 2000). One of his examples was
from atomic physics in early twentieth century. There was no direct connection between
experimental evidence on the spectrum for atomic hydrogen and evidence for hydrogen’s nuclear
structure until Niels Bohr’s 1913 model for the hydrogen atom using a quantum hypothesis.
Similarly, the Müller-and-Bednorz discovery of superconductivity was also seen as creating a
path between the field of superconductivity and a class of compounds previously not thought to
be promising candidates for superconductivity (Holton, Chang, & Jurkowitz, 1996; Small, 2000).
We notice a recurring theme in the diverse conceptualizations of scientific change. That is,
profound scientific change tends to be connected to a broad range of brokerage mechanisms.
Burt’s structural holes are found not only in social networks but also in associative networks of
intellectual, semantic, and other types of interrelationships. Because information flow around a
structural hole is limited by the topological structure, those who are in the brokerage positions
inherit advantages from their positions in such networks. Furthermore, structural holes in
intellectual and cognitive networks appear to be a vital source of inspiration and creativity.
Creative scientists draw inspirations from other disciplines. Research has found that great
philosophers tend to be the ones who stayed in touch with competing schools of philosophy
(Guiffre, 1999). Creative scientists are the ones who have the ability to communicate effectively
with otherwise disconnected peers (Heinze & Bauer, 2007). Scientists make extra efforts to
maintain contacts with scientists in different fields (Crane, 1972). Therefore, we have reached
our central premise: bridging structural holes in a knowledge space is a valuable and viable
mechanism for understanding and arriving at transformative scientific discoveries.
2.5 Bridging Intellectual Structural Holes
Now we will review some of the major conceptualizations of scientific change in light of the
theory of structural holes (Burt, 1992, 2004, 2005). The theory of structural holes was originally
developed in the context of social networks. We will show that the theory provides a meaningful
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
and indeed enlightening framework for explaining why structural holes in intellectual networks
such as co-citation networks may play an essential role in scientific discovery. Although this new
conceptualization goes beyond the original scope of Burt’s theory, we still refer them as
structural holes for simplicity.
According to a sociological theory of scientific change (Fuchs, 1993), scientific discoveries are
driven by two social factors, namely, peer competition and mutual dependence. Scientists seek
novel discoveries to stay ahead in the invisible competition with their peers. As we have learned
from the large body of relevant literature, inspirations often rise when different ways of thinking
interact with one another. Structural holes in this sense span across patches of knowledge at
different levels of self-organized structures, ranging from areas of research, fields of study, to
From the information foraging perspective, establishing conceptual linkages between disparate
patches of knowledge is a high-risk and high-return action. On the one hand, adapting a theory or
a method from a ‘foreign’ discipline is likely to ensure its novelty in the ‘home’ discipline. It is
more likely to think ‘outside the box’ in such situations. On the other hand, the fact that ideas
and inspirations have obviously worked in another domain will drastically reduce the potential
risk that scientists may have to bear. This combination appears to give the maximum profitability
associated with a structural hole.
From a philosophy of science’s point of view, focusing on a structural hole also makes sense. In
terms of Kuhn’s paradigm-shift model, a competing paradigm is more likely to come from an
unexpected place than right from the center of the currently predominant paradigm. We will give
detailed descriptions of the theory of scientific discovery in the following section.
3 AnExplanatoryandComputationalTheoryofDiscovery
A recurring theme across a wide variety of studies of scientific discovery, scientific change,
creativity, and insight is that many creative ideas and profound discoveries can be traced to the
work of a generic class of brokerage mechanisms. Brokerage mechanisms are not only found in
social networks, such as networks of collaborators and coauthors, but also in the more abstract
conceptual networks of scientific knowledge, such as co-citation networks. For example,
brokerage mechanisms have been seen to establish a previously unexpected linkage between
structures of knowledge, connect two or more previously disparate fields of study, or recognize a
meaningful analogy between distinct theories or hypotheses. Our new theory of scientific
discovery is built on this recurring theme.
3.1 Basic Elements of the Theory
As the first step towards an explanatory and computational theory of scientific discovery, we will
focus on transformative and revolutionary discoveries. Transformative discoveries represent
fundamental and revolutionary scientific changes. The growing interest in cyber-enabled
discovery, e-science, and e-social science underlines the importance of advancing our
understanding of how science works and identifying recurring mechanisms of creativity and
discovery (Shneiderman, 2002, 2007). Supporting more transformative research is of critical
importance in the fast-paced, science and technology-intensive world (NSF, 2007).
The fundamental premise of our theory is that a transformative discovery is made when a novel
connection is established between two or more previously disparate units of scientific knowledge.
Disparate units of scientific knowledge may include unconnected theories in different disciplines,
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
isolated observations in the same field, or publications that have never been thought to be related.
This conception is related to a number of approaches in the literature.
First, the brokerage-focused theory is inspired by the structural-hole theory of social networks
(Burt, 2005). Furthermore, our theory adapts the brokerage mechanism and introduces it as a
generic discovery mechanism for a wide variety of networks of scientific knowledge, such as
citation networks, co-citation networks, networks of collaborating scientists, and other
associative networks. The hypothesis that brokerage leads to greater collaborative creativity was
tested in a recent study of collaborative inventors of utility patents (Fleming, Mingo, & Chen,
2007). Fleming et al. demonstrated that cohesive networks hamper creativity but aid in its
transfer, particularly if the knowledge is complex and tacit. They tested more specific hypotheses
such as a person is more likely to create new combinations if he or she brokers relations between
otherwise disconnected collaborators. New combinations, as integrative work, are defined as a
mechanism of creativity. In contrast, our theory focuses on transformative discoveries, which are
conceptually more complex than new combinations of existing discoveries. For example,
transformative discoveries often introduce new concepts and theories before integrative work
becomes possible. The brokerage view also provides a simple explanation of why
communicating with otherwise disconnected peer scientists is a distinct character of creative
scientists (Heinze & Bauer, 2007).
Second, our theory is also related to literature-based discovery in that it shares the general goal
of finding generative mechanisms of discovery. On the other hand, it differs from Swanson’s
famous A-B-C model. Instead of searching for a transitive closure of AÎC, given AÎB and
BÎC, we focus on the brokerage mechanism of discovery, which aims to establish an
innovative connection between A and C. Another important difference is that we utilize
structural properties of a network, whereas such properties are not used in Swanson’s approach
and its variations.
Third, our theory is related to network evolution models in complex network analysis.
Preferential attachment models, for example, characterize the growth of a network in a process
that popular nodes will become even more popular as new nodes and links are added to the
network (Albert & Barabasi, 2002; Barabási et al., 2002). The popularity of a node can be
broadly defined by an attribute function of node, such as prestige, age, or by other ranking
mechanisms. Such processes often result in scale-free networks, which are characterized by
power law distributions of node degrees. While earlier preferential attachment models assume
that each new coming node is fully aware of the prestigious status of every existing node, more
recent studies have relaxed the assumption to ranking functions defined on a subset of the
existing nodes instead (Fortunato, Flammini, & Menczer, 2006). In contrast, the brokerage
mechanism in our theory provides a growth mechanism by building connections across structural
holes between two or more thematic networks. A brokerage-driven growth is distinct from
growths that can be modeled by preferential attachment.
Fourth, our theory extends earlier efforts for predicting Nobel Prize winners based on citation
ranking (Garfield, 1992). Thomson Reuters’ Citation Laureates1 are also in this category. Our
approach is distinct in several important ways. Although using citation ranking alone has the
advantage of simplicity, we take multiple factors such as structural holes and the rate of citation
growth into account in order to better accommodate the complexity. In addition, we are
concerned with the possibly delayed identification due to the time taken for the citation profile of
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
a scholarly publication to become prominent enough to be noticed. We expect that using
structural properties in the theory can resolve the issue to some extent.
