ArticlePDF Available

Instructional Design & Learning Theory

Authors:

Figures

No caption available
… 
No caption available
… 
No caption available
… 
Content may be subject to copyright.
Instructional Design
&
Learning Theory
Brenda Mergel
Graduate Student
Educational Communications and Technology
University of Saskatchewan
May, 1998
Select a different paper
Download a copy of the entire paper
version en español disponible (Word)
version en español disponible (Adobe PDF)
Introduction:
To students of instructional design the introduction and subsequent "sorting out" of the various learning
theories and associated instructional design strategies can be somewhat confusing. It was out of this feeling of
cognitive dissonance that this site was born.
Why does it seem so difficult to differentiate between three basic theories of learning? Why do the names of
theorists appear connected to more than one theory? Why do the terms and strategies of each theory overlap?
The need for answers to these questions sparked my investigation into the available literature on learning
theories and their implications for instructional design. I found many articles and internet sites that dealt with
learning theory and ID, in fact, it was difficult to know when and where to draw the line. When I stopped
finding new information, and the articles were reaffirming what I had already read, I began to write.
The writing process was a learning experience for me and now that I have finished, I want to start over and
make it even better, because I know more now than I did when I began. Every time I reread an article, there
were ideas and lists that I would wish to add to my writing. Perhaps in further development of this site I will
change and refine my presentation.
Reading about the development of learning theories and their connection to instructional design evoked, for
me, many parallels with the development of other theories in sciences. I have included some of those thoughts
as asides within the main body of text.
Besides behaviorism, cognitivism and constructivism one could discuss such topics as connoisseurship,
semiotics, and contextualism, but I decided that a clear understanding of the basic learning theories would be
best. The main sections of this site are as follows:
What are Theories and Models?
The Basics of the Learning Theories
The Basics of Behaviorism
The Basics of Cognitivism
The Basics of Constructivism
The History of Learning Theories in Instructional Design
Behaviorism and Instructional Design
Cognitivism and Instructional Design
Constructivism and Instructional Design
Comparing The Development of Learning Theories to the Development of the Atomic Theory
Learning Theories and the Practice of Instructional Design
Learning Theories - Some Strengths and Weaknesses
Is There One Best Learning Theory for Instructional Design?
Conclusion
References and Bibliography
What are Theories and Models?
What is a theory?
A theory provides a general explanation for observations made over time.
A theory explains and predicts behavior.
A theory can never be established beyond all doubt.
A theory may be modified.
Theories seldom have to be thrown out completely if thoroughly tested but sometimes a theory
may be widely accepted for a long time and later disproved.
(Dorin, Demmin & Gabel, 1990)
What is a model?
A model is a mental picture that helps us understand something we cannot see or experience
directly.
(Dorin, Demmin & Gabel, 1990)
Behaviorism, Cognitivism and Constructivism - The Basics
Based on observable changes in behavior. Behaviorism focuses on a new behavioral pattern
being repeated until it becomes automatic.
Behaviorism:
Based on the thought process behind the behavior. Changes in behavior are observed, and used
as indicators as to what is happening inside the learner's mind.
Cognitivism:
Based on the premise that we all construct our own perspective of the world, through
individual experiences and schema. Constructivism focuses on preparing the learner to problem solve in
ambiguous situations.
(Schuman, 1996)
Constructivism:
The Basics of Behaviorism
Behaviorism, as a learning theory, can be traced back to Aristotle, whose essay "Memory" focused on
associations being made between events such as lightning and thunder. Other philosophers that followed
Aristotle's thoughts are Hobbs (1650), Hume (1740), Brown (1820), Bain (1855) and Ebbinghause (1885)
(Black, 1995).
The theory of behaviorism concentrates on the study of overt behaviors that can be observed and measured
(Good & Brophy, 1990). It views the mind as a "black box" in the sense that response to stimulus can be
observed quantitatively, totally ignoring the possibility of thought processes occurring in the mind. Some key
players in the development of the behaviorist theory were Pavlov, Watson, Thorndike and Skinner.
Pavlov (1849 - 1936)
For most people, the name "Pavlov" rings a bell (pun intended). The Russian physiologist is best known for
his work in classical conditioning or stimulus substitution. Pavlov's most famous experiment involved food, a
dog and a bell.
Pavlov's Experiment
Before conditioning, ringing the bell caused no response from the dog. Placing food in front of the dog
initiated salivation.
During conditioning, the bell was rung a few seconds before the dog was presented with food.
After conditioning, the ringing of the bell alone produced salivation
(Dembo, 1994).
Stimulus and Response Items of Pavlov's Experiment
Food Unconditioned Stimulus
Salivation
Unconditioned Response (natural, not
learned)
Bell Conditioned Stimulus
Salivation Conditioned Response (to bell)
Other Observations Made by Pavlov
Stimulus Generalization: Once the dog has learned to salivate at the sound of the bell, it will salivate at
other similar sounds.
Extinction: If you stop pairing the bell with the food, salivation will eventually cease in response to the
bell.
Spontaneous Recovery: Extinguished responses can be "recovered" after an elapsed time, but will soon
extinguish again if the dog is not presented with food.
