Article

Acid sensitive background potassium channels K 2P 3.1 and K 2P 9.1 undergo rapid dynamin-dependent endocytosis

Article

Acid sensitive background potassium channels K 2P 3.1 and K 2P 9.1 undergo rapid dynamin-dependent endocytosis

If you want to read the PDF, try requesting it from the authors.

Abstract

Acid-sensitive, two-pore domain potassium channels, K 2P 3.1 and K 2P 9.1, are implicated in cardiac and nervous tissue responses to hormones, neurotransmitters and drugs. K 2P 3.1 and K 2P 9.1 leak potassium from the cell at rest and directly impact membrane potential. Hence altering channel number on the cell surface drives changes in cellular electrical properties. The rate of K 2P 3.1 and K 2P 9.1 delivery to and recovery from the plasma membrane determines both channel number at the cell surface and potassium leak from cells. This study examines the endocytosis of K 2P 3.1 and K 2P 9.1. Plasma membrane biotinylation was used to follow the fate of internalized GFP-tagged rat K 2P 3.1 and K 2P 9.1 transiently expressed in HeLa cells. Confocal fluorescence images were analyzed using Imaris software, which revealed that both channels are endocytosed by a dynamin-dependent mechanism and over the course of 60 min, move progressively toward the nucleus. Endogenous endocytosis of human K 2P 3.1 and K 2P 9.1 was examined in the lung carcinoma cell line, A549. Endogenous channels are endocytosed over a similar time-scale to the channels expressed transiently in HeLa cells. These findings both validate the use of recombinant systems and identify an endogenous model system in which K 2P 3.1 and K 2P 9.1 trafficking can be further studied.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... K 2P 3.1 utilises both CME and CIE pathways K 2P 3.1 (TWIK-related acid sensitive potassium channel 1 or TASK-1) and K 2P 9.1 (TWIK-related acid sensitive potassium channel 3 or TASK-3) show a high degree of homology in sequence and biophysical properties with both channels sensitive to external pH and regulated by similar modulators [8,31,58,99]. These channels have been proposed to function as heterodimers in some cells and indeed the forward transport of both channels appears to undergo similar regulation through post-translational modification and binding partner recruitment [23,41,71,72,85,86,100,103,121]. However, when considering K 2P 3.1 and K 2P 9.1 internalisation and subsequent sorting, these channels appear to diverge in their regulation. ...
... Under unstimulated conditions, both K 2P 3.1 and K 2P 9.1 are internalised and appear within the early endosome within minutes of permitting endocytosis (through removal of temperature block) [71]. Quantification of the number of sizedefined vesicles containing either of the internalised channels enabled comparison of the transit of both channels through the endocytic system. ...
... Quantification of the number of sizedefined vesicles containing either of the internalised channels enabled comparison of the transit of both channels through the endocytic system. At specific time points, a higher number (>50 % increase) of endocytosed vesicles containing K 2P 9.1 compared to K 2P 3.1 were consistently observed [71]. This suggests that under unstimulated conditions either K 2P 9.1 is endocytosed more readily than K 2P 3.1 or indeed that it is retained within the endocytic pathway for longer (i.e. ...
Article
Full-text available
Two-pore domain potassium (K2P) channels are implicated in an array of physiological and pathophysiological roles. As a result of their biophysical properties, these channels produce a background leak K(+) current which has a direct effect on cellular membrane potential and activity. The regulation of potassium leak from cells through K2P channels is of critical importance to cell function, development and survival. Controlling the cell surface expression of these channels is one mode to regulate their function and is achieved through a balance between regulated channel delivery to and retrieval from the cell surface. Here, we explore the modes of retrieval of K2P channels from the plasma membrane and observe that K2P channels are endocytosed in both a clathrin-mediated and clathrin-independent manner. K2P channels use a variety of pathways and show altered internalisation and sorting in response to external cues. These pathways working in concert, equip the cell with a range of approaches to maintain steady state levels of channels and to respond rapidly should changes in channel density be required.
... Besides their cholesterol mediated effects, statins can also prevent isoprenylation of Rab GTPase proteins, a key protein family on the regulation of protein trafficking [1][2][3][4][5], and therefore inhibit their function [6][7][8]. Decrease in membrane expression of proteins generally involves endocytosis, followed by either recycling or degradation [9][10][11][12]. Rab-GTPase family members have been shown to be involved in the control of basal membrane expression level of ion channels [13][14][15], in addition to mediating increase in IKs membrane expression in response to stress [16]. ...
Article
Full-text available
Statins, in addition to their cholesterol lowering effects, can prevent isoprenylation of Rab GTPase proteins, a key protein family for the regulation of protein trafficking. Rab-GTPases have been shown to be involved in the control of membrane expression level of ion channels, including one of the major cardiac repolarizing channels, IKs. Decreased IKs function has been observed in a number of disease states and associated with increased propensity for arrhythmias, but the mechanism underlying IKs decrease remains elusive. Ca ²⁺ -dependent PKC isoforms (cPKC) are chronically activated in variety of human diseases and have been suggested to acutely regulate IKs function. We hypothesize that chronic cPKC stimulation leads to Rab-mediated decrease in IKs membrane expression, and that can be prevented by statins. In this study we show that chronic cPKC stimulation caused a dramatic Rab5 GTPase-dependent decrease in plasma membrane localization of the IKs pore forming subunit KCNQ1, reducing IKs function. Our data indicates fluvastatin inhibition of Rab5 restores channel localization and function after cPKC-mediated channel internalization. Our results indicate a novel statin anti-arrhythmic effect that would be expected to inhibit pathological electrical remodeling in a number of disease states associated with high cPKC activation. Because Rab-GTPases are important regulators of membrane trafficking they may underlie other statin pleiotropic effects.
... We tested the hypothesis that stx8 may stimulate clathrin-mediated endocytosis of TASK-1 by coexpressing the channel and the SNARE protein with the C-terminus of the clathrin adaptor AP180 (AP180C), a construct that blocks clathrin-mediated endocytosis (Doherty and McMahon, 2009). Coexpression of TASK-1 with AP180C in oocytes caused a significant increase in TASK-1 current ( Figure 4A), consistent with the idea that there may be constitutive endocytosis of TASK-1 channels (Mant et al., 2013). Furthermore, the effect of stx8 on TASK-1 current was substantially reduced by coexpression of AP180C ( Figure 4A). ...
Article
Full-text available
We found that the endosomal SNARE protein syntaxin-8 interacts with the acid-sensitive potassium channel TASK-1 and studied the functional relevance of this interaction. The two proteins were expressed in Xenopus oocytes and in mammalian cell lines. Co-expression of syntaxin-8 caused a fourfold reduction in TASK-1 current, a corresponding reduction in the expression of TASK-1 at the cell surface and a marked increase in the rate of endocytosis of the channel. TASK-1 and syntaxin-8 were colocalized in the early endosomal compartment as indicated by the endosomal markers 2xFYVE and rab5. The stimulatory effect of the SNARE protein on the endocytosis of the channel was abolished when both an endocytosis signal in TASK-1 and an endocytosis signal in syntaxin-8 were mutated. A syntaxin-8 mutant which cannot assemble with other SNARE proteins had virtually the same effects as wild-type syntaxin-8. TIRF microscopy showed formation and endocytosis of vesicles containing fluorescence-tagged clathrin, TASK-1 and/or syntaxin-8. Our results suggest that the unassembled form of syntaxin-8 and the potassium channel TASK-1 are internalised via clathrin-mediated endocytosis in a cooperative manner. This implies that syntaxin-8 regulates the endocytosis of TASK-1. Our study supports the idea that endosomal SNARE proteins can have functions unrelated to membrane fusion.