Fifth, our theory provides an explanatory mechanism for the diffusion process associated with a
transformative discovery. Once a brokerage connection is established between previously
disparate areas, it would facilitate the information flow between these areas. In other words, we
expect that the newly discovered connection will accelerate the diffusion process. Interestingly,
the expected effect on diffusion can be explained in terms of the information foraging theory
(Pirolli, 2007). According to the information foraging theory, searchers need to evaluate multiple
patches of information. They need to make decisions on which patch they should focus and how
long they should spend on a patch before they move on. Their decisions are essentially
determined by a perceived profitability of each move. The higher the perceived profitability, the
more likely they will decide to go ahead and take the action. The newly discovered connection
will increase the perceived profitability because the discovery not only reduces the risk, but also
provides concrete and positive examples of success. Therefore, we could conjecture that the
increased perceived profitability will be translated into bursts of observed frequencies such as
citation and co-citation counts.
Finally, the theory is related to but distinct from the notion of co-citation pathways through
science (Small, 2000). The creation of co-citation pathways aims to traverse scientific literature
through a chain of highly co-cited pairs of papers. Small found a co-citation pathway of 331
highly cited documents starting from economics and ending in astrophysics (Small, 1999). He
observed that each successive document in this path embodies an information transition towards
the destination topic and, in most cases, such transitions are surprisingly smooth. In contrast, the
focus of our theory is on novel connections that bridge previously disparate fields. Although in
theory such connections may appear as part of a co-citation pathway, it seems to be more likely
that brokerage connections would either deviate from pathways of highly co-cited documents or
not be selected altogether because of a high co-citation threshold. Nevertheless, more
investigations are needed to clarify the relationships in detail.
3.2 Structural and Temporal Properties
Now we will focus on two specific properties of scientific discoveries that can be derived from
our theory, namely a structural property of a discovery in a network of scientific papers
measured by the betweenness centrality (Freeman, 1977) and a temporal property measured by
burstness of citations (Kleinberg, 2002).
Our theory states that a transformative discovery is made when a bridging connection is
established between two or more previously disconnected patches of knowledge. If we represent
knowledge in the form of networks, such bridging connections would be links between two or
more disconnected networks or components of a network. Such connections in networks can be
computationally identified using the betweenness centrality. In fact, one can even compute the
would-be centrality of a node if it were to have some of the non-existent connections. The
betweenness centrality of a particular node or link measures the importance of the node or link in
connecting any two nodes in the network. A node or link that is essential for linking many pairs
of nodes will have a high betweenness centrality. Therefore, a paper with a high betweenness
centrality is potentially a transformative discovery. In addition, it would be possible to use this
metric to identify potential future discoveries by calculating the would-be betweenness centrality
of a hypothetical connection between two disparate areas of existing knowledge networks. It is
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
possible to devise computer simulation algorithms to identify a short list of such candidates of
discovery to be made.
Several relevant concepts have been derived from betweenness centrality metrics. For example,
in CiteSpace (Chen, 2004; Chen, 2006), pivotal points in co-citation networks are identified
based on their betweenness centrality. These are the points that are cited with different co-
citation clusters. We have mentioned earlier that co-citation clusters correspond to thematic
structures. Therefore, points connecting different thematic structures are candidates of
intellectual turning points.
In a journal co-citation network, high betweenness centrality is an indicator of interdisciplinary
journals (Leydesdorff, 2007). Taken together, it suggests that the betweenness centrality
indicator can be used at various scales of granularity to indicate and predict transformative
changes. Furthermore, betweenness centrality is found to correlate with long-term citations
predicted into the future (Shibata, Kajikawa, & Matsushima, 2007). This finding would be
consistent with our conceptualization of scientific discovery in that scientists will pay constant
attention to structural holes for future discoveries.
The emphasis on betweenness centrality differentiates our theory from other approaches to
network evolution models, especially preferential attachment models. Instead of adding one link
at a time to the most prominent node in a given network, our theory says that a scientific
discovery needs to form a path spanning over an intellectual structural hole. As a result, the
newly added scientific discovery would have a high betweenness centrality. Our theory also
implies that a node with high betweenness centrality would be more valuable to a foraging
scientist than a node with a higher citation count but lower betweenness centrality. While the
latter may bring nothing new to a scientist who is well aware of the highly cited work, the former
may lead to new insights that a scientist may actually act on. Thus, betweenness centrality can be
translated into interestingness, which can be in turn translated into actionability. We have indeed
observed in our previous work that the most cited references are not necessarily the most
revolutionary ones (Chen, 2004; Chen & Kuljis, 2003).
Betweenness centrality is a structural property of a network. Our theory also leads to temporal
properties of an evolving network, for example, the burstness of citation of a reference over time.
Burst detection is a class of algorithms to identify changes of a variable over a period of time
with reference to others in the same population (Kleinberg, 2002). Our theory suggests that a
burst of citation could be a good indicator of a transformative discovery, especially from a
profitability-guided foraging point of view, when it is observed with a structural property such as
the betweenness centrality metric. As we have analyzed earlier, a brokerage discovery would
increase the perceived profitability for moving from one patch of knowledge to another. As a
result, the increased profitability and reduced risks should boost the adaptation and diffusion of
the new discovery.
Would the absence of such structural and temporal properties rule out the possibility of a
transformative discovery? This issue is concerned with the scope of the theory. However, we can
only partially address this issue through some illustrative case studies in this article. Further
investigations are needed. In the following section, we present some examples to further clarify
the major properties derived from the theory.
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
3.3 Integration
In this article, we focus on cases in which both structural and temporal properties are observed
and evaluate the role of brokerage mechanisms in such cases. In addition to study individual
properties such as the betweenness centrality, the burst rate, or citation counts, we introduce a
group of generic metrics
n(v, G, T,
2, …,
n) as indicators of the potential transformative
strength of a node v in a given network G over a time interval T with respect to n properties.
i is a function
i (v, G, T) in the range of [0, 1]. These metrics can be generically defined
as the geometric mean of multiple normalized properties
2, …,
n in the range of [0, 1]. The
maximum possible value of
is 1 when all the individual properties have the maximum value of
1. The minimum possible value of
is 0 when any of the individual properties is 0.
TGv n
In particular, in the following case studies, the metric
is defined based on
as follows. The definitions of
centrality and
burst can be found in (Brandes, 2001; Freeman, 1977;
Kleinberg, 2002).
burstburst bursti i
TGv =
1),,,( (2)
centralitycentrality centralityi i
TGv =
1),,,( (3)
citationcitation citationi i
TGv =
1),,,( (4)
centralityburstcentralityburst centralitybursti i
TGv =
),,,,( 2
2 (5)
citationcentralityburstcitationcentralityburst citationcentralitybursti i
TGv =
Note that
citation), a special case of the generic definition, ranks the significance of a reference
based on its citations as seen in earlier efforts for predicting Nobel Prize winners based on
citation counts (Garfield, 1992). We will also compare pair-wise Pearson correlation coefficients
2 and
3 indices of centrality, burst, and citation frequency in order to identify the
simplest and effective metrics among them.
In summary, our theory suggests that
indices would be a good indicator of potential
transformative discoveries. Furthermore, once a reference is identified with a high
index, the
theory provides an explanatory framework such that we can focus on the precise brokerage
connections at work. The theory also suggests alternative ways to model the evolution of a
network by taking brokerage connections into account. According to our theory, a subset of
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
Nobel Prize discoveries will be transformative discoveries. More transformative discoveries
would be expected from the recipients of a variety of other awards in science. In addition, we
expect that transformative discoveries can be identified by these
metrics at an earlier stage
than by single-dimensional ranking systems. In terms of diffusion, we expect that transformative
discoveries in general will lead to a more rapid and sustained diffusion process. If we see the
diffusion process as an information foraging process by the scientific community as a whole,
transformative discoveries, i.e., brokerage connections across structural holes, would have a
higher perceived profitability, which would motivate and stimulate the diffusion process. It also
follows that the domain-wide foraging process will spend more time with transformative
discoveries than other patches of scientific knowledge.