Discrimination: The dog could learn to discriminate between similar bells (stimuli) and discern which
bell would result in the presentation of food and which would not.
Higher-Order Conditioning: Once the dog has been conditioned to associate the bell with food, another
unconditioned stimulus, such as a light may be flashed at the same time that the bell is rung. Eventually
the dog will salivate at the flash of the light without the sound of the bell.
(What was the name of that dog??)
Thorndike (1874 - 1949)
Edward Thorndike did research in animal behavior before becoming interested in human psychology. He set
out to apply "the methods of exact science" to educational problems by emphasizing "accurate quantitative
treatment of information". "Anything that exists, exists in a certain quantity and can be measured" (Johcich, as
cited in Rizo, 1991). His theory, Connectionism, stated that learning was the formation of a connection
between stimulus and response.
The "law of effect" stated that when a connection between a stimulus and response is positively
rewarded it will be strengthened and when it is negatively rewarded it will be weakened. Thorndike later
revised this "law" when he found that negative reward, (punishment) did not necessarily weaken bonds,
and that some seemingly pleasurable consequences do not necessarily motivate performance.
The "law of exercise" held that the more an S-R (stimulus response) bond is practiced the stronger it will
become. As with the law of effect, the law of exercise also had to be updated when Thorndike found that
practice without feedback does not necessarily enhance performance.
The "law of readiness" : because of the structure of the nervous system, certain conduction units, in a
given situation, are more predisposed to conduct than others.
Thorndike's laws were based on the stimulus-response hypothesis. He believed that a neural bond would be
established between the stimulus and response when the response was positive. Learning takes place when the
bonds are formed into patterns of behavior (Saettler, 1990).
Watson (1878 - 1958)
John B. Watson was the first American psychologist to use Pavlov's ideas. Like Thorndike, he was originally
involved in animal research, but later became involved in the study of human behavior.
Watson believed that humans are born with a few reflexes and the emotional reactions of love and rage. All
other behavior is established through stimulus-response associations through conditioning.
Watson's Experiment
Watson demonstrated classical conditioning in an experiment involving a young child (Albert) and a white rat.
Originally, Albert was unafraid of the rat; but Watson created a sudden loud noise whenever Albert touched
the rat. Because Albert was frightened by the loud noise, he soon became conditioned to fear and avoid the rat.
The fear was generalized to other small animals. Watson then "extinguished" the fear by presenting the rat
without the loud noise. Some accounts of the study suggest that the conditioned fear was more powerful and
permanent than it really was. (Harris, 1979; Samelson, 1980, in Brophy, 1990)
Certainly Watson's research methods would be questioned today; however, his work did demonstrate the role
of conditioning in the development of emotional responses to certain stimuli. This may explain certain fears,
phobias and prejudices that people develop.
(Watson is credited with coining the term "behaviorism")
Skinner (1904 - 1990)
Like Pavlov, Watson and Thorndike, Skinner believed in the stimulus-response pattern of conditioned
behavior. His theory dealt with changes in observable behavior, ignoring the possibility of any processes
occurring in the mind. Skinner's 1948 book, , is about a utopian society based on operant
conditioning. He also wrote, (1953) in which he pointed out how the principles
of operant conditioning function in social institutions such as government, law, religion, economics and
education (Dembo, 1994).
Walden Two
Science and Human Behavior,
Skinner's work differs from that of his predecessors (classical conditioning), in that he studied operant behavior
(voluntary behaviors used in operating on the environment).
Difference between Classical and Operant Conditioning
Skinner's Operant Conditioning Mechanisms
Positive Reinforcement or reward: Responses that are rewarded are likely to be repeated. (Good grades
reinforce careful study.)
Negative Reinforcement: Responses that allow escape from painful or undesirable situations are likely to
be repeated. (Being excused from writing a final because of good term work.)
Extinction or Non-Reinforcement : Responses that are not reinforced are not likely to be repeated.
(Ignoring student misbehavior should extinguish that behavior.)
Punishment: Responses that bring painful or undesirable consequences will be suppressed, but may
reappear if reinforcement contingencies change. (Penalizing late students by withdrawing privileges
should stop their lateness.)
(Good & Brophy, 1990)
Skinner and Behavioral Shaping
If placed in a cage an animal may take a very long time to figure out that pressing a lever will produce food.
To accomplish such behavior successive approximations of the behavior are rewarded until the animal learns
the association between the lever and the food reward. To begin shaping, the animal may be rewarded for
simply turning in the direction of the lever, then for moving toward the lever, for brushing against the lever,
and finally for pawing the lever.
Behavioral chaining occurs when a succession of steps need to be learned. The animal would master each step
in sequence until the entire sequence is learned.
Reinforcement Schedules
Once the desired behavioral response is accomplished, reinforcement does not have to be 100%; in fact it can
be maintained more successfully through what Skinner referred to as partial reinforcement schedules. Partial
reinforcement schedules include interval schedules and ratio schedules.
Fixed Interval Schedules: the target response is reinforced after a fixed amount of time has passed since
the last reinforcement.
Variable Interval Schedules: similar to fixed interval schedules, but the amount of time that must pass
between reinforcement varies.