Article
Full-text available
Despite widespread use of volatile general anesthetics for well over a century, the mechanisms by which they alter specific CNS functions remain unclear. Here, we present evidence implicating the two-pore domain, pH-sensitive TASK-1 channel as a target for specific, clinically important anesthetic effects in mammalian neurons. In rat somatic motoneurons and locus coeruleus cells, two populations of neurons that express TASK-1 mRNA, inhalation anesthetics activated a neuronal K(+) conductance, causing membrane hyperpolarization and suppressing action potential discharge. These membrane effects occurred at clinically relevant anesthetic levels, with precisely the steep concentration dependence expected for anesthetic effects of these compounds. The native neuronal K(+) current displayed voltage- and time-dependent properties that were identical to those mediated by the open-rectifier TASK-1 channel. Moreover, the neuronal K(+) channel and heterologously expressed TASK-1 were similarly modulated by extracellular pH. The decreased cellular excitability associated with TASK-1 activation in these cell groups probably accounts for specific CNS effects of anesthetics: in motoneurons, it likely contributes to anesthetic-induced immobilization, whereas in the locus coeruleus, it may support analgesic and hypnotic actions attributed to inhibition of those neurons.
Article
Full-text available
Two-pore domain potassium (K(2P)) channels play fundamental roles in cellular processes by enabling a constitutive leak of potassium from cells in which they are expressed, thus influencing cellular membrane potential and activity. Hence, regulation of these channels is of critical importance to cellular function. A key regulatory mechanism of K(2P) channels is the control of their cell surface expression. Membrane protein delivery to and retrieval from the cell surface is controlled by their passage through the secretory and endocytic pathways, and post-translational modifications regulate their progression through these pathways. All but one of the K(2P) channels possess consensus N-linked glycosylation sites, and here we demonstrate that the conserved putative N-glycosylation site in K(2P)3.1 and K(2P)9.1 is a glycan acceptor site. Patch clamp analysis revealed that disruption of channel glycosylation reduced K(2P)3.1 current, and flow cytometry was instrumental in attributing this to a decreased number of channels on the cell surface. Similar findings were observed when cells were cultured in reduced glucose concentrations. Disruption of N-linked glycosylation has less of an effect on K(2P)9.1, with a small reduction in number of channels on the surface observed, but no functional implications detected. Because nonglycosylated channels appear to pass through the secretory pathway in a manner comparable with glycosylated channels, the evidence presented here suggests that the decreased number of nonglycosylated K(2P)3.1 channels on the cell surface may be due to their decreased stability.
Article
Full-text available
The acid-sensitive neuronal potassium leak channel, KCNK3, is vital for setting the resting membrane potential and is the primary target for volatile anesthetics. Recent reports demonstrate that KCNK3 activity is down-regulated by PKC; however, the mechanisms responsible for PKC-induced KCNK3 down-regulation are undefined. Here, we report that endocytic trafficking dynamically regulates KCNK3 activity. Phorbol esters and Group I metabotropic glutamate receptor (mGluR) activation acutely decreased both native and recombinant KCNK3 currents with concomitant KCNK3 surface losses in cerebellar granule neurons and cell lines. PKC-mediated KCNK3 internalization required the presence of both 14-3-3β and a novel potassium channel endocytic motif, because depleting either 14-3-3β protein levels or ablating the endocytic motif completely abrogated PKC-regulated KCNK3 trafficking. These results demonstrate that neuronal potassium leak channels are not static membrane residents but are subject to 14-3-3β-dependent regulated trafficking, providing a straightforward mechanism to modulate neuronal excitability and synaptic plasticity by Group I mGluRs.
Article
Full-text available
Being deeply connected to signalling, cell dynamics, growth, regulation, and defence, endocytic processes are linked to almost all aspects of cell life and disease. In this review, we focus on endosomes in the classical endocytic pathway, and on the programme of changes that lead to the formation and maturation of late endosomes/multivesicular bodies. The maturation programme entails a dramatic transformation of these dynamic organelles disconnecting them functionally and spatially from early endosomes and preparing them for their unidirectional role as a feeder pathway to lysosomes.
Article
Full-text available
The molecular mechanisms mediating cell surface trafficking of caveolae are unknown. Caveolae bud from plasma membranes to form free carrier vesicles through a "pinching off" or fission process requiring cytosol and driven by GTP hydrolysis (Schnitzer, J.E., P. Oh, and D.P. McIntosh. 1996. Science. 274:239-242). Here, we use several independent techniques and functional assays ranging from cell-free to intact cell systems to establish a function for dynamin in the formation of transport vesicles from the endothelial cell plasma membrane by mediating fission at the neck of caveolae. This caveolar fission requires interaction with cytosolic dynamin as well as its hydrolysis of GTP. Expression of dynamin in cytosol as well as purified recombinant dynamin alone supports GTP-induced caveolar fission in a cell-free assay whereas its removal from cytosol or the addition to the cytosol of specific antibodies for dynamin inhibits this fission. Overexpression of mutant dynamin lacking normal GTPase activity not only inhibits GTP-induced fission and budding of caveolae but also prevents caveolae-mediated internalization of cholera toxin B chain in intact and permeabilized endothelial cells. Analysis of endothelium in vivo by subcellular fractionation and immunomicroscopy shows that dynamin is concentrated on caveolae, primarily at the expected site of action, their necks. Thus, through its ability to oligomerize, dynamin appears to form a structural collar around the neck of caveolae that hydrolyzes GTP to mediate internalization via the fission of caveolae from the plasma membrane to form free transport vesicles.
Article
Full-text available
The activity of two pore domain potassium (K2P) channels regulates neuronal excitability and cell firing. Post-translational regulation of K2P channel trafficking to the membrane controls the number of functional channels at the neuronal membrane affecting the functional properties of neurons. In this review, we describe the general features of K channel trafficking from the endoplasmic reticulum (ER) to the plasma membrane via the Golgi apparatus then focus on established regulatory mechanisms for K2P channel trafficking. We describe the regulation of trafficking of TASK channels from the ER or their retention within the ER and consider the competing hypotheses for the roles of the chaperone proteins 14-3-3, COP1 and p11 in these processes and where these proteins bind to TASK channels. We also describe the localisation of TREK channels to particular regions of the neuronal membrane and the involvement of the TREK channel binding partners AKAP150 and Mtap2 in this localisation. We describe the roles of other K2P channel binding partners including Arf6, EFA6 and SUMO for TWIK1 channels and Vpu for TASK1 channels. Finally, we consider the potential importance of K2P channel trafficking in a number of disease states such as neuropathic pain and cancer and the protection of neurons from ischemic damage. We suggest that a better understanding of the mechanisms and regulations that underpin the trafficking of K2P channels to the plasma membrane and to localised regions therein may considerably enhance the probability of future therapeutic advances in these areas.