4 IllustrativeExamples
We consider three examples as our initial verification of the theory. We choose two topic areas
which have received Nobel Prize awards recently, namely, peptic ulcer and gene targeting, and
string theory in physics as the third topic area.
4.1 Procedure
In each case study, CiteSpace (Chen, 2006) was used to construct a co-citation network of the
references relevant to the chosen topic. We followed the general procedure described in (Chen,
2004; Chen, 2006). Bibliographic records were retrieved from the Web of Science with a topical
search for articles only. Reviews, editorials, and other document types were excluded from the
CiteSpace uses a time-slicing mechanism to generate a synthesized panoramic network
visualization based on a series of snapshots of the evolving network across consecutive time
slices. Each node in the network represents a reference cited by records in the retrieved dataset.
A line connecting two nodes represents one or more co-citation instances involving the two
references. Colors of co-citation links correspond to the earliest year in which co-citation
associations were first made. Each node is shown with a tree-ring of citation history in the same
color scheme, representing the history of citations received by the underlying reference.
Structural-hole and burst properties are depicted in two distinct colors – purple and red – in
visualizations. If a node is rendered with a purple ring, it means it has a strong betweenness
centrality. The purple color can only appear as the color of the outermost rim of a node. The
thickness of the purple ring is proportional to the degree of the centrality: the thicker, the
stronger the betweenness centrality. In contrast, if a node has red rings, these red rings represent
the presence and strength of its burst property. It can appear as the color of any inner rings of the
tree ring of a node. The presence of one or more red rings on a node indicates a significant
citation burst was detected. In other words, there was a period of time in which citations to the
reference increased sharply with respect to other references in the pool, hence the name
4.2 Case Study I: Peptic Ulcer
The Nobel Prize in Physiology or Medicine for 2005 was awarded jointly to Barry J. Marshall
and J. Robin Warren for their discovery of "the bacterium Helicobacter pylori and its role in
gastritis and peptic ulcer disease." We choose peptic ulcer as the topic area.
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
According to Marshall’s Nobel Prize lecture (Barry J. Marshall, 2005), Marshall and Warren
conducted a study in the 1980s and found 100% of 13 patients with duodenal ulcer were infected
by Helicobacter pylori. They discovered that peptic ulcer was caused by a bacterial infection,
unlike the then predominant understanding that ulcers were caused by other reasons such as
stress and acid in the stomach. The discovery established that very young children acquired the
Helicobacter organism, a chronic infection which caused a lifelong susceptibility to peptic ulcers.
Helicobacter was generally accepted after 1994 as the cause of most gastroduodenal diseases
including peptic ulcer and gastric cancer.
We analyzed a co-citation network of peptic ulcer research to identify structural and temporal
properties associated with the Helicobacter pylori discovery. Bibliographic records on peptic
ulcer between 1980 and 2007 were retrieved from the Web of Science with a topic search for
‘peptic ulcer.’ CiteSpace was used to construct a co-citation network of peptic ulcer research
between 1980 and 2007.
Figure 1 shows a series of 5-year snapshots of the co-citation network as it evolved over time. In
each diagram, five colors match to the five years in the order of blue, cyan, green, yellow, and
orange. Thus, an orange cluster would be formed in the 5th year of a given 5-year interval. For
example, a node with essentially a green tree-ring means the reference was mostly cited in the 3rd
year of the time interval.
The captions below network snapshots record the time interval, the number of nodes, the number
of co-citation links, and three thresholds. For example, the caption “1981-1985. N=210, E=2038.
3,3,20” under the first snapshot of the network means that the network was formed between 1981
and 1985, consisting of 210 references and 2,038 co-citation pairs. Each reference has received
at least 3 citations in one of the 5 years during this period.
According to independent sources (Pincock, 2005), the first major publication of the
Helicobacter pylori discovery was (B. J. Marshall & Warren, 1984). Marshall-1984 appeared in
the 1986-1990 network with essentially cyan and green citation rings, which means it received
its citations mostly in 1987 and 1988. It is quite possible that Marshall-1984 was cited as soon as
it was published in the 1981-1985 time interval, but it did not reach the top of the most cited list
until the 1986-1990 network. The six snapshots also demonstrate that peptic ulcer research has
evolved constantly with new references reaching the top cited levels.
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
Figure 1. A co-citation network of references on peptic ulcer research (1980-1990).
Figure 2 shows a panorama view of the entire time interval of the dataset (1980-2007). Marshall-
1984 has a prominent structural property – a high betweenness centrality (a large purple ring).
Although it does demonstrate a temporal property of burstness, its burst rate is detectable but not
as strong as some of its neighbors. The burst period was between 1986 and 1988, which is
consistent with our observations in the earlier 5-year snapshot series. The overview network
shows that Marshall-1984 is in a dense cluster with numerous references with citation bursts,
suggesting other high-impact references were present in the landscape of peptic ulcer research.
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
Figure 2. A co-citation network of references cited between 1981 and 2007 in peptic ulcer research.
As shown in Table 1, Marshall-1984 was the most cited reference (711 citations) and the highest
betweenness centrality (
centrality of 0.393). On the other hand, its burst rate ranked the 372nd.
Marshall and Warren encountered resistances in getting their discovery accepted by the peptic
ulcer research community. The slow acceptance was documented (Pincock, 2005), which may in
part explain its relatively low burst rate. In contrast, Marshall-1988 has the highest
2 of 0.416. It
was entitled Prospective double-blind trial of duodenal ulcer relapse after eradication of
Campylobacter pylori. In his Nobel Prize lecture, Marshall dated the acceptance of his work as
the 1994 NIN consensus conference in Washington DC.
Table 1. Top 5 most cited references in peptic ulcer research (1980-2007).
Citation Author Year Source Vol. Page
711 MARSHALL BJ 1984 LANCET 1 1311 0.138 0.393 0.232
581 PARSONNET J 1991 NEW ENGL J MED 325 1127 0.208 0.143 0.172
579 WARREN JR 1983 LANCET 1 1273 0.165 0.250 0.203
466 YAMADA T 1994 JAMA 272 65 0.635 0.071 0.213
421 MARSHALL BJ 1988 LANCET 2 1437 0.607 0.286 0.416
The last column in Table 1 contains the
2 index, i.e., the geometric mean of the burst and
centrality metrics. According to our theory, a transformative discovery is a brokerage between
previously disconnected areas of scientific knowledge. The
2 index takes into account both
structural and temporal properties that a discovery over a structural hole would demonstrate. In
this case, Marshall-1988 was the highest ranking candidate according to the
2 index, despite its
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
citation count of 421 was much less than Marshall-1984. Validating the true value of Marshall-
1988 is beyond our own expertise and beyond the scope of the article. Properly validating the
value of references with such strong combinations of structural and temporal properties will be
an important issue to be addressed in the future work of our construction of the theory. It is also
related to the potential power of predicting high-impact discoveries even before it reaches its
citation peaks or while they are overshadowed by other highly cited references.
4.3 Case Study II: Gene Targeting
The Nobel Prize in Physiology or Medicine for 2007 was awarded jointly to Mario R. Capecchi,
Martin J. Evans and Oliver Smithies for their discoveries of "principles for introducing specific
gene modifications in mice by the use of embryonic stem cells." This field of study is often
known as gene targeting. We applied the same procedure described earlier for gene targeting. We
used topic searches in the Web of Science for ‘gene target*’, ‘genetic* target*’, and ‘gene*
knock*’ for genetic knock-out, another term used to describe the techniques in general. A total of
8,160 bibliographic records were retrieved between 1985 and 2007.
Figure 3 shows an overview of a co-citation network of gene targeting references cited between
1985 and 2007. Notably, the three nodes with the highest betweenness centrality scores are all
connected to the 2007 Nobel Prize awards: Capecchi-1989, Mansour-1988, and Thomas-1987.