Fixed Ratio Schedules: a fixed number of correct responses must occur before reinforcement may
recur.
Variable Ratio Schedules: the number of correct repetitions of the correct response for reinforcement
varies.
Variable interval and especially, variable ratio schedules produce steadier and more persistent rates of response
because the learners cannot predict when the reinforcement will come although they know that they will
eventually succeed.
(Have you checked your Lottery tickets lately?)
The Basics of Cognitivism
As early as the 1920's people began to find limitations in the behaviorist approach to understanding learning.
Edward Tolman found that rats used in an experiment appeared to have a mental map of the maze he was
using. When he closed off a certain portion of the maze, the rats did not bother to try a certain path because
they "knew" that it led to the blocked path. Visually, the rats could not see that the path would result in failure,
yet they chose to take a longer route that they knew would be successful (Operant Conditioning [On-line]).
Behaviorists were unable to explain certain social behaviors. For example, children do not imitate all behavior
that has been reinforced. Furthermore, they may model new behavior days or weeks after their first initial
observation without having been reinforced for the behavior. Because of these observations, Bandura and
Walters departed from the traditional operant conditioning explanation that the child must perform and receive
reinforcement before being able to learn. They stated in their 1963 book, Social Learning and Personality
, that an individual could model behavior by observing the behavior of another person. This
theory lead to Bandura's Social Cognitive Theory (Dembo, 1994).
Development
What is Cognitivism?
"Cognitive theorists recognize that much learning involves associations established through
contiguity and repetition. They also acknowledge the importance of reinforcement, although they
stress its role in providing feedback about the correctness of responses over its role as a motivator.
However, even while accepting such behavioristic concepts, cognitive theorists view learning as
involving the acquisition or reorganization of the cognitive structures through which humans
process and store information." (Good and Brophy, 1990, pp. 187).
As with behaviorism, cognitive psychology can be traced back to the ancient Greeks, Plato and Aristotle. The
cognitive revolution became evident in American psychology during the 1950's (Saettler, 1990). One of the
major players in the development of cognitivism is Jean Piaget, who developed the major aspects of his theory
as early as the 1920's. Piaget's ideas did not impact North America until the 1960's after Miller and Bruner
founded the Harvard Center for Cognitive studies.
Key Concepts of Cognitive Theory
Schema - An internal knowledge structure. New information is compared to existing cognitive structures
called "schema". Schema may be combined, extended or altered to accommodate new information.
Three-Stage Information Processing Model - input first enters a sensory register, then is processed in
short-term memory, and then is transferred to long-term memory for storage and retrieval.
Sensory Register - receives input from senses which lasts from less than a second to four seconds
and then disappears through decay or replacement. Much of the information never reaches short
term memory but all information is monitored at some level and acted upon if necessary.
Short-Term Memory (STM) - sensory input that is important or interesting is transferred from the
sensory register to the STM. Memory can be retained here for up to 20 seconds or more if
rehearsed repeatedly. Short-term memory can hold up to 7 plus or minus 2 items. STM capacity
can be increased if material is chunked into meaningful parts.
Long-Term Memory and Storage (LTM) - stores information from STM for long term use. Long-
term memory has unlimited capacity. Some materials are "forced" into LTM by rote memorization
and over learning. Deeper levels of processing such as generating linkages between old and new
information are much better for successful retention of material.
Meaningful Effects - Meaningful information is easier to learn and remember. (Cofer, 1971, in Good and
Brophy, 1990) If a learner links relatively meaningless information with prior schema it will be easier to
retain. (Wittrock, Marks, & Doctorow, 1975, in Good and Brophy, 1990)
Serial Position Effects - It is easier to remember items from the beginning or end of a list rather than those
in the middle of the list, unless that item is distinctly different.
Practice Effects - Practicing or rehearsing improves retention especially when it is distributed practice.
By distributing practices the learner associates the material with many different contexts rather than the
one context afforded by mass practice.
Transfer Effects- The effects of prior learning on learning new tasks or material.
Interference Effects - Occurs when prior learning interferes with the learning of new material.
Organization Effects - When a learner categorizes input such as a grocery list, it is easier to remember.
Levels of Processing Effects - Words may be processed at a low-level sensory analysis of their physical
characteristics to high-level semantic analysis of their meaning. (Craik and Lockhart, 1972, in Good and
Brophy, 1990) The more deeply a word is process the easier it will be to remember.
State Dependent Effects - If learning takes place within a certain context it will be easier to remember
within that context rather than in a new context.
Mnemonic Effects - Mnemonics are strategies used by learners to organize relatively meaningless input
into more meaningful images or semantic contexts. For example, the notes of a musical scale can be
remembered by the rhyme: Every Good Boy Deserves Fruit.
Schema Effects - If information does not fit a person's schema it may be more difficult for them to
remember and what they remember or how they conceive of it may also be affected by their prior
schema.
Advance Organizers - Ausebels advance organizers prepare the learner for the material they are about to
learn. They are not simply outlines of the material, but are material that will enable the student to make
sense out of the lesson.