Article
Full-text available
Acid-sensitive two-pore domain potassium channels (K2P3.1 and K2P9.1) play key roles in both physiological and pathophysiological mechanisms, the most fundamental of which is control of resting membrane potential of cells in which they are expressed. These background “leak” channels are constitutively active once expressed at the plasma membrane, and hence tight control of their targeting and surface expression is fundamental to the regulation of K+ flux and cell excitability. The chaperone protein, 14-3-3, binds to a critical phosphorylated serine in the channel C termini of K2P3.1 and K2P9.1 (Ser393 and Ser373, respectively) and overcomes retention in the endoplasmic reticulum by βCOP. We sought to identify the kinase responsible for phosphorylation of the terminal serine in human and rat variants of K2P3.1 and K2P9.1. Adopting a bioinformatic approach, three candidate protein kinases were identified: cAMP-dependent protein kinase, ribosomal S6 kinase, and protein kinase C. In vitro phosphorylation assays were utilized to determine the ability of the candidate kinases to phosphorylate the channel C termini. Electrophysiological measurements of human K2P3.1 transiently expressed in HEK293 cells and cell surface assays of GFP-tagged K2P3.1 and K2P9.1 enabled the determination of the functional implications of phosphorylation by specific kinases. All of our findings support the conclusion that cAMP-dependent protein kinase is responsible for the phosphorylation of the terminal serine in both K2P3.1 and K2P9.1.
Article
Full-text available
Caveolae are long-lived plasma membrane microdomains composed of caveolins, cavins, and a cholesterol-rich membrane. Little is known about how caveolae disassemble and how their coat components are degraded. We studied the degradation of caveolin-1 (CAV1), a major caveolar protein, in CV1 cells. CAV1 was degraded very slowly, but turnover could be accelerated by compromising caveolae assembly. Now, CAV1 became detectable in late endosomes (LE) and lysosomes where it was degraded. Targeting to the degradative pathway required ubiquitination and the endosomal sorting complex required for transport (ESCRT) machinery for inclusion into intralumenal vesicles in endosomes. A dual-tag strategy allowed us to monitor exposure of CAV1 to the acidic lumen of individual, maturing LE in living cells. Importantly, we found that "caveosomes," previously described by our group as independent organelles distinct from endosomes, actually correspond to late endosomal compartments modified by the accumulation of overexpressed CAV1 awaiting degradation. The findings led us to a revised model for endocytic trafficking of CAV1.
Article
Full-text available
Endocytosis is a complex process fulfilling many cellular and developmental functions. Understanding how it is regulated and integrated with other cellular processes requires a comprehensive analysis of its molecular constituents and general design principles. Here, we developed a new strategy to phenotypically profile the human genome with respect to transferrin (TF) and epidermal growth factor (EGF) endocytosis by combining RNA interference, automated high-resolution confocal microscopy, quantitative multiparametric image analysis and high-performance computing. We identified several novel components of endocytic trafficking, including genes implicated in human diseases. We found that signalling pathways such as Wnt, integrin/cell adhesion, transforming growth factor (TGF)-beta and Notch regulate the endocytic system, and identified new genes involved in cargo sorting to a subset of signalling endosomes. A systems analysis by Bayesian networks further showed that the number, size, concentration of cargo and intracellular position of endosomes are not determined randomly but are subject to specific regulation, thus uncovering novel properties of the endocytic system.
Article
Full-text available
Cholesterol is an important determinant of cardiac electrical properties. However, underlying mechanisms are still poorly understood. Here, we examine the hypothesis that cholesterol modulates the turnover of voltage-gated potassium channels based on previous observations showing that depletion of membrane cholesterol increases the atrial repolarizing current I(Kur). Whole-cell currents and single-channel activity were recorded in rat adult atrial myocytes (AAM) or after transduction with hKv1.5-EGFP. Channel mobility and expression were studied using fluorescence recovery after photobleaching (FRAP) and 3-dimensional microscopy. In both native and transduced-AAMs, the cholesterol-depleting agent MbetaCD induced a delayed ( approximately 7 min) increase in I(Kur); the cholesterol donor LDL had an opposite effect. Single-channel recordings revealed an increased number of active Kv1.5 channels upon MbetaCD application. Whole-cell recordings indicated that this increase was not dependent on new synthesis but on trafficking of existing pools of intracellular channels whose exocytosis could be blocked by both N-ethylmaleimide and nonhydrolyzable GTP analogues. Rab11 was found to coimmunoprecipitate with hKv1.5-EGFP channels and transfection with Rab11 dominant negative (DN) but not Rab4 DN prevented the MbetaCD-induced I(Kur) increase. Three-dimensional microscopy showed a decrease in colocalization of Kv1.5 and Rab11 in MbetaCD-treated AAM. These results suggest that cholesterol regulates Kv1.5 channel expression by modulating its trafficking through the Rab11-associated recycling endosome. Therefore, this compartment provides a submembrane pool of channels readily available for recruitment into the sarcolemma of myocytes. This process could be a major mechanism for the tuning of cardiac electrical properties and might contribute to the understanding of cardiac effects of lipid-lowering drugs.
Article
Full-text available
The role of human dynamin in receptor-mediated endocytosis was investigated by transient expression of GTP-binding domain mutants in mammalian cells. Using assays which detect intermediates in coated vesicle formation, the dynamin mutants were found to block endocytosis at a stage after the initiation of coat assembly and preceding the sequestration of ligands into deeply invaginated coated pits. Membrane transport from the ER to the Golgi complex was unaffected indicating that dynamin mutants specifically block early events in endocytosis. These results demonstrate that mutations in the GTP-binding domain of dynamin block Tfn-endocytosis in mammalian cells and suggest that a functional dynamin GTPase is required for receptor-mediated endocytosis via clathrin-coated pits.
Article
Full-text available
Small GTPases of the rab family are crucial elements of the machinery that controls membrane traffic. In the present study, we examined the distribution and function of rab11. Rab11 was shown by confocal immunofluorescence microscopy and EM to colocalize with internalized transferrin in the pericentriolar recycling compartment of CHO and BHK cells. Expression of rab11 mutants that are preferentially in the GTP- or GDP-bound state caused opposite effects on the distribution of transferrin-containing elements; rab11-GTP expression caused accumulation of labeled elements in the perinuclear area of the cell, whereas rab11-GDP caused a dispersion of the transferrin labeling. Functional studies showed that the early steps of uptake and recycling for transferrin were not affected by overexpression of rab11 proteins. However, recycling from the later recycling endosome was inhibited in cells overexpressing the rab11-GDP mutant. Rab5, which regulates early endocytic trafficking, acted before rab11 in the transferrin-recycling pathway as expression of rab5-GTP prevented transport to the rab11-positive recycling endosome. These results suggest a novel role for rab11 in controlling traffic through the recycling endosome.
Article
Full-text available
Volatile anesthetics produce safe, reversible unconsciousness, amnesia and analgesia via hyperpolarization of mammalian neurons. In molluscan pacemaker neurons, they activate an inhibitory synaptic K+ current (IKAn), proposed to be important in general anesthesia. Here we show that TASK and TREK-1, two recently cloned mammalian two-P-domain K+ channels similar to IKAn in biophysical properties, are activated by volatile general anesthetics. Chloroform, diethyl ether, halothane and isoflurane activated TREK-1, whereas only halothane and isoflurane activated TASK. Carboxy (C)-terminal regions were critical for anesthetic activation in both channels. Thus both TREK-1 and TASK are possibly important target sites for these agents.