Here only the first author of each paper was recorded in the Web of Science cited reference field.
The three papers represent a series of innovations of fundamental techniques for gene targeting.
Unlike the case with Marshall-1984, all three groundbreaking gene targeting papers have strong
citation bursts, shown in Figure 1 as the thickened rising curves. It also becomes clear that these
curves have subsequently peaked and steadily declined, which means they are getting fewer and
fewer citations. The visualization confirms this pattern. The network shows that the most recent
active areas are located in the lower left quadrant of the visualization.
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
Figure 3. A co-citation network of references cited between 1985 and 2007 in gene targeting research.
References with the strongest betweenness centrality scores are labeled. The burst periods of their citations
are shown as the thickened curves in the three diagrams to the left.
The 2007 Nobel Prize awards mentioned the use of embryonic stem cells. Techniques developed
in embryonic stem cell research turned out to be critical to the gene targeting techniques. Martin
J. Evans, who shared the 2007 Nobel Prize, is known as the architect of embryonic stem cells.
The pioneering discovery made by Evans in 1981 (Evans & Kaufman, 1981) was in fact cited by
the Thomas-1987 gene targeting paper. Evans-1981 was cited 1,681 times in the Web of Science,
although it was not highly cited within the gene targeting dataset we analyzed. Techniques
developed by Evans were among the many building blocks that were necessary for the ultimate
gene targeting techniques. A number of questions can be addressed from our theory of discovery.
For example, how easy or how hard was it to discover Evans-1981 for the needs of gene
targeting? Who were the first citers of Evans-1981. What was Evans’ own research field and
how was it related to gene targeting? What are the other building blocks used by these Nobel
laureates in their discoveries? Were their discoveries taking place over an intellectual structural
hole? How did their discovery change the association between existing intellectual structures?
Table 2 lists the top 5 references by
2the geometric mean of
centrality and
burst. The 1st, 3rd,
and 4th references are connected to the Nobel Prize winning discoveries. Note that the first
discovery paper Thomas-1987 has the highest ranking although its citation count of 268 is not
the highest. The 2nd reference is a book. If we consider journal articles only, the first three
references would be all related to the Nobel discoveries.
Table 2. Top 5 references by
2 – the geometric mean of centrality and burstness.
Author Year Source Vol. Page Citations
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
THOMAS KR 1987 CELL 51 503 268 0.851 0.537 0.676
HOGAN B 1994 MANIPULATING MOUSE E BOOK 136 0.409 1.000 0.639
MANSOUR SL 1988 NATURE 336 348 354 0.940 0.366 0.586
CAPECCHI MR 1989 SCIENCE 244 1288 236 0.375 0.659 0.497
NAGY A 1993 P NATL ACAD SCI USA 90 8424 182 0.346 0.463 0.400
Figure 4. Nobel Prize winning discovery papers are ranked among the highest by the σ2 index.
Figure 5 is a visualization of the areas associated with the Nobel Prize winning discoveries in
gene targeting research. The visualization was generated based on citing articles with 15 or more
citations in the Web of Science. In other words, these citing articles themselves have made
impacts on the field in their own right. Co-cited references are aggregated into clusters. The
diffusion of knowledge is tracked by showing how co-citation footprints move from one cluster
to another over time and how long they stay in particular clusters. The history of the evolution
can be seen as an information foraging process participated in by all the scientists in the field.
For example, the embryo-derived stem cell (cluster #11) attracted a lot of citations in 1987
(shown as a high density cocitation cluster in red). In 1988, the foraging process moved to DNA
delivery method (cluster #19) above cluster #11. All three papers associated with the 2007 Nobel
Prize are concentrated in cluster #12 – gene correction. During 1989 and 1990, much of the
foraging process was inside cluster #12. We also studied the diffusion process over a longer
period of time and the foraging process appeared to spend much longer time with cluster #12
than any other clusters. Our general hypothesis is that transformative discoveries tend to retain
the foraging process longer than other patches of knowledge. Further investigations are needed.
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
The connection between structural-hole theory and information foraging theory is an important
research direction for further investigation.
Figure 5. A diffusion map of gene targeting research between 1985 and 2007. Selection criteria are at least 15
citations for citing articles and top 30 cited articles per time slice. Polygons represent clusters of co-cited
papers. Each cluster is labeled by title phrases selected from papers citing the cluster. Red lines depict co-
citations made in the current year. The concentrations of red lines track the context in which co-citation
clusters are referenced.
4.4 Case Study III: String Theory
The third illustrative example is string theory in physics (Schwarz, 1982). We have studied this
topic as an example of Kuhn’s scientific revolutions (Chen, 2004; Chen & Kuljis, 2003).
According to (Schwarz, 1982), two conceptual revolutions occurred in string theory: one was in
1980s and the other in 1990s. Using bibliographic records published between 1990 and 2003, we
conducted a similar study of string theory and focused on the two properties of the revolutionary
paper for the second string theory revolution.
Figure 6 shows an overview of a visualized co-citation network of references in the period of
1990-2003. According to Schwarz (1982), Polchinski-1995 marked the second string theory
revolution. Polchinkski-1995 is ranked the 5th by the geometric mean index. The visualization
shows it has a relatively strong betweenness centrality and its burst rate is not as prominent as a
few others in the field. Witten-1991 has the highest geometric mean index ranking, followed by
Maldacena-1998; both have shown strong betweenness centrality and burstness.
Maldacena-1998 is not only strong in both centrality and burstness, it is also the most cited
reference in this dataset. We contacted Juan Maldacena directly and asked him to identify the
nature of his major contributions in this article to String Theory. The transformative nature is
evident in his reply: “It connected two different kinds of theories: 1) particle theories or gauge
theories and 2) string theory. Many of the papers on string dualities (and this is one of them)
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
connect different theories. This one connects string theory to more conventional particle
theories.” Maldacena’s contribution is highlighted on the TIME 100 Innovator website2 as “he
forged a connection between the esoteric formulas of string theory and the rest of mainstream
physics.” Even more intriguingly from the perspective of our brokerage theory, he “has been able
to suggest a way to knit together two theories previously thought to be incompatible: quantum
mechanics, which deals with the universe at its smallest scales; and Einstein's general theory of
relativity, which deals with the very largest.” In addition, our search on the web reveals that he is
the recipient of the 2007 Dannie Heineman Prize for Mathematical Physics3 “for profound
developments in Mathematical Physics that have illuminated interconnections and launched
major research areas in Quantum Field Theory, String Theory, and Gravity.”
Figure 6. A co-citation network of references cited between 1990 and 2003 in string theory. Polchinski-1995
marked the beginning of the second string theory revolution. Maldacena-1998 is highly transformative and
brokerage link between string theory and particle theories. The three embedded plots show the burst periods
of citations of Witten-1991, Maldacena-1998, and Polchinski-1995.
Table 3 shows pair-wise Pearson correlation coefficients between normalized burst and centrality
scores, the
2 index of burst and centrality, and the
3 index of burst, centrality, and citation
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
frequency. The
2 and
3 indices are strongly correlated (r=0.9780), suggesting that, at least in
this case, the
3 index is redundant and we can simply focus on
2. The correlation coefficients
also show that burstness and centrality are almost independent measures, although they both
have some connections to citation counts. This is a simple justification of our choice to use both
burstness and centrality to construct
2 as an index of high-impact discoveries. More
comprehensive validations may consider other measures such as the h-index and its numerous
variations, e.g. (Antonakis & Lalive, 2008; Hirsch, 2005b).