The Basics of Constructivism
Bartlett (1932) pioneered what became the constructivist approach (Good & Brophy, 1990). Constructivists
believe that "learners construct their own reality or at least interpret it based upon their perceptions of
experiences, so an individual's knowledge is a function of one's prior experiences, mental structures, and beliefs
that are used to interpret objects and events." "What someone knows is grounded in perception of the physical
and social experiences which are comprehended by the mind." (Jonasson, 1991).
makes the following comments:
If each person has their own view about reality, then how can we as a society communicate and/or coexist?
Jonassen, addressing this issue in his article Thinking Technology: Toward a Constructivist Design
Model,
"Perhaps the most common misconception of constructivism is the inference that we each therefore
construct a unique reality, that reality is only in the mind of the knower, which will doubtlessly lead to
intellectual anarchy."
"A reasonable response to that criticism is the Gibsonian perspective that contends that there exists a
physical world that is subject to physical laws that we all know in pretty much the same way because
those physical laws are perceivable by humans in pretty much the same way."
"Constructivists also believe that much of reality is shared through a process of social negotiation..."
If one searches through the many philosophical and psychological theories of the past, the threads of
constructivism may be found in the writing of such people as Bruner, Ulrick, Neiser, Goodman, Kant, Kuhn,
Dewey and Habermas. The most profound influence was Jean Piaget's work which was interpreted and
extended by von Glasserfield (Smorgansbord, 1997).
Realistic vs. Radical Construction
Realistic constructivism - cognition is the process by which learners eventually construct mental structures that
correspond to or match external structures located in the environment.
Radical constructivism - cognition serves to organize the learners experiential world rather than to discover
ontological reality
(Cobb, 1996, in Smorgansbord, 1997).
The Assumptions of Constructivism - Merrill
knowledge is constructed from experience
learning is a personal interpretation of the world
learning is an active process in which meaning is developed on the basis of experience
conceptual growth comes from the negotiation of meaning, the sharing of multiple perspectives and the
changing of our internal representations through collaborative learning
learning should be situated in realistic settings; testing should be integrated with the task and not a
separate activity
(Merrill, 1991, in Smorgansbord, 1997)
It Boggles the Mind!
If you are reading about learning theories, you may notice that it is difficult to pin down what theory a
certain theorist belongs to. This can confuse you, since, just as you think you have it cased, a name you
originally thought was in the behavioral category shows up in a constructivism article.
This problem is often the result of theorists and their ideas evolving over time and changes they make to
their original ideas. Davidson includes the following example in an article she wrote:
"Considered by most to be representative of [a] behaviourist learning paradigm, Gagne's theory of
learning and events of instruction have evolved progressively to approach a more cognitive theory. His
discussion of relating present information and past knowledge (event #3) and the inclusion of learning
transfer (event#9) are indicative of this shift toward constructivism." (Davidson, 1998)
Okay? Okay. :-)
Comparing The Development of Learning Theories to the
Development of the Atomic Theory
Atomic Theory
Since the beginning of history, people have theorized about the nature of matter. The ancient Greeks thought
that matter was composed of fire, water, earth and air. Another view, the continuous theory, was that matter
could be infinitely subdivided into smaller and smaller pieces without change. The Greek philosophers,
Democritis and Lucippus, came up with the idea that matter made up of particles so small that they cannot be
divided into anything smaller. They called their particles "atomos", which is the Greek word for "indivisible".
It wasn't until the 18th century that anyone could prove one theory was better than another. John Dalton in
1803, with his law of multiple proportions, proposed a theory of matter based on the existence of atoms. The
rest is history:
1803 Dalton's Atomic Theory.
1870 Crookes finds the first evidence of electrons.
1890's J.J. Thompson realized cathode rays are negative particles (electrons).
1909 Rutherford discovered alpha particles and said that atoms consist of small positively charged
particles surrounded by mostly empty space where electrons moved around.
1913 Niels Bohr develops a new model of the atom with electron energy levels or orbits.
1930's and 1940's The atom had a positive nucleus with an electron charge cloud. This theory was
referred to as the orbital model and the quantum-mechanical model.
(Dorin, Demmin & Gabel, 1990)
Learning Theory
Given that we will most likely never "see" an atom, we will never "see" learning either. Therefore our learning
models are mental pictures that enable us to understand that which we will never see. Does the development of
learning theory follow a similar pattern as the atomic theory?
It seems that learning theories, like the study of matter can be traced back to the ancient Greeks. In the 18th
century, with the onset of scientific inquiry, people began in ernest to study and develop models of learning.
The behaviorist learning theory centered around that which was observable, not considering that there was
anything occurring inside the mind. Behaviorism can be compared to Dalton's atom, which was simply a
particle. Using overt behavior as a starting point, people began to realize that there is something happening
inside the organism that should be considered, since it seemed to affect the overt behavior. Similarly, in
physical science, people such as Crookes, Thompson, Rutherford and Bohr realized that there was something
occurring within the atom causing its behavior. Thus the cognitive model of learning was born. Soon,
however, theorists realized that the "atom" is not stable, it is not so "cut and dried". Enter the constructivist
learning theory which tells us that each organism is constantly in flux, and although the old models work to a
certain degree, other factors most also be considered. Could the constructivist approach be considered to be the
quantum theory of learning?