Article
Full-text available
With a bang, a new family of potassium channels has exploded into view. Although KCNK channels were discovered only five years ago, they already outnumber other channel types. KCNK channels are easy to identify because of their unique structure — they possess two pore-forming domains in each subunit. The new channels function in a most remarkable fashion: they are highly regulated, potassium-selective leak channels. Although leak currents are fundamental to the function of nerves and muscles, the molecular basis for this type of conductance had been a mystery. Here we review the discovery of KCNK channels, what has been learned about them and what lies ahead. Even though two-P-domain channels are widespread and essential, they were hidden from sight in plain view — our most basic questions remain to be answered.
Article
Full-text available
We have investigated the expression of TASK-1, a pH-sensitive, twin-pore domain K(+) channel in the rat heart. A mammalian cell line of Chinese hamster ovary cells (CHO), transfected with a plasmid containing mouse TASK-1, demonstrated the specificity of the anti-TASK-1 antibody. TASK-1 expression in cardiac tissue was initially demonstrated by Western blot and then localized by immunofluorescence. In single rat ventricular myocytes, strong staining of the TASK-1 protein was located at the intercalated disks and across the cell in a striated pattern, corresponding to the transverse axial tubular network (T tubules). In contrast, single rat atrial myocytes were stained at the intercalated disks with a weak punctate, striated pattern corresponding to underdeveloped T tubules. Also, formamide was used to induce the detubulation of ventricular myocytes, which enabled confirmation that TASK-1 protein expression occurs in T tubules. Consistent with this, RT-PCR revealed the expression of TASK-1 mRNA in total RNA from both the ventricles and atria. In this study, we conclusively demonstrated that TASK-1 protein and mRNA were expressed in rat atrial and ventricular tissue. The extensive distribution of TASK-1 shown to exist within myocyte membranes may provide a potential future target for antiarrhythmic drugs.
Article
Full-text available
Proteins with dibasic retention motifs are subject to retrograde transport to endoplasmic reticulum (ER) by COPI-coated vesicles. As forward transport requires escape from ER retention, general release mechanisms have been expected. Here, KCNK3 potassium channels are shown to bear two cytoplasmic trafficking motifs: an N-terminal dibasic site that binds beta-COP to hold channels in ER and a C-terminal "release" site that binds the ubiquitous intracellular regulator 14-3-3beta on a nonclassical motif in a phosphorylation-dependent fashion to suppress beta-COP binding and allow forward transport. The strategy appears to be common. The major histocompatibility antigen class II-associated invariant chain Iip35 exhibits dibasic retention, carries a release motif, and shows mutually exclusive binding of beta-COP and 14-3-3beta on adjacent N-terminal sites. Other retained proteins are demonstrated to carry functional 14-3-3beta release motifs.
Article
Full-text available
The plasma membrane is the interface between cells and their harsh environment. Uptake of nutrients and all communication among cells and between cells and their environment occurs through this interface. 'Endocytosis' encompasses several diverse mechanisms by which cells internalize macromolecules and particles into transport vesicles derived from the plasma membrane. It controls entry into the cell and has a crucial role in development, the immune response, neurotransmission, intercellular communication, signal transduction, and cellular and organismal homeostasis. As the complexity of molecular interactions governing endocytosis are revealed, it has become increasingly clear that it is tightly coordinated and coupled with overall cell physiology and thus, must be viewed in a broader context than simple vesicular trafficking.
Article
Full-text available
Representational difference analysis (RDA) of human breast cancer was used to discover a novel amplicon located at chromosomal region 8q24.3. We examined a series of breast cancer samples harboring amplification of this region and determined that KCNK9 is the sole overexpressed gene within the amplification epicenter. KCNK9 encodes a potassium channel that is amplified from 3-fold to 10-fold in 10% of breast tumors and overexpressed from 5-fold to over 100-fold in 44% of breast tumors. Overexpression of KCNK9 in cell lines promotes tumor formation and confers resistance to both hypoxia and serum deprivation, suggesting that its amplification and overexpression plays a physiologically important role in human breast cancer.
Article
Full-text available
TASK3 gene (Kcnk9) is amplified and overexpressed in several types of human carcinomas. In this report, we demonstrate that a point mutation (G95E) within the consensus K+ filter of TASK3 not only abolished TASK3 potassium channel activity but also abrogated its oncogenic functions, including proliferation in low serum, resistance to apoptosis, and promotion of tumor growth. Furthermore, we provide evidence that TASK3G95E is a dominant-negative mutation, because coexpression of the wild-type and the mutant TASK3 resulted in inhibition of K+ current of wild-type TASK3 and its tumorigenicity in nude mice. These results establish a direct link between the potassium channel activity of TASK3 and its oncogenic functions and imply that blockers for this potassium channel may have therapeutic potential for the treatment of cancers.
Article
Full-text available
Rat mature cerebellar granule, unlike hippocampal neurons, die by apoptosis when cultured in a medium containing a physiological concentration of K+ but survive under high external K+ concentrations. Cell death in physiological K+ parallels the developmental expression of the TASK-1 and TASK-3 subunits that encode the pH-sensitive standing outward K+ current IKso. Genetic transfer of the TASK subunits in hippocampal neurons, lacking IKso, induces cell death, while their genetic inactivation protects cerebellar granule neurons. Neuronal death of cultured rat granule neurons is also prevented by conditions that specifically reduce K+ efflux through the TASK-3 channels such as extracellular acidosis and ruthenium red. TASK leak K+ channels thus play an important role in K+-dependent apoptosis of cerebellar granule neurons in culture.
Article
Full-text available
Dynamin is essential for clathrin-dependent coated vesicle formation. It is required for membrane budding at a late stage during the transition from a fully formed pit to a pinched-off vesicle. Dynamin may also fulfill other roles during earlier stages of vesicle formation. We have screened about 16,000 small molecules and have identified 1, named here dynasore, that interferes in vitro with the GTPase activity of dynamin1, dynamin2, and Drp1, the mitochondrial dynamin, but not of other small GTPases. Dynasore acts as a potent inhibitor of endocytic pathways known to depend on dynamin by rapidly blocking coated vesicle formation within seconds of dynasore addition. Two types of coated pit intermediates accumulate during dynasore treatment, U-shaped, half formed pits and O-shaped, fully formed pits, captured while pinching off. Thus, dynamin acts at two steps during clathrin coat formation; GTP hydrolysis is probably needed at both steps.
Article
Full-text available
Amplification of the kcnk9 gene and overexpression of the encoded channel protein (TASK-3) seems to be involved in carcinogenesis. In the present work, TASK-3 expression of melanoma cells has been studied. For the investigation of TASK-3-specific immunolabelling, a monoclonal antibody has been developed and applied along with two, commercially available polyclonal antibodies targeting different epitopes of the channel protein. Both primary and metastatic melanoma cells proved to be TASK-3 positive, showing prominent intracellular TASK-3-specific labelling; mostly concentrating around or in the proximity of the nuclei. The immunoreaction was associated with the nuclear envelope, and with the processes of the cells and it was also present in the cell surface membrane. Specificity of the immunolabelling was confirmed by Western blot and transfection experiments. As TASK-3 immunopositivity of benign melanocytes could also be demonstrated, the presence or absence of TASK-3 channels cannot differentiate between malignant and non-malignant melanocytic tumours.