Table 3. Pearson correlation coefficients between individual properties and synthetic indices.
burst ,
citation 0.8026 0.3618
burst 0.0409
burst ,
citation) 0.9780
5 DiscussionsandConclusions
We have introduced an explanatory and computational theory of transformative discovery in
science. The theory focuses on the role of making connections across structural holes between
two or more network representations of scientific knowledge in scientific discovery. This theory
provides a conceptual framework to connect a diverse range of theories of scientific change,
social capital of structural holes, and an extended information foraging theory for knowledge
5.1 Major Contributions
The theory lends itself to multiple instantiations of philosophical theories, sociological theories,
and information theories of intellectual change. For example, the emergence of new paradigms
can be seen as a newly established connection between existing disciplines. We know it is often
the case that scientific discoveries draw inspiration and critical enabling techniques from areas
outside their home fields as well their own ones. Paradigm-shifting changes would be detectable
as the center of citations moves in terms of structural properties’ change. From a sociological
perspective, the competition driven scientific discoveries can be explained in terms of the
competitive advantages brought in by the generalized notion of structural holes. In addition,
information theories and information foraging theories can explain why scientists should pay
special attention to interdisciplinary structural holes to maximize the profitability of their moves.
Betweenness centrality, citation burstness and the proposed metric can be used to provide
information scents along an information foraging path through a bibliographic forest. With the
recognition of the significance of these metrics a forager could make better estimates of the
profitability of alternative pathways.
The theory suggests that a high-impact discovery should be strong in both structural and
temporal properties: namely, the betweenness centrality and citation burstness. This theory is
built on the structure and dynamics of networks. It can be seen as an expansion of theories and
growth mechanisms based on citation counts alone, such as citation frequencies and h-index. The
three illustrative examples have shown that the two properties characterize our cases reasonably
well. The peptic ulcer case is an example in which citation burstness was relatively low. It may
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
be the case for a wider range of scientific change that has to fight for its acceptance. In contrast,
the gene targeting case is a satisfying example in which both properties are strongly related to
Nobel Prize winning discoveries. The string theory case was able to identify the paper that
trigged the second string theory revolution among a short list of top 5.
In a relevant study, also in this special issue, Bettencourt et al. focused on the changes in the
structure of collaboration of an emerging field (Bettencourt, Kaiser, & Kaur, This Issue). They
conjectured that new conceptual breakthroughs would typically lead to not only a rapid growth in
the number of scientists and publications, but also an increasingly tighter collaboration among
scientists. Indeed, our theory may help to identify mechanisms that lead to the increase of the
density of collaboration after a transformative scientific discovery. For example, the brokerage
nature of a transformative discovery implies that it will change the perceived return-risk ratio,
which in turn fosters the diffusion of knowledge, as a social navigation and foraging process,
across previously disparate areas of research. In other words, a newly established conceptual
pathway would open up new ways for scientists to collaborate.
The geometric mean of betweenness centrality and burstness is the first index derived from the
theory of scientific discovery. It identifies high-impact original discoveries and partially
overcomes the scenarios in which original publications were overshadowed by other highly cited
references. On the other hand, the three case studies also revealed that the discovery index may
identify additional publications. The status of such publications should be thoroughly
investigated. Are they in the same status as the Nobel Prize worthy discoveries? If so, it will be
an encouraging means to identify such discoveries ahead of Nobel Prize awards. If, on the other
hand, the prominence of these references was due to other reasons, one should identify these
reasons and use these reasons to mark the scope of the theory of discovery. For example, is
Marshall-1988 more significant than Marshall-1984? Why is Witten-1991 so prominent in both
properties in string theory?
Such unanswered questions may also provide potential research targets for historians of science,
philosophers and sociologists of science. For computer and information scientists, the proposed
theory offers a new framework for simulating the growth and decay of intellectual networks. One
may compare and combine different growth mechanisms such as single-link preferential
attachment and trailblazing mechanisms over intellectual and disciplinary structural holes. If we
define a semantic metric that measures the intellectual distance between both sides of a structural
hole, the theory implies that the larger the gap, the higher the potential impact. In terms of the
expanded information foraging theory, the expected returns are only part of the equation that
foragers have to consider. The risks can be reduced by spreading out the search and maintaining
a relatively low-cost of weak-ties with scientists who are different from ourselves, as observed
by Crane, Burt, and others.
5.2 Limitations and Future Work
The study of scientific discovery has a very broad, complex, and multidisciplinary scope. There
are many other approaches that we have not covered in this article, for example, modeling
evolving networks (Ausloos & Lambiotte, 2007; Bruckner, Ebeling, & Scharnhorst, 1990;
Koenig, Battiston, & Schweitzer, 2008; Lambiotte & Ausloos, 2007), citation histories of
scientific publications (Vlachy, 1985), Nobel Prize discoveries (Czerwon & Vlachy, 1986;
Zuckerman, 1967), and formal models of scientific revolutions (Sterman, 1985).
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
As open-notebook science and e-science increase in popularity more of the data generated during
the discovery process is becoming accessible to researchers. This data leaves additional
breadcrumbs for tracking the paths of innovation. Such data could provide another view into the
discovery process. The case studies described here rely on bibliographic data as an indicator of
the connectedness of ideas. New metrics might be developed from other sources such as the
contents of open laboratory notebooks. These sources could be useful for the creation of
additional metrics to supplement bibliometric analyses. Open notebook data would be
particularly valuable for studying the structure of paths which do not lead to Nobel Prize winning
discoveries but do constitute the bulk of scientific inquiry.
The work described in this article is the first step in our ongoing search towards a better
understanding of scientific discovery. Much work remains to be done to validate the theory with
large samples of discoveries and identify the status of various references highly ranked by the
geometric mean index of high-impact discovery. Many issues concerning the acceptance and
rejection of a new discovery need to be addressed. For example, why do we find some ideas
interesting whilst remaining indifferent to other ideas or strongly reject them? What is the
potential connection to interestingness research in the data mining community (Hilderman &
Hamilton, 2001; Silberschatz & Tuzhilin, 1996; Tan, Kumar, & Srivastava, 2002)? How do we
deal with uncertainties in puzzle solving and mystery solving processes (Chen, 2008)? How is
the theory quantitatively related to existing models of knowledge diffusion, such as epidemic
models, ant colony, and random walk models? How should the theory connect to the findings in
literature-based discovery? Should we differentiate use-driven discoveries from other discoveries
outside the so-called Pasteur’s quadrant (Stokes, 1997)? If so, what properties are useful?
Our long-term goal is to contribute to the understanding of generic mechanisms for scientific
discovery and the dynamics of scientific fields. The theory underlines the value of
interdisciplinary collaboration in science and the diffusion of knowledge. Given the increasing
interests in cyber-enabled discovery, e-science, and e-social science, the proposed theory is
expected to serve as a starting point for integrating conceptualizations of scientific change from
multiple disciplines and for empirical studies of science.
This work is supported in part by the National Science Foundation (NSF) under grant number
0612129, the US Department of Homeland Security through the Northeast Visualization and
Analytics Center (NEVAC), and the Chang Jiang Scholar program of the Chinese Ministry of
Education. Thanks to Xianwen Wang and Xiaoyu Zhu of Dalian University of Technology,
China, for their assistance in data collection and preliminary analysis of gene targeting and
peptic ulcer cases, Juan Maldacena, Institute for Advanced Study, for responding to our inquiries,
and anonymous reviewers for their detailed and constructive comments.
CiteSpace is freely available at Color versions of
the figures in this article are available at
6 References
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
Albert, R., & Barabasi, A. (2002). Statistical mechanics of complex networks. Reviews of
Modern Physics, 74(1), 47-97.
Antonakis, J., & Lalive, R. (2008). Quantifying scholarly impact: IQp versus the Hirsch h
Journal of the American Society for Information Science and Technology, 59(6), 956-969.
Ausloos, M., & Lambiotte, R. (2007). Drastic events make evolving networks. The European
Physical Journal B - Condensed Matter and Complex Systems, 57(1), 89-94.
Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of
the social network of scientific collaborations. Physica A, 311, 590-614.
Bederson, B. B., & Shneiderman, B. (2003). Theories for understanding information
visualization. In The Craft of Information Visualization: Readings and Reflections (pp.
349–351): Morgan Kaufmann.