The quantum theory builds upon the previous atomic theories. Constructivism builds upon behaviorism and
cognitivism in the sense that it accepts multiple perspectives and maintains that learning is a personal
interpretation of the world. I believe that behavioral strategies can be part of a constructivist learning situation,
if that learner choses and finds that type of learning suitable to their experiences and learning style. Cognitive
approaches have a place in constructivism also, since constructivism recognises the concept of schema and
building upon prior knowledge and experience. Perhaps the greatest difference is that of evaluation. In
behaviorism and cognitivism, evaluation is based on meeting specific objectives, whereas in constructivism,
evaluation is much more subjective. Of course, what if I, as a learner, negotiate my evaluation and wish to
include objective evaluation? Then isn't behavioral and cognitive strategy a part of constructivism?
Perhaps the learning theory used depends upon the learning situation, just as the atomic theory used, depends
upon the learning situation. The bohr atom is often used to introduce the concept of protons, neutrons and
electrons to grade school students. Perhaps behaviorism is suitable to certain basic learning situations, whereas
"quantum" constructivism is better suited to advanced learning situations.
A Biological Analogy to Learning Theory Classification
The classification of learning theories is somewhat analogous to the classification system designed by
biologists to sort out living organisms. Like any attempt to define categories, to establish criteria, the
world does not fit the scheme in all cases. Originally there was a plant kingdom and an animal kingdom,
but eventually organisms that contained cholophyll and were mobile needed to be classified. The protist
kingdom was established. The exact criteria for protists are still not established, but it is a classification
that gives us a place for all of the organisms that don't fit neatly into either the plant or animal kingdoms.
To extend the analogy, biologists continued to modify the classification system as know knowledge and
insights into existing knowledge were discovered. The advent of new technology such as the electron
microscope enabled the addition of the monera kingdom. Recently, the distinctive features of fungi have
brought about a proposal for a fifth kingdom, fungi. This development and adjustment of the taxonomy
remins one of behaviourism, cognitivism, constructivism, postmodernism, contextualism, semiotics...
The History of Behaviorism, Cognitivism and Constructivism in
Instructional Design
Behaviorism and Instructional Design
** This section on behaviorism is largely a synopsis of information from Paul Saettler's book,
, (1990).
The History of
American Educational Technology
In Paul Saettler's book , he states that behaviorism did not
have an impact on educational technology until the 1960s, which was the time that behaviorism actually began
to decrease in popularity in American psychology. Saettler identified six areas that demonstrate the impact of
behaviorism on Educational Technology in America: the movement; the
phase; the movement; approaches,
and the to instruction.
The History of American Educational Technology
behavioral objectives teaching
machine programmed instruction individualized instructional computer-
assisted learning systems approach
Behavioral Objectives Movement:
A behavioral objective states learning objectives in "specified, quantifiable, terminal behaviors" (Saettler, pp.
288, 1990). Behavioral objectives can be summed up using the mnemonic device ABCD (Schwier, 1998).
Example: After having completed the unit the student will be able to answer correctly 90% of the questions on
the posttest.
A - Audience - the student
B - Behavior - answer correctly
C - Condition - after having completed the unit, on a post test
D - Degree - 90% correct
To develop behavioral objectives a learning task must be broken down through analysis into specific
measurable tasks. The learning success may be measured by tests developed to measure each objective.
The advent of behavioral objectives can be traced back to the Elder Sophists of ancient Greece, Cicero,
Herbart and Spencer, but Franklin Bobbitt developed the modern concept of behavioral objectives in the early
1900s (Saettler, 1990).
Taxonomic Analysis of Learning Behaviors
- In 1956 Bloom and his colleagues began development of a
taxonomy in the cognitive, attitudinal (affective) and psychomotor domains. Many people are familiar
with :
Bloom's Taxonomy of Learning
Bloom's Cognitive taxonomy
knowledge
comprehension
application
analysis
synthesis
evaluation
- Robert Gagne developed his taxonomy of learning in 1972.
Gagne's taxonomy was comprised of five categories:
Gagne's Taxonomy of Learning
verbal information
intellectual skill
cognitive strategy
attitude
motor skill
Mastery Learning
Mastery learning was originally developed by Morrison in the 1930s. His formula for mastery was "Pretest,
teach, test the result, adapt procedure, teach and test again to the point of actual learning." (Morrison, 1931, in
Saettler, 1990). Mastery learning assumes that all students can master the materials presented in the lesson.
Bloom further developed Morrison's plan, but mastery learning is more effective for the lower levels of
learning on Bloom's taxonomy, and not appropriate for higher level learning (Saettler, 1990).
Military and Industrial Approach
For military and industrial training, "behavioral objectives were written descriptions of specific, terminal
behaviors that were manifested in terms of observable, measurable behavior." (Saettler, 1990) Robert Mager
wrote in 1962 which prompted interest and use of behavioral objectives
among educators. Gagne and Briggs who also had backgrounds in military and industrial psychology
developed a set of instructions for writing objectives that is based on Mager's work.