Article
Full-text available
Caveolae are a highly abundant but enigmatic feature of mammalian cells. They form remarkably stable membrane domains at the plasma membrane but can also function as carriers in the exocytic and endocytic pathways. The apparently diverse functions of caveolae, including mechanosensing and lipid regulation, might be linked to their ability to respond to plasma membrane changes, a property that is dependent on their specialized lipid composition and biophysical properties.
Article
Full-text available
Water reabsorption in the renal collecting duct is regulated by arginine vasopressin (AVP). AVP induces the insertion of the water channel aquaporin-2 (AQP2) into the plasma membrane of principal cells, thereby increasing the osmotic water permeability. The redistribution of AQP2 to the plasma membrane is a cAMP-dependent process and thus a paradigm for cAMP-controlled exocytic processes. Using primary cultured rat inner medullary collecting duct cells, we show that the redistribution of AQP2 to the plasma membrane is accompanied by the reorganization of microtubules and the redistribution of the small GTPase Rab11. In resting cells, AQP2 is colocalized with Rab11 perinuclearly. AVP induced the redistribution of AQP2 to the plasma membrane and of Rab11 to the cell periphery. The redistribution of both proteins was increased when microtubules were depolymerized by nocodazole. In addition, the depolymerization of microtubules prevented the perinuclear positioning of AQP2 and Rab11 in resting cells, which was restored if nocodazole was washed out and microtubules repolymerized. After internalization of AQP2, induced by removal of AVP, forskolin triggered the AQP2 redistribution to the plasma membrane even if microtubules were depolymerized and without the previous positioning of AQP2 in the perinuclear recycling compartment. Collectively, the data indicate that microtubule-dependent transport of AQP2 is predominantly responsible for trafficking and localization of AQP2 inside the cell after its internalization but not for the exocytic transport of the water channel. We also demonstrate that cAMP-signaling regulates the localization of Rab11-positive recycling endosomes in renal principal cells.
Article
Full-text available
The TASK-3 channel is an acid-sensitive two-pore-domain K+ channel, widely expressed in the brain and probably involved in regulating numerous neuronal populations. Here, we characterized the behavioral and pharmacological phenotypes of TASK-3 knockout (KO) mice. Circadian locomotor activity measurements revealed that the nocturnal activity of the TASK-3 KO mice was increased by 38% (P < 0.01) compared with wild-type littermate controls, light phase activity being similar. Although TASK-3 channels are abundant in cerebellar granule cells, the KO mice performed as well as the wild-type mice in walking on a rotating rod or along a 1.2-cm-diameter beam. However, they fell more frequently from a narrower 0.8-cm beam. The KO mice showed impaired working memory in the spontaneous alternation task, with the alternation percentage being 62 +/- 3% for the wild-type mice and 48 +/- 4% (P < 0.05) for the KO mice. Likewise, during training for the Morris water-maze spatial memory task, the KO mice were slower to find the hidden platform, and in the probe trial, the female KO mice visited fewer times the platform quadrant than the male KO and wild-type mice. In pharmacological tests, the TASK-3 KO mice showed reduced sensitivity to the inhalation anesthetic halothane and the cannabinoid receptor agonist WIN55212-2 mesylate [(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate] but unaltered responses to the alpha2 adrenoceptor agonist dexmedetomidine, the i.v. anesthetic propofol, the opioid receptor agonist morphine, and the local anesthetic lidocaine. Overall, our results suggest important contributions of TASK-3 channels in the neuronal circuits regulating circadian rhythms, cognitive functions, and mediating specific pharmacological effects.
Article
Full-text available
Surface expression of the K(2P)3.1 two-pore domain potassium channel is regulated by phosphorylation-dependent binding of 14-3-3, leading to suppression of coatomer coat protein I (COPI)-mediated retention in endoplasmic reticulum (ER). Here, we investigate the nature of the macromolecular regulatory complexes that mediate forward and retrograde transport. We demonstrate that (i) the channel employs two separate but interacting COPI binding sites on the N- and C-termini; (ii) disrupting COPI binding to either site interferes with the ER retention; (iii) p11 and 14-3-3 do not interact on their own; (iv) p11 binding to the C-terminal retention motif is dependent on 14-3-3; and (v) p11 is coexpressed in only a subset of tissues with K(2P)3.1, while 14-3-3 expression is ubiquitous. We conclude that K(2P)3.1 forward transport requires 14-3-3 suppression of COPI binding, whereas p11 serves a modulatory role.
Article
The molecular mechanisms mediating cell surface trafficking of caveolae are unknown. Caveolae bud from plasma membranes to form free carrier vesicles through a “pinching off” or fission process requiring cytosol and driven by GTP hydrolysis (Schnitzer, J.E., P. Oh, and D.P. McIntosh. 1996. Science. 274:239–242). Here, we use several independent techniques and functional assays ranging from cell-free to intact cell systems to establish a function for dynamin in the formation of transport vesicles from the endothelial cell plasma membrane by mediating fission at the neck of caveolae. This caveolar fission requires interaction with cytosolic dynamin as well as its hydrolysis of GTP. Expression of dynamin in cytosol as well as purified recombinant dynamin alone supports GTP-induced caveolar fission in a cell-free assay whereas its removal from cytosol or the addition to the cytosol of specific antibodies for dynamin inhibits this fission. Overexpression of mutant dynamin lacking normal GTPase activity not only inhibits GTP-induced fission and budding of caveolae but also prevents caveolae-mediated internalization of cholera toxin B chain in intact and permeabilized endothelial cells. Analysis of endothelium in vivo by subcellular fractionation and immunomicroscopy shows that dynamin is concentrated on caveolae, primarily at the expected site of action, their necks. Thus, through its ability to oligomerize, dynamin appears to form a structural collar around the neck of caveolae that hydrolyzes GTP to mediate internalization via the fission of caveolae from the plasma membrane to form free transport vesicles.
Article
Helicobacter pylori infection is predominantly acquired early in life. The prevalence of the infection in childhood is low in developed countries, whereas in developing countries most children are infected by 10 y of age. In poor resource settings, where malnutrition, parasitic/enteropathogen and H. pylori infection co-exist in young children, H. pylori might have potentially more diverse clinical outcomes. This paper reviews the impact of childhood H. pylori infection in developing countries that should now be the urgent focus of future research. The extra-gastric manifestations in early H. pylori infection in infants in poor resource settings might be a consequence of the infection associated initial hypochlorhydria. The potential role of H. pylori infection on iron deficiency, growth impairment, diarrheal disease, malabsorption and cognitive function is discussed in this review.
Article
TWIK-related acid-sensitive K(+) (TASK) channels belong to a family of two-pore domain K(+) channels which produce background K(+) currents and are involved in important physiological functions, such as acidosis detection. We have recently elucidated that TASK1-like channels function as a sensor of acidosis in rat adrenal medullary (AM) cells and thus are indispensable for the endocrine function of AM cells. Here, using pharmacological, electrophysiological and biochemical methods, we studied how the expression and localisation of TASK1 channels are regulated in rat AM cells and PC12 cells. PC12 cells were found to express not only TASK1 but also TASK3 channels, and they did not constitute a heterodimer. The exposure of AM cells and PC12 cells to nerve growth factor (NGF) induced endocytosis of TASK1, but not TASK3 channels, in a clathrin-dependent manner. Mutation analysis of the TASK1 channel revealed that the dileucine motif (LL263/264) was involved in at least part of the endocytosis. Plating GFP-TASK1-expressing PC12 cells onto a sheet of fibroblasts, which produced NGF, resulted in the endocytosis of GFP-TASK1 channels. Additionally, the expression of TASK1 channels at the protein and mRNA levels was suppressed in PC12 cells treated with NGF for 2 weeks. These results indicate that NGF suppresses the expression of TASK1 channels in the plasma membrane via not only endocytosis but also the inhibition of gene transcription. Thus, no access to NGF may play a major role for the maintenance of TASK1 channels in the cell membrane in AM cells.