Bettencourt, L. M. A., Castillo-Chavez, C., Kaiser, D., & Wojick, D. E. (2006). Report for the
Office of Scientific and Technical Information: Population Modeling of the Emergence
and Development of Scientific Fields.
Bettencourt, L. M. A., Kaiser, D. I., & Kaur, J. (This Issue). Scientific discovery and topological
transitions in collaboration networks. Journal of Informetrics.
Bettencourt, L. M. A., Kaiser, D. I., Kaur, J., Castillo-Chavez, C., & Wojick, D. E. (2008).
Population modeling of the emergence and development of scientific fields.
Scientometrics, 75(3), 495-518.
Börner, K., Maru, J. T., & Goldstone, R. L. (2004). The simultaneous evolution of author and
paper networks. PNAS, 101(Suppl. 1), 5266-5273.
Bradshaw, G. F., Langley, P. W., & Simon, H. A. (1983). Studying Scientific Discovery by
Computer Simulation (Vol. 222, pp. 971-975): American Association for the
Advancement of Science.
Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of Mathematical
Sociology, 25(2), 163-177.
Brannigan, A., & Wanner, R. A. (1983). Historical Distributions of Multiple Discoveries and
Theories of Scientific Change (Vol. 13, pp. 417-435): Sage Publications, Ltd.
Bruckner, E., Ebeling, W., & Scharnhorst, A. (1990). The application of evolution models in
scientometrics. Scientometrics, 18(1/2), 21-41.
Brush, S. G. (1994). Dynamics of theory change: The role of predictions. Paper presented at the
Proceedings of the 1994 biennial meeting of the Philosophy of Science Association, East
Lansing, MI.
Brush, S. G. (1995). Prediction and Theory Evaluation in Physics and Astronomy. In A. J. Kox
& D. M. Siegel (Eds.), No Truth Except in the Details (pp. 299-318). Dordrecht: Kluwer
Academic Publishers.
Burt, R. S. (1992). Structural Holes: The Social Structure of Competition. Cambridge,
Massachusetts: Harvard University Press.
Burt, R. S. (2001). The social capital of structural holes. In N. F. Guillen, R. Collins, P. England
& M. Meyer (Eds.), New Directions in Economic Sociology. New York: Russell Sage
Burt, R. S. (2004). Structural holes and good ideas. American Journal of Sociology, 110(2), 349-
Burt, R. S. (2005). Brokerage and Closure: An Introduction to Social Capital. Oxford, UK:
Oxford University Press.
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
Chen, C. (2003). Mapping Scientific Frontiers: The Quest for Knowledge Visualization. London:
Chen, C. (2004). Searching for intellectual turning points: Progressive Knowledge Domain
Visualization. Proc. Natl. Acad. Sci. USA, 101(suppl), 5303-5310.
Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns
in scientific literature. Journal of the American Society for Information Science and
Technology, 57(3), 359-377.
Chen, C. (2008). An information-theoretic view of visual analytics. IEEE Computer Graphics &
Applications, 28(1), 18-23.
Chen, C., & Kuljis, J. (2003). The rising landscape: A visual exploration of superstring
revolutions in physics. Journal of the American Society for Information Science and
Technology, 54(5), 435-446.
Chubin, D. E. (1976). The Conceptualization of Scientific Specialties. The Sociological
Quarterly, 17(4), 448-476.
Collins, R. (1998). The Sociology of Philosophies: A Global Theory of Intellectual Change.
Cambridge, MA: Harvard University Press.
Crane, D. (1972). Invisible Colleges: Diffusion of Knowledge in Scientific Communities. Chicago,
Illinois: University of Chicago Press.
Czerwon, H.-J., & Vlachy, J. (1986). Quantized hall effect publication and citation follow-ups of
a Nobel Prize discovery Czechoslovak Journal of Physics, 36(9), 1101-1106.
Davis, M. S. (1971). That's Interesting! Towards a Phenomenology of Sociology and a Sociology
of Phenomenology. Phil. Soc. Sci., 1, 309-344.
Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach
to the traveling salesman problem. IEEE Transactions on Evolutionary Computation,
1(1), 53-66.
Dunbar, K. (1993). Concept Discovery in a Scientific Domain. Cognitive Science, 17, 397-434.
Evans, M., & Kaufman, M. (1981). Establishment in culture of pluripotential cells from mouse
embryos. Nature, 292(5819), 154-156.
Fleming, L., Mingo, S., & Chen, D. (2007). Collaborative brokerage, generative creativity, and
creative success. Administrative Science Quarterly, 52, 443-475.
Fortunato, S., Flammini, A., & Menczer, F. (2006). Scale-free network growth by ranking. Phys.
Rev. Lett., 96, 218701.
Freeman, L. C. (1977). A set of measuring centrality based on betweenness. Sociometry, 40, 35-
Fuchs, S. (1993). A Sociological Theory of Scientific Change (Vol. 71, pp. 933-953): University
of North Carolina Press.
Garfield, E. (1992). Of Nobel Class: Part 2. Forecasting Nobel Prizes using citation data and the
odds against it. Current Contents, 35, 3-12.
Garfield, E., & Welljamsdorof, A. (1992). Of Nobel Class - a Citation Perspective on High-
Impact Research Authors. Theoretical Medicine, 13(2), 117-135.
Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks.
Proc. Natl. Acad. Sci. USA, 99, 7821-7826.
Glymour, C. (2004). The Automation of Discovery. Daedelus, Winter, 69-77.
Goffman, W., & Harmon, G. (1971). Mathematical approach to the prediction of scientific
discovery. Nature, 229, 103-104.
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
Goffman, W., & Newill, V. A. (1964). Generalisation of epidemic theory: an application to the
transmission of ideas. Nature, 204, 225-228.
Gordon, M. D., & Lindsay, R. K. (1996). Toward discovery support systems: A replication, re-
examination, and extension of Swanson's work on literature- based discovery of a
connection between Raynaud's and fish oil. Journal of the American Society for
Information Science, 47(2), 116-128.
Griffith, B. C., & Mullins, N. C. (1977). Coherent social groups in scientific change. Science,
177(4053), 959-964.
Guiffre, K. (1999). Sandpiles of opportunity: success in the art world. Social Forces, 77(3), 815-
Heinze, T., & Bauer, G. (2007). Characterizing creative scientists in nano-S&T: Productivity,
multidisciplinarity, and network brokerage in a longitudinal perspective Scientometrics,
70(3), 811-830.
Heinze, T., Shapira, P., Senker, J., & Kuhlmann, S. (2007). Identifying creative research
accomplishments: Methodology and results for nanotechnology and human genetics
Scientometrics, 70(1), 125-152.
Hilderman, R. J., & Hamilton, H. J. (2001). Knowledge Discovery and Measures of Interest.
Norwell, MA: Kluwer Academic Publishers.
Hirsch, J. E. (2005a). An index to quantify an individual's scientific output. PNAS, 102, 16569.
Hirsch, J. E. (2005b). An index to quantify an individual's scientific research output.
Proceedings of the National Academy of Sciences of the United States of America, 102,
Holton, G., Chang, H., & Jurkowitz, E. (1996). How a scientific discovery is made: a case
history. American Scientist, v84(n4), p364(312).
Hummon, N. P., & Doreian, P. (1989). Connectivity in a Citation Network - the Development of
DNA Theory. Social Networks, 11(1), 39-63.
Klahr, D., & Simon, H. A. (1999). Studies of scientific discovery: Complementary approaches
and convergent findings. Psychological Bulletin, 125(5), 524-543.
Kleinberg, J. (2002, July 23-26, 2002). Bursty and hierarchical structure in streams. Paper
presented at the Proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada.
Koenig, M. D., Battiston, S., & Schweitzer, F. (2008). Modeling Evolving Innovation Networks.
In A. Pyka & A. Scharnhorst (Eds.), Innovation Networks: New Approaches in Modeling
and Analyzing. Heidelberg: Springer.