Preparing Instructional Objectives,
Gagne's and Brigg's Model
Action
Object
Situation
Tools and Constraints
Capability to be Learned
By the late 1960's most teachers were writing and using behavioral objectives. There were, of course, people
who questioned the breaking down of subject material into small parts, believing that it would lead away from
an understanding of the "whole" (Saettler, 1990).
Accountability Movement
A movement known as scientific management of industry arose in the early 1900s in response to political and
economic factors of that time. Franklin Bobbitt proposed utilization of this system in education stressing that the
standards and direction of education should stem from the consumer - society. Bobbitt's ideas exemplified the
idea of accountability, competency-based education and performance-based education, which because of
similar economic and political factors, experienced a revival in America during the late 1960s and 1970s
(Saettler, 1990).
Teaching Machines and Programmed Instruction Movement
Although the elder Sophists, Comenius, Herbart and Montessori used the concept of programmed instruction
in their repertoire, B.F. Skinner is the most current and probably best known advocate of teaching machines
and programmed learning. Contributors to this movement include the following:
Pressey - introduced a multiple-choice machine at the 1925 American Psychological Association
meeting.
Peterson - a former student of Pressey's who developed "chemosheets" in which the learner checked
their answers with a chemical-dipped swab.
W.W.II - devises called "phase checks", constructed in the 1940s and 1950s, taught and tested such
skills and dissassembly-assembly of equipment.
Crowder - designed a branched style of programming for the US Air force in the 1950s to train
troubleshooters to find malfunctions in electronic equipment.
Skinner - based on operant conditioning Skinner's teaching machine required the learner to complete or
answer a question and then receive feedback on the correctness of the response. Skinner demonstrated
his machine in 1954.
(Saettler, 1990)
Early Use of Programmed Instruction
After experimental use of programmed instruction in the 1920s and 1930s, B. F. Skinner and J.G. Holland first
used programmed instruction in behavioral psychology courses at Harvard in the late 1950s. Use of
programmed instruction appeared in elementary and secondary schools around the same time. Much of the
programmed instruction in American schools was used with individuals or small groups of students and was
more often used in junior high schools than senior or elementary schools (Saettler, 1990).
Early use of programmed instruction tended to concentrate on the development of hardware rather than course
content. Concerned developers moved away from hardware development to programs based on analysis of
learning and instruction based on learning theory. Despite these changes, programmed learning died out in the
later part of the 1960s because it did not appear to live up to its original claims (Saettler, 1990).
Individualized Approaches to Instruction
Similar to programmed learning and teaching machines individualized instruction began in the early 1900s,
and was revived in the 1960s. The Keller Plan, Individually Prescribed Instruction, Program for Learning in
Accordance with Needs, and Individually Guided Education are all examples of individualized instruction in
the U.S. (Saettler, 1990).
Keller Plan (1963)
Developed by F.S. Keller, a colleague of Skinner, the Keller plan was used for university college
classes.
Main features of Keller Plan
individually paced.
mastery learning.
lectures and demonstrations motivational rather than critical information.
use of proctors which permitted testing, immediate scoring, tutoring, personal-social aspect of
educational process.
(Saettler, 1990)
Individually Prescribed Instruction (IPI) (1964)
Developed by Learning Research and Development Center of the University of Pitsburgh.
Lasted into the 1970s when it lost funding and its use dwindled
Main features of IPI:
prepared units.
behavioral objectives.
planned instructional sequences.
used for reading, math and science.
included pretest and posttest for each unit.
materials continually evaluated and upgraded to meet behavioral objectives.
(Saettler, 1990)
Program for Learning in Accordance with Needs (PLAN) (1967)
Headed by Jon C. Flanagan, PLAN was developed under sponsorship of American Institutes for
Research (AIR), Westinghouse Learning Corporation and fourteen U.S. School districts.
Abandoned in late 1970s because of upgrading costs
Main features of PLAN
schools selected items from about 6,000 behavioral objectives.
each instructional module took about two weeks instruction and were made up of approximately.
five objectives.
mastery learning.
remedial learning plus retesting.
(Saettler, 1990)
Computer-Assisted Instruction (CAI)
Computer-assisted instruction was first used in education and training during the 1950s. Early work was done
by IBM and such people as Gordon Pask, and O.M. Moore, but CAI grew rapidly in the 1960s when federal
funding for research and development in education and industrial laboratories was implemented. The U.S.
government wanted to determine the possible effectiveness of computer-assisted instruction, so they developed
two competing companies, (Control Data Corporation and Mitre Corporation) who came up with the PLATO
and TICCIT projects. Despite money and research, by the mid seventies it was apparent that CAI was not
going to be the success that people had believed. Some of the reasons are:
CAI had been oversold and could not deliver.
lack of support from certain sectors.
technical problems in implementation.
lack of quality software.
high cost.
Computer-assisted instruction was very much drill-and-practice - controlled by the program developer rather
than the learner. Little branching of instruction was implemented although TICCIT did allow the learner to
determine the sequence of instruction or to skip certain topics.