Article
Two-pore-domain potassium (K2P) channels are responsible for background leak currents which regulate the membrane potential and excitability of many cell types. Their activity is modulated by a variety of chemical and physical stimuli which act to increase or decrease the open probability of individual K2P channels. Crystallographic data and homology modelling suggest that all K(+) channels possess a highly conserved structure for ion selectivity and gating mechanisms. Like other K(+) channels, K2P channels are thought to have two primary conserved gating mechanisms: an inactivation (or C-type) gate at the selectivity filter close to the extracellular side of the channel and an activation gate at the intracellular entrance to the channel involving key, identified, hinge glycine residues. Zinc and hydrogen ions regulate Drosophila KCNK0 and mammalian TASK channels, respectively, by interacting with the inactivation gate of these channels. In contrast, the voltage dependence of TASK3 channels is mediated through its activation gate. For KCNK0 it has been shown that the gates display positive cooperativity. It is of much interest to determine whether other K2P regulatory compounds interact with either the activation gate or the inactivation gate to alter channel activity or, indeed, whether additional regulatory gating pathways exist.
Article
The recycling endosome (RE) has long been considered as a sub-compartment of the early endosome that recycles internalized cargoes to the plasma membrane. The RE is now appreciated to participate in a more complex set of intracellular itineraries. Key cargo molecules and transport factors that act in these pathways are being identified. These advancements are beginning to reveal complexities in pathways involving the RE, and also suggest ways of further delineating functional domains of this compartment.
Article
Two-pore domain K(+) (K(2P)) channels give rise to leak (also called background) K(+) currents. The well-known role of background K(+) currents is to stabilize the negative resting membrane potential and counterbalance depolarization. However, it has become apparent in the past decade (during the detailed examination of the cloned and corresponding native K(2P) channel types) that this primary hyperpolarizing action is not performed passively. The K(2P) channels are regulated by a wide variety of voltage-independent factors. Basic physicochemical parameters (e.g., pH, temperature, membrane stretch) and also several intracellular signaling pathways substantially and specifically modulate the different members of the six K(2P) channel subfamilies (TWIK, TREK, TASK, TALK, THIK, and TRESK). The deep implication in diverse physiological processes, the circumscribed expression pattern of the different channels, and the interesting pharmacological profile brought the K(2P) channel family into the spotlight. In this review, we focus on the physiological roles of K(2P) channels in the most extensively investigated cell types, with special emphasis on the molecular mechanisms of channel regulation.
Article
Internalization and intracellular trafficking of membrane proteins are now recognized as essential mechanisms that contribute to a number of cellular processes. Current methods lack the ability to specifically label the plasma membrane of a live cell, follow internalization of labeled membrane molecules, and conclusively differentiate newly formed membrane-derived vesicles from pre-existing endocytic or secretory structures in the cytoplasm. Here, we detail a visualization method for surface biotinylation of plasma membrane-derived vesicles that allows us to follow their progress from membrane to cytosol at specific time points. Using the transmembrane receptor RET as a model, we demonstrate how this method can be applied to identify plasma membrane-derived vesicle maturation, determine RET's presence within these structures, and monitor RET's recycling to the cell surface. This method improves on static and less discriminatory methods, providing a tool for analysis of real-time vesicle trafficking that is applicable to many systems.
Article
Membrane trafficking between organelles by vesiculotubular carriers is fundamental to the existence of eukaryotic cells. Central in ensuring that cargoes are delivered to their correct destinations are the Rab GTPases, a large family of small GTPases that control membrane identity and vesicle budding, uncoating, motility and fusion through the recruitment of effector proteins, such as sorting adaptors, tethering factors, kinases, phosphatases and motors. Crosstalk between multiple Rab GTPases through shared effectors, or through effectors that recruit selective Rab activators, ensures the spatiotemporal regulation of vesicle traffic. Functional impairments of Rab pathways are associated with diseases, such as immunodeficiencies, cancer and neurological disorders.
Article
Endocytic mechanisms control the lipid and protein composition of the plasma membrane, thereby regulating how cells interact with their environments. Here, we review what is known about mammalian endocytic mechanisms, with focus on the cellular proteins that control these events. We discuss the well-studied clathrin-mediated endocytic mechanisms and dissect endocytic pathways that proceed independently of clathrin. These clathrin-independent pathways include the CLIC/GEEC endocytic pathway, arf6-dependent endocytosis, flotillin-dependent endocytosis, macropinocytosis, circular doral ruffles, phagocytosis, and trans-endocytosis. We also critically review the role of caveolae and caveolin1 in endocytosis. We highlight the roles of lipids, membrane curvature-modulating proteins, small G proteins, actin, and dynamin in endocytic pathways. We discuss the functional relevance of distinct endocytic pathways and emphasize the importance of studying these pathways to understand human disease processes.
Article
A distinct gene family of widely distributed and well-modulated two-pore-domain background potassium (K(2P)) channels establish resting membrane potential and cell excitability. By using new mouse models in which K(2P)-channel genes are deleted, the contributions of these channels to important physiological functions are now being revealed. Here, we highlight results of recent studies using mice deleted for K(2P)-channel subunits that uncover physiological functions of these channels, mostly those of the TASK and TREK subgroup. Consistent with activation of these K(2P) channels by volatile anesthetics, TASK-1, TASK-3 and TREK-1 contribute to anesthetic-induced hypnosis and immobilization. The acid-sensitive TASK channels are not required for brainstem control of breathing by CO(2) or pH, despite widespread expression in respiratory-related neurons. TASK channels are necessary, however, for homeostatic regulation of adrenal aldosterone secretion. The heat-, stretch- and lipid-activated TREK-1 channels contribute to temperature and mechanical pain sensation, neuroprotection by polyunsaturated fatty acids and, unexpectedly, mood regulation. The alkaline-activated TASK-2 channel is necessary for HCO(3)(-) reabsorption and osmotic volume regulation in kidney proximal tubule cells. Development of compounds that selectively modulate K(2P) channels is crucial for verifying these results and assessing the efficacy of therapies targeting these interesting channels.
Article
A series of 200 human tumors were cultivated in vitro in an attempt to establish cell lines. Lines were established, with explant and trypsinization techniques, from 13 tumors including carcinomas, sarcomas, melanomas, and brain tumors. All these lines, in culture for over 1 year, exhibited marked refractility, multilayering, and criss crossing and were morphologically distinct from normal contact inhibited human fibroblast or epithelial lines. They also formed colonies on monolayers of normal cells and grew with a high efficiency in soft agar. Preliminary results indicated abnormal chromosomal patterns in all lines tested, and 8 of 9 cell lines formed tumors in antithymocyte serum treated mice. The rate of establishment (approximately 6%) of lines from random neoplastic material demonstrated that cells with properties of transformed cells could be recovered from tumor tissue, but it also emphasized the need for improved methodology in this area.