Kuhn, T. S. (1962). The Structure of Scientific Revolutions. Chicago: University of Chicago
Kuhn, T. S. (1970). The Structure of Scientific Revolutions (2nd ed.): University of Chicago
Lambiotte, R., & Ausloos, M. (2007). From sand to networks: a study of multi-disciplinarity.
Eur. Phys. J., B 57, 89-94.
Laudan, L., Donovan, A., Laudan, R., Barker, P., Brown, H., Leplin, J., et al. (1986). Scientific
Change - Philosophical Models and Historical Research. Synthese, 69(2), 141-223.
Leydesdorff, L. (2007). Betweenness centrality as an indicator of the interdisciplinarity of
scientific journals. Journal of the American Society for Information Science and
Technology, 58(9), 1303-1319.
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
Liben-Nowell, D., & Kleinberg, J. (2008). Tracing Information Flow on a Global Scale Using
Internet Chain-Letter Data. PNAS, 105(12), 4633–4638.
Lindahal, B. I. B. (1992). Discovery, theory change, and the Nobel Prize: on the mechanism of
scientific evolution. Theoretical Medicine, 13(2), 97-231.
Lindsay, R. K., & Gordon, M. D. (1999). Literature-based discovery by lexical statistics. Journal
of the American Society for Information Science, 50(7), 574-587.
Liqiang, G., & Howard, J. H. (2006). Interestingness measures for data mining: A survey. ACM
Computing Surveys, 38(3), 9.
Marshall, B. J. (2005). Helicobacter connections. Nobel Lecture.
Marshall, B. J., & Warren, J. R. (1984). Unidentified curved bacilli in the stomach of patients
with gastritis and peptic ulceration. Lancet, 16(1), 1311-1315.
Mayer, R. E. (1995). The search for insight: Grappling with Gestalt Psychology's unanswered
questions. In R. J. Sternberg & J. E. Davidson (Eds.), The Nature of Insight (pp. 3-32).
Cambridge, MA: The MIT Press.
Morris, S. A., & Van der Veer Martens, B. (2008). Mapping research specialties. Annual Review
of Information Science and Technology, 42, 213-295.
Mullins, N. C., Hargens, L. L., Hecht, P. K., & Kick, E. L. (1977). The group structure of
cocitation clusters: A comparative study. American Sociological Review, 42(4), 552-562.
Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proc. Natl. Acad.
Sci. USA, 98, 404-409.
Nowakowska, M. (1973). An epidemical spread of scientific objects: an attempt of empirical
approach to some problems of meta-science. Theory and Decision, 3, 262-297.
NSF. (2007). Important Notice No. 130: Transformative Research. Retrieved Nov 19, 2008,
2008, from
Perkins, D. N. (1995). Insight in minds and genes. In R. J. Sternberg & J. E. Davidson (Eds.),
The Nature of Insight (pp. 495-534). Cambridge, MA: MIT Press.
Pincock, S. (2005). Nobel Prize winners Robin Warren and Barry Marshall. Lancet, 366(9495),
Pirolli, P. (2007). Information Foraging Theory: Adaptive Interaction with Information. Oxford,
England: Oxford University Press.
Radder, H. (1997). Philosophy and history of science: Beyond the Kuhnian paradigm. Studies in
History and Philosophy of Science, 28(4), 633-655.
Redner, S. (2004). Citation statistics from more than a century of Physical Review. Phys. Rev. E
(Submitted for Publication).
Sandstrom, P. E. (1999). Scholars as subsistence foragers. Bulletin of the American Society for
Information Science, 25(3).
Schaffner, K. F. (1992). Theory change in immunology part I: extended theories and scientific
progress. Theoretical Medicine, 13(2), 175-189.
Schwarz, J. H. (1982). Superstring Theory. Physics Reports-Review Section of Physics Letters,
89(3), 224-322.
Shibata, N., Kajikawa, Y., & Matsushima, K. (2007). Topological analysis of citation networks
to discover the future core articles Journal of the American Society for Information
Science and Technology, 58(6), 872-882.
Shneiderman, B. (2002). Leonardo's Laptop: Human Needs and the New Computing
Technologies. Cambridge, MA: MIT Press.
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
Shneiderman, B. (2007). Creativity support tools: accelerating discovery and innovation.
Communications of the ACM, 50(12), 20-32.
Silberschatz, A., & Tuzhilin, A. (1996). What makes patterns interesting in knowledge discovery
systems. IEEE Transactions on Knowledge and Data Engineering, 8(6), 970-974.
Simon, H. A. (1981). The Sciences of the Artificial. Cambridge, MA: MIT Press.
Simon, H. A., Langley, P. W., & Bradshaw, G. L. (1981). Scientific discovery as problem-
solving. Synthese, 47, 1–27.
Simon, H. A., Langley, P. W., & Bradshaw, G. L. (1981). Scientific Discovery as Problem
Solving. Syntheses, 47, 1-27.
Smalheiser, N. R., & Swanson, D. R. (1996). Indomethacin and Alzheimer's disease. Neurology,
46, 583.
Small, H. (1999). A passage through science: Crossing disciplinary boundaries. Library Trends,
48(1), 72-108.
Small, H. (2000). Charting pathways through science: Exploring Garfield's vision of a unified
index to science. In B. Cronin & H. B. Atkins (Eds.), The Web of Knowledge: A
Festschrift in Honor of Eugene Garfield (pp. 449-473). Medford, NJ: Information Today,
Small, H. (2006). Tracking and predicting growth areas in science. Scientometrics, 68(2), 595-
Small, H., & Crane, D. (1979). Specialties and disciplines in science and social science.
Scientometrics, 1, 445-461.
Snijders, T. A. B. (2001). The Statistical Evaluation of Social Network Dynamics. In M. E.
Sobel & M. P. Becker (Eds.), Sociological Methodology (pp. 361-395). Boston and
London: Basil Blackwell.
Sterman, J. D. (1985). The Growth of Knowledge: Testing a Theory of Scientific Revolutions
with a Formal Model. Technological Forecasting and Social Change, 28, 93–122.
Stokes, D. E. (1997). Pasteur's Quadrant: Basic Science and Technological Innovation:
Brookings Institution Press.
Sullivan, D., Koester, D., White, D. H., & Kern, R. (1980). Understanding Rapid Theoretical
Change in Particle Physics: A Month-By-Month Co-Citation Analysis. Scientometrics,
2(4), 309-319.
Swanson, D. R. (1986a). Fish oil, Raynaud's syndrome, and undiscovered public knowledge.
Perspectives in Biology and Medicine(30), 7-18.
Swanson, D. R. (1986b). Undiscovered public knowledge. Library Quarterly, 56(2), 103-118.
Swanson, D. R. (1987). Two medical literatures that are logically but not bibliographically
connected. Journal of the American Society for Information Science, 38, 228-233.
Swanson, D. R. (1988). Migraine and magnesium: Eleven neglected connections. Perspectives in
Biology and Medicine, 31, 526-557.
Swanson, D. R., & Smalheiser, N. R. (1999). Implicit text linkages between Medline records:
Using Arrowsmith as an aid to scientific discovery. Library Trends, 48, 48-59.
Tan, P.-N., Kumar, V., & Srivastava, J. (2002). Selecting the Right Interestingness Measure for
Association Patterns. Paper presented at the KDD'02, Edmonton, Alberta, Canada.
Valente, T. W. (1996). Social network thresholds in the diffusion of innovations. Social
Networks, 18, 69-89.
Vlachy, J. (1985). Citation histories of scientific publications: The data sources. Scientometrics,
7(3-6), 505-528.
Preprint: Journal of Informetrics Special Issue on Science of Science (To Appear 2009)
Wagner-Dobler, R. (1999). William Goffman's "Mathematical Approach to the Prediction of
Scientific Discovery" and its application to logic, revisited. Scientometrics, 46(3), 635-
Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications:
Cambridge University Press.
Zuckerman, H. (1967). Nobel Laureates in Science: Patterns of Productivity, Collaboration, and
Authorship (Vol. 32, pp. 391-403): American Sociological Association.
... The higher the centrality value, the more important the nodes are. Keywords with high centrality values of no less than 0.1 represent the focused research issues in the field to some extent [43]. After the three subject terms for retrieval are excluded, in the CNKI database, "TRIZ (theory of inventive problem solving) (0.35)" is the supporting point of the keyword network and the main focused research issue concerning SPDMs, followed by "life cycle (0.34)", ...
Full-text available
Effective product design strategies play a crucial role in promoting sustainable production, consumption, and disposal practices. In the literature, many such practices have been proposed by various researchers; however, it is challenging to understand which is more effective from the design point of view. This study employs bibliometric analysis and visualization software, CiteSpace, to comprehensively assess the literature on sustainable product design methods (SPDMs) from two major citation databases, namely, China National Knowledge Infrastructure and Web of Science, covering the period between 1999 and 2022. The objective of this review is to identify the latest research trends, progress, and disparities between China and the rest of the world in the field of SPDMs. The findings reveal that the development of SPDMs is characterized by a combination of multi-method integration and expansion, as well as qualitative and quantitative hybrids. However, research processes differ between China and other countries. Chinese studies focus on digital-driven development, rural revitalization, and system design, while research from other countries emphasizes a circular economy, distribution, additive manufacturing, and artificial intelligence. Nevertheless, both Chinese and international studies lack quantitative research methods in relation to socio-cultural sustainability. Future research should aim to deepen sustainable design methods and standards for specialized products, as well as to incorporate quantitative methods that address cultural and social sustainability dimensions. Open-source and shared SPDMs should be encouraged to promote methodological innovation that prioritizes multidimensional and systematic sustainable benefits, leveraging the strengths of new technologies.
... It is useful to analyze co-citation networks to detect if and when the number of citations of a particular reference has increased [31]. d) Novelty or sigma: This metric noted by Σ allows us to identify the references that have constituted a novelty in a scientific field [35]. e) Cluster labels are selected from titles of cited papers, and the selection criteria are based on the log-likelihood ratios (LLR) ranking [36]. ...
Full-text available
Although multiple bibliometric studies have been conducted to analyze publications on various topics within tourism, little attention has been dedicated to systematically analyzing scholarly production on the topic of tourism sustainability. Consequently, this paper aims to conduct a comprehensive bibliometric and systematic review of tourism sustainability. The collected data include 6326 publications retrieved from the Scopus database. The bibliometric technique consists of two major analyses: one on the domain (levels of analysis) and one on knowledge structures. The results indicated a remarkable evolution of tourism sustainability research involving authors, sources, and publications on this subject. Several associations and nations made significant contributions to this theme. Moreover, science mapping approaches were used to thoroughly grasp tourism sustainability-related research's social, intellectual, and conceptual structure. By giving in-depth overviews and insights connected to tourism sustainability and its knowledge structures, this review article has various implications for scientific study and practice.
... VOSviewer and CiteSpace are bibliometric analysis software based on information visualization written in Java. From its results, it is possible to trace the development of the literature as well as trends and research frontiers [17]. ...
Full-text available
The nexus between economic growth and the energy consumption is important in energy economics and economic development literature. The recent urgency in accelerating the decarbonization processes of economies has enhanced relevance to the analysis of this empirical relationship in the face of technological advances, regulatory changes, and the expanding uptake of renewable energy technologies worldwide. This article presents a bibliometric analysis of the literature on economic growth, energy consumption, and renewable energies in Brazil using clustering as a support tool. Between 1995 and 2022, 177 studies were published on Energy-Growth, Brazil, and Sustainability. It was found that China leads the ranking of publications, taking part in 28.84% of the production related to the link between economic growth and consumption of renewable energy in Brazil, followed by Turkey (21.52%) and Brazil (21.31%). The participation of other countries in the literature adds up to 32.29%. Keywords such as "ecological footprint," "environmental sustainability," "environmental Kuznets curve," and "emissions" show how in recent years, the literature has been guided by a discussion related to economic-environmental factors. Another result was that the Granger causality test is a research frontier with the most significant associated strength.
Full-text available
Introduction People represent the world in terms of two constructs: how something appears on the surface (appearance) and what it is underneath that surface (reality). Both constructs are central to various bodies of literature. What has not been done, however, is a systematic look at this collection of literature for overarching themes. Motivated by this research gap, the present scientometric review aimed to identify the common themes that penetrate through a century of scholarly work on appearance and reality. In doing so, this review also sketched a scientometric outline of the international network, pinpointing where the work was carried out. Methods With CiteSpace software, we computed an optimized document co-citation analysis with a sample of 4,771 documents (1929–2022), resulting in a network of 1,785 nodes. Results and discussion We identified impactful publications, summarized major intellectual movements, and identified five thematic clusters (“Perception of Counseling Services”, “Appearance and Reality in Sociocultural Evolution,” “Cultural Heritage and Identity,” “Media and Culture,” and “Cultural Identity”), all with theoretical and pragmatic implications which we discuss. A deeper look at these clusters reveals new empirical questions and promising directions for future research.
Full-text available
Based on practical construction experience, it is observed that a significant number of rockburst-prone regions exhibit structural surfaces of varying scales that exert a controlling influence on rockburst. Therefore, it is crucial to review the progress and hotspots in research on structure rockburst from a macroscopic perspective. This paper utilized CiteSpace software to summarize the references on structure rockburst research from the Web of Science Core Collection database from 2003 to 2022. The results include keyword cooccurrence and evolution analysis, and co-citation and cluster analysis. Through the in-depth analysis of structure rockburst literature, the research progress of structure rockburst in indoor experiments, numerical simulation, and on-site micro-seismic monitoring progress, the development trend and research hotspots were evaluated, and the current structure rockburst was discussed. The shortcomings of current research on structure rockbursts are discussed, and future development directions are proposed from the perspectives of structure rockburst mechanism, prediction and prevention measures.
Full-text available
THE PROBLEM OF HOW TO FIND INTERESTING but previously unknown implicit information within the scientific literature is addressed. Useful information can go unnoticed by anyone, even its creators, if it can be inferred only by considering together two (or more) separate articles neither of which cites the other and which have no authors in common. The two articles (or two sets of articles) are in that case said to be complementary and noninteractive. During the past twelve years, this project has uncovered and reported numerous complementary relationships in the biomedical literature that have led to new information of scientific interest. Several of these literature-based discoveries subsequently have been corroborated through clinical or laboratory investigations. We describe how to use software that can create suggestive juxtapositions of Medline records, the purpose being to help biomedical researchers detect new and useful relationships. This software, called Arrowsmith, has also proved valuable as a tool for investigating patterns of complementary relationships in natural language text (Arrowsmith can be used free of charge at
This is a progress report on a long-term project to study the dynamics of theory-change in science. I use the word dynamics, just as in mechanics, to denote the analysis of causes of change, as distinct from the description of change (“kinematics”). I want to find out why scientists accept or reject a theory.
We report experiments that use lexical statistics, such as word frequency counts, to discover hidden connections in the medical literature. Hidden connections are those that are unlikely to be found by examination of bibliographic citations or the use of standard indexing methods and yet establish a relationship between topics that might profitably be explored by scientific research. Our experiments were conducted with the MEDLINE medical literature database and follow and extend the work of Swanson.
We explore the possibility of using co-citation clusters over three time periods to track the emergence and growth of research areas, and predict their near term change. Data sets are from three overlapping six-year periods: 1996-2001,1997-2002 and 1998-2003. The methodologies of co-citation clustering, mapping, and string formation are reviewed, and a measure of cluster currency is defined as the average age of highly cited papers relative to the year span of the data set. An association is found between the currency variable in a prior period and the percentage change in cluster size and citation frequency in the following period. Various approaches to measuring growth and change in research fields are discussed.