(Saettler, 1990)
Systems Approach to Instruction
The systems approach developed out of the 1950s and 1960s focus on language laboratories, teaching
machines, programmed instruction, multimedia presentations and the use of the computer in instruction. Most
systems approaches are similar to computer flow charts with steps that the designer moves through during the
development of instruction. Rooted in the military and business world, the systems approach involved setting
goals and objectives, analyzing resources, devising a plan of action and continuous evaluation/modification of
the program. (Saettler, 1990)
Cognitivism and Instructional Design
Although cognitive psychology emerged in the late 1950s and began to take over as the dominant theory of
learning, it wasn't until the late 1970s that cognitive science began to have its influence on instructional design.
Cognitive science began a shift from behavioristic practices which emphasised external behavior, to a concern
with the internal mental processes of the mind and how they could be utilized in promoting effective learning.
The design models that had been developed in the behaviorist tradition were not simply tossed out, but instead
the "task analysis" and "learner analysis" parts of the models were embellished. The new models addressed
component processes of learning such as knowledge coding and representation, information storage and
retrieval as well as the incorporation and integration of new knowledge with previous information (Saettler,
1990). Because Cognitivism and Behaviorism are both governed by an objective view of the nature of
knowledge and what it means to know something, the transition from behavioral instructional design principles
to those of a cognitive style was not entirely difficult. The goal of instruction remained the communication or
transfer of knowledge to learners in the most efficient, effective manner possible (Bednar et al., in Anglin,
1995). For example, the breaking down of a task into small steps works for a behaviorist who is trying to find
the most efficient and fail proof method of shaping a learner's behavior. The cognitive scientist would analyze
a task, break it down into smaller steps or chunks and use that information to develop instruction that moves
from simple to complex building on prior schema.
The influence of cognitive science in instructional design is evidenced by the use of advance organizers,
mnemonic devices, metaphors, chunking into meaningful parts and the careful organization of instructional
materials from simple to complex.
Cognitivism and Computer-Based Instruction
Computers process information in a similar fashion to how cognitive scientists believe humans process
information: receive, store and retrieve. This analogy makes the possibility of programming a computer to
"think" like a person conceivable, i.e.. artificial intelligence.
Artificial intelligence involve the computer working to supply appropriate responses to student input from the
computer's data base. A trouble-shooting programs is one example of these programs. Below is a list of some
programs and their intended use:
SCHOLAR - teaches facts about South American geography in a Socratic method
PUFF - diagnoses medical patients for possible pulmonary disorders
MYCIN - diagnoses blood infections and prescribes possible treatment
DENDRAL - enables a chemist to make an accurate guess about the molecular structure of an unknown
compound
META-DENDRAL - makes up its own molecular fragmentation rules in an attempt to explain sets of
basic data
GUIDION - a derivative of the MYCIN program that gave a student information about a case and
compared their diagnosis with what MYCIN would suggest
SOPIE - helps engineers troubleshoot electronic equipment problems
BUGGY - allows teachers to diagnose causes for student mathematical errors
LOGO - designed to help children learn to program a computer
Davis' math programs for the PLATO system - to encourage mathematical development through
discovery
(Saettler, 1990)
Constructivism and Instructional Design
The shift of instructional design from behaviorism to cognitivism was not as dramatic as the move into
constructivism appears to be, since behaviorism and cognitivism are both objective in nature. Behaviorism and
cognitivism both support the practice of analyzing a task and breaking it down into manageable chunks,
establishing objectives, and measuring performance based on those objectives. Constructivism, on the other
hand, promotes a more open-ended learning experience where the methods and results of learning are not
easily measured and may not be the same for each learner.
While behaviorism and constructivism are very different theoretical perspectives, cognitivism shares some
similarities with constructivism. An example of their compatibility is the fact that they share the analogy of
comparing the processes of the mind to that of a computer. Consider the following statement by Perkins:
"...information processing models have spawned the computer model of the mind as an information
processor. Constructivism has added that this information processor must be seen as not just shuffling
data, but wielding it flexibly during learning -- making hypotheses, testing tentative interpretations, and
so on." (Perkins, 1991, p.21 in Schwier, 1998 ).
Other examples of the link between cognitive theory and constructivism are:
schema theory (Spiro, et al, 1991, in Schwier, 1998)
connectionism (Bereiter, 1991, in Schwier, 1998)
hypermedia (Tolhurst, 1992, in Schwier, 1998)
multimedia (Dede, 1992, in Schwier, 1998)
Despite these similarities between cognitivism and constructivism, the objective side of cognitivism supported
the use of models to be used in the systems approach of instructional design. Constructivism is not compatible
with the present systems approach to instructional design, as Jonassen points out :
"The conundrum that constructivism poses for instructional designers, however, is that if each individual
is responsible for knowledge construction, how can we as designers determine and insure a common set
of outcomes for leaning, as we have been taught to do?" (Jonasson, [On-line])
In the same article, Jonassen (Jonasson, [On-line]) lists the following implications of constructivism for
instructional design:
"...purposeful knowledge construction may be facilitated by learning environments which:
Provide multiple representations of reality - avoid oversimplification of instruction by by representing
the natural complexity of the world
Present authentic tasks - contextualize
Provide real-world, case-based learning environments, rather than pre-determined instructional
sequences
Foster reflective practice
Enable context- and content-dependent knowledge construction
Support collaborative construction of knowledge through social negotiation, not competition among
learners for recognition
"Although we believe that constructivism is not a prescriptive theory of instruction, it should be possible
to provide more explicit guidelines on how to design learning environments that foster constructivist
learning"
Jonassen points out that the difference between constructivist and objectivist, (behavioral and cognitive),
instructional design is that objective design has a predetermined outcome and intervenes in the learning process
to map a pre-determined concept of reality into the learner's mind, while constructivism maintains that because
learning outcomes are not always predictable, instruction should foster, not control, learning. With this in mind,
Jonassen looks at the commonalties among constructivist approaches to learning to suggest a "model" for
designing constructivist learning environments.
"...a constructivist design process should be concerned with designing environments which support the
construction of knowledge, which ..."
Is Based on Internal Negotiation
a process of articulating mental models, using those models to explain, predict, and infer, and
reflecting on their utility (Piaget's accommodation, Norman and Rumelhart's tuning and
restructuring.)
Is Based on Social Negotiation
a process of sharing a reality with others using the same or similar processes to those used in
internal negotiation
Is Facilitated by Exploration of Real World Environments and Intervention of New Environments
processes that are regulated by each individual's intentions, needs, and/or expectations
Results in Mental Models and provides Meaningful, Authentic Contexts for Learning and Using the
Constructed Knowledge
should be supported by case-based problems which have been derived from and situated in the
real world with all of its uncertainty and complexity and based on authentic realife practice
Requires an Understanding of its Own Thinking Process and Problem Solving Methods
problems in one context are different from problems in other contexts
Modeled for Learners by Skilled Performers but Not Necessarily Expert Performers
Requires Collaboration Among Learners and With the Teacher
the teacher is more of a coach or mentor than a purveyor of knowledge
Provides an Intellectual Toolkit to Facilitate an Internal Negotiation Necessary for Building Mental
Models
(Jonasson, [On-line])
The technological advances of the 1980s and 1990s have enabled designers to move toward a more
constructivist approach to design of instruction. One of the most useful tools for the constructivist designer is
hypertext and hypermedia because it allows for a branched design rather than a linear format of instruction.
Hyperlinks allow for learner control which is crucial to constructivist learning; however, there is some concerns
over the novice learner becoming "lost" in a sea of hypermedia. To address this concern, Jonassen and
McAlleese (Jonnassen & McAlleese, [On-line]) note that each phase of knowledge acquisition requires
different types of learning and that initial knowledge acquisition is perhaps best served by classical instruction
with predetermined learning outcomes, sequenced instructional interaction and criterion-referenced evaluation
while the more advanced second phase of knowledge acquisition is more suited to a constructivist
environment.
If a novice learner is unable to establish an "anchor" in a hypermedia environment they may wander aimlessly
through hypermedia becoming completely disoriented. Reigeluth and Chung suggest a prescriptive system
which advocates increased learner control. In this method, students have some background knowledge and
have been given some instruction in developing their own metacognitive strategies and have some way to
return along the path they have taken, should they become "lost". (Davidson, 1998)
Most literature on constructivist design suggests that learners should not simply be let loose in a hypermedia or
hypertext environment, but that a mix of old and new (objective and constructive) instruction/learning design
be implemented. Davidson's (1998) article, suggesting a criteria for hypermedia learning based on an
"exploration of relevant learning theories", is an example of this method.
Having noted the eclectic nature of instructional design, it is only fair to point out that not all theorists advocate
a "mix and match" strategy for instructional design. Bednar, Cunningham, Duffy and Perry wrote an article
that challenges the eclectic nature if instructional systems design by pointing out that "...abstracting concepts
and strategies from the theoretical position that spawned then strips them of their meaning." They question
objectivist epistemology completely and have adopted what they consider a constructivist approach to
instructional design. In the article they compare the traditional approaches of analysis, synthesis, and evaluation
to that of a constructivist approach. (Bednar, Cunningham, Duffy & Perry, 1995)
Learning Theories and the Practice of Instructional Design
What is the difference between the learning theories in terms of the practice of instructional design? Is one
approach more easily achieved than another? To address this, one may consider that cognitive theory is the
dominant theory in instructional design and many of the instructional strategies advocated and utilized by
behaviorists are also used by cognitivists, but for different reasons. For example, behaviorists assess learners to
determine a starting point for instruction, while cognitivists look at the learner to determine their predisposition
to learning (Ertmer & Newby, 1993). With this in mind, the practice of instructional design can be viewed from
a behaviorist/cognitivist approach as opposed to a constructivist approach.
When designing from a behaviorist/cognitivist stance, the designer analyzes the situation and sets a goal.
Individual tasks are broken down and learning objectives are developed. Evaluation consists of determining
whether the criteria for the objectives has been met. In this approach the designer decides what is important for
the learner to know and attempts to transfer that knowledge to the learner. The learning package is somewhat
of a closed system, since although it may allow for some branching and remediation, the learner is still
confined to the designer's "world".
To design from a constructivist approach requires that the designer produces a product that is much more
facilitative in nature than prescriptive. The content is not prespecified, direction is determined by the learner and
assessment is much more subjective because it does not depend on specific quantitative criteria