Article
One model of oxygen sensing by the carotid body is that hypoxia depolarises type 1 cells leading to voltage-gated calcium entry and the secretion of neurotransmitters which then excite afferent nerves. This paper revues the mechanisms responsible for the membrane depolarisation in response to hypoxia. It concludes that depolarisation is caused not through the inhibition of calcium activated or delayed rectifier K+-channels but through the inhibition of an entirely new type of background K+-channel. This channel lacks sensitivity to the classical K+-channel inhibitors TEA and 4-AP. New evidence does however reveal that background K+-channels in the type 1 cell can be inhibited by Ba2+ and that Ba2+ depolarises isolated type 1 cells. Intriguingly, Ba2+ is the only K+-channel inhibitor thus far reported to stimulate the carotid body. These studies therefore support the hypothesis that depolarisation of the type 1 cell is an integral part of the oxygen sensing pathway in the carotid body.
Article
The biophysical and pharmacological properties of an oxygen-sensitive background K+ current in rat carotid body type-I cells were investigated and compared with those of recently cloned two pore domain K+ channels. Under symmetrical K+ conditions the oxygen-sensitive whole cell K+ current had a linear dependence on voltage indicating a lack of intrinsic voltage sensitivity. Single channel recordings identified a K+ channel, open at resting membrane potentials, that was inhibited by hypoxia. This channel had a single channel conductance of 14 pS, flickery kinetics and showed little voltage sensitivity except at extreme positive potentials. Oxygen-sensitive current was inhibited by 10 mM barium (57% inhibition), 200 microM zinc (53% inhibition), 200 microM bupivacaine (55% inhibition) and 1 mM quinidine (105 % inhibition). The general anaesthetic halothane (1.5%) increased the oxygen-sensitive K+ current (by 176%). Halothane (3 mM) also stimulated single channel activity in inside-out patches (by 240%). Chloroform had no effect on background K+ channel activity. Acidosis (pH 6.4) inhibited the oxygen-sensitive background K+ current (by 56%) and depolarised type-I cells. The pharmacological and biophysical properties of the background K+ channel are, therefore, analogous to those of the cloned channel TASK-1. Using in situ hybridisation TASK-1 mRNA was found to be expressed in type-I cells. We conclude that the oxygen- and acid-sensitive background K+ channel of carotid body type-I cells is likely to be an endogenous TASK-1-like channel.
Article
Despite widespread use of volatile general anesthetics for well over a century, the mechanisms by which they alter specific CNS functions remain unclear. Here, we present evidence implicating the two-pore domain, pH-sensitive TASK-1 channel as a target for specific, clinically important anesthetic effects in mammalian neurons. In rat somatic motoneurons and locus coeruleus cells, two populations of neurons that express TASK-1 mRNA, inhalation anesthetics activated a neuronal K(+) conductance, causing membrane hyperpolarization and suppressing action potential discharge. These membrane effects occurred at clinically relevant anesthetic levels, with precisely the steep concentration dependence expected for anesthetic effects of these compounds. The native neuronal K(+) current displayed voltage- and time-dependent properties that were identical to those mediated by the open-rectifier TASK-1 channel. Moreover, the neuronal K(+) channel and heterologously expressed TASK-1 were similarly modulated by extracellular pH. The decreased cellular excitability associated with TASK-1 activation in these cell groups probably accounts for specific CNS effects of anesthetics: in motoneurons, it likely contributes to anesthetic-induced immobilization, whereas in the locus coeruleus, it may support analgesic and hypnotic actions attributed to inhibition of those neurons.
Article
Central respiratory chemoreceptors adjust respiratory drive in a homeostatic response to alterations in brain pH and/or P(CO(2)). Multiple brainstem sites are proposed as neural substrates for central chemoreception, but molecular substrates that underlie chemosensitivity in respiratory neurons have not been identified. In rat brainstem neurons expressing transcripts for TASK-1, a two-pore domain K(+) channel, we characterized K(+) currents with kinetic and voltage-dependent properties identical to cloned rat TASK-1 currents. Native currents were sensitive to acid and alkaline shifts in the same physiological pH range as TASK-1 (pK approximately 7.4), and native and cloned pH-sensitive currents were modulated similarly by neurotransmitters and inhalational anesthetics. This pH-sensitive TASK-1 channel is an attractive candidate to mediate chemoreception because it is functionally expressed in respiratory-related neurons, including airway motoneurons and putative chemoreceptor neurons of locus coeruleus (LC). Inhibition of TASK-1 channels by extracellular acidosis can depolarize and increase excitability in those cells, thereby contributing to chemoreceptor function in LC neurons and directly enhancing respiratory motoneuronal output.
Article
In the present study, we investigated the immunohistochemical localization of two-pore K(+)-channels TASK-1, TASK-2, TASK-3 and TRAAK in the rat carotid body. Type I cells were positive for TASK-1, TASK-2, TASK-3 and TRAAK. Intrinsic nerve cell bodies were also strongly positive for TASK-1, TASK-2 and TRAAK, but negative for TASK-3. In addition, some type II cells, Schwann cells in the nerve bundles and fibroblast between type I cell clusters were also immunostained for TASK-1. Smooth muscle cells of the carotid body artery were intensely positive for TASK-3. Our results indicate that TASK-1 immunoreactivity was ubiquitously distributed in many cell types and immunoreactivities for TASK-2, TASK-3 and TRAAK were cell type specific distribution patterns in the rat carotid body.
Article
The two-pore-domain potassium channels TASK-1, TASK-3 and TASK-5 possess a conserved C-terminal motif of five amino acids. Truncation of the C-terminus of TASK-1 strongly reduced the currents measured after heterologous expression in Xenopus oocytes or HEK293 cells and decreased surface membrane expression of GFP-tagged channel proteins. Two-hybrid analysis showed that the C-terminal domain of TASK-1, TASK-3 and TASK-5, but not TASK-4, interacts with isoforms of the adapter protein 14-3-3. A pentapeptide motif at the extreme C-terminus of TASK-1, RRx(S/T)x, was found to be sufficient for weak but significant interaction with 14-3-3, whereas the last 40 amino acids of TASK-1 were required for strong binding. Deletion of a single amino acid at the C-terminal end of TASK-1 or TASK-3 abolished binding of 14-3-3 and strongly reduced the macroscopic currents observed in Xenopus oocytes. TASK-1 mutants that failed to interact with 14-3-3 isoforms (V411*, S410A, S410D) also produced only very weak macroscopic currents. In contrast, the mutant TASK-1 S409A, which interacts with 14-3-3-like wild-type channels, displayed normal macroscopic currents. Co-injection of 14-3-3zeta cRNA increased TASK-1 current in Xenopus oocytes by about 70 %. After co-transfection in HEK293 cells, TASK-1 and 14-3-3zeta (but not TASK-1DeltaC5 and 14-3-3zeta) could be co-immunoprecipitated. Furthermore, TASK-1 and 14-3-3 could be co-immunoprecipitated in synaptic membrane extracts and postsynaptic density membranes. Our findings suggest that interaction of 14-3-3 with TASK-1 or TASK-3 may promote the trafficking of the channels to the surface membrane.
Article
We introduce a novel statistical approach that quantifies, for the first time, the amount of colocalization of two fluorescent-labeled proteins in an image automatically, removing the bias of visual interpretation. This is done by estimating simultaneously the maximum threshold of intensity for each color below which pixels do not show any statistical correlation. The sensitivity of the method was illustrated on simulated data by statistically confirming the existence of true colocalization in images with as little as 3% colocalization. This method was then tested on a large three-dimensional set of fixed cells cotransfected with CFP/YFP pairs of proteins that either co-compartmentalized, interacted, or were just randomly localized in the nucleolus. In this test, the algorithm successfully distinguished random color overlap from colocalization due to either co-compartmentalization or interaction, and results were verified by fluorescence resonance energy transfer. The accuracy and consistency of our algorithm was further illustrated by measuring, for the first time in live cells, the dissociation rate (k(d)) of the HIV-1 Rev/CRM1 export complex induced by the cytotoxin leptomycin B. Rev/CRM1 colocalization in nucleoli dropped exponentially after addition of leptomycin B at a rate of 1.25 x 10(-3) s(-1). More generally, this algorithm can be used to answer a variety of biological questions involving protein-protein interactions or co-compartmentalization and can be generalized to colocalization of more than two colors.
Article
K(+) channels have been reported to be involved in the proliferation of many types of cells, including some human carcinoma and tumor cell lines. KCNK9, a TASK channel, is amplified and overexpressed in several types of human cancer. In the present study, we examined the expression and somatic mutations of KCNK9 in 124 colorectal cancers by immunohistochemistry using tissue microarray and PCR-SSCP. Immunopositivity was observed in 57 (46.0%) of 124 colorectal cancers. Clinically, KCNK9 was immunopositive in 4 (30.7%) of 13 cases which were stage A, 26 (55.3%) of 47 which were stage B, 23 (41.1%) of 56 which were stage C, and 4 (50%) of 8 which were stage D. Statistically, KCNK9 protein expression was not related to tumor stage (Bartholomew test, p>0.05) and lymph node metastasis (Chi-Square test, p=0.8338). In the mutation study of the KCNK9 gene, we found only one sequence variation (ACG-->ACC, Thr-->Thr) at codon 170 both in corresponding normal and tumor DNAs. These results indicate that overexpression rather than mutation of the KCNK9 gene may contribute to the development of colorectal cancers and suggest that the development of KCNK9-targeted agents may provide new possibilities in the treatment of colorectal cancer.
Article
Tandem pore domain (or 2P) K channels form a recently isolated family of channels that are responsible for background K currents in excitable tissues. Previous studies have indicated that 2P K channel activity produces membrane hyperpolarization, which may offer protection from cellular insults. To study the effect of these channels in neuroprotection, we overexpressed pH-sensitive 2P K channels by transfecting the partially transformed C8 cell line with these channels. Tandem pore weak inward rectifier K channel (TWIK)-related acid-sensitive K channel 3 (TASK-3, KCNK9) as well as other pH sensitive 2P K channels (TASK-1 and TASK-2) enhanced cell viability by inhibiting the activation of intracellular apoptosis pathways. To explore the cellular basis for this protection in a more complex cellular environment, we infected cultured hippocampal slices with Sindbis virus constructs containing the coding sequences of these channels. Expression of TASK-3 throughout the hippocampal structure afforded neurons within the dentate and CA1 regions significant protection from an oxygen-glucose deprivation (OGD) injury. Neuroprotection within TASK-3 expressing slices was also enhanced by incubation with isoflurane. These results confirm a protective physiologic capability of TASK-3 and related 2P K channels, and suggest agents that enhance their activity, such as volatile anesthetics may intensify these protective effects.
Article
The presence and distribution of TASK-3 immunopositivity (a channel with potential oncogenic significance) was investigated in the human gastrointestinal system. The immunohistochemical reactions were performed with two commercially available polyclonal antibodies, targeting different epitopes of the channel protein. Experiments conducted on frozen and formalin-fixed samples indicated that the application of a suitable antigen retrieval (AR) technique was essential to produce consistent, strong and reproducible TASK-3-specific immunolabelling of the formalin-fixed tissue. The lack of or inappropriate selection of the AR resulted in false-negative reactions. As for the distribution of the TASK-3 channels, strong immunolabelling was observed in the gastric and large intestinal mucosa, with particularly prominent immunoreactivity of the epithelial cells. In contrast, the smooth-muscle layers demonstrated weak TASK-3 positivity. Intense TASK-3 expression was noted in both the exocrine and endocrine pancreas, but the islets of Langerhans exhibited more powerful reactions. The ductal apparatus of the submandibular gland and lymphocytes situated in pericolonic lymph nodes were also TASK-3 positive. Strong TASK-3 positivity could also be observed in malignant gastrointestinal tumours, with intense nuclear-perinuclear labelling of some of the tumour cells. The present findings suggest that TASK-3 channels may have roles in the gastrointestinal functions, including insular hormone secretion.
Article
The interaction of the adaptor protein p11, also denoted S100A10, with the C-terminus of the two-pore-domain K+ channel TASK-1 was studied using yeast two-hybrid analysis, glutathione S-transferase pull-down, and co-immunoprecipitation. We found that p11 interacts with a 40 amino-acid region in the proximal C-terminus of the channel. In heterologous expression systems, deletion of the p11-interacting domain enhanced surface expression of TASK-1. Attachment of the p11-interacting domain to the cytosolic tail of the reporter protein CD8 caused retention/retrieval of the construct in the endoplasmic reticulum (ER). Attachment of the last 36 amino acids of p11 to CD8 also caused ER localization, which was abolished by removal or mutation of a putative retention motif (H/K)xKxxx, at the C-terminal end of p11. Imaging of EGFP-tagged TASK-1 channels in COS cells suggested that wild-type TASK-1 was largely retained in the ER. Knockdown of p11 with siRNA enhanced trafficking of TASK-1 to the surface membrane. Our results suggest that binding of p11 to TASK-1 retards the surface expression of the channel, most likely by virtue of a di-lysine retention signal at the C-terminus of p11. Thus, the cytosolic protein p11 may represent a 'retention factor' that causes localization of the channel to the ER.
Article
Stress-dependent regulation of cardiac action potential duration is mediated by the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis. It is accompanied by an increased magnitude of the slow outward potassium ion current, I(Ks). KCNQ1 and KCNE1 subunits coassemble to form the I(Ks) channel. Mutations in either subunit cause long QT syndrome, an inherited cardiac arrhythmia associated with an increased risk of sudden cardiac death. Here we demonstrate that exocytosis of KCNQ1 proteins to the plasma membrane requires the small GTPase RAB11, whereas endocytosis is dependent on RAB5. We further demonstrate that RAB-dependent KCNQ1/KCNE1 exocytosis is enhanced by the serum- and glucocorticoid-inducible kinase 1, and requires phosphorylation and activation of phosphoinositide 3-phosphate 5-kinase and the generation of PI(3,5)P(2). Identification of KCNQ1/KCNE1 recycling and its modulation by serum- and glucocorticoid-inducible kinase 1-phosphoinositide 3-phosphate 5-kinase -PI(3,5)P(2) provides a mechanistic insight into stress-induced acceleration of cardiac repolarization.
Article
There are numerous ways that endocytic cargo molecules may be internalized from the surface of eukaryotic cells. In addition to the classical clathrin-dependent mechanism of endocytosis, several pathways that do not use a clathrin coat are emerging. These pathways transport a diverse array of cargoes and are sometimes hijacked by bacteria and viruses to gain access to the host cell. Here, we review our current understanding of various clathrin-independent mechanisms of endocytosis and propose a classification scheme to help organize the data in this complex and evolving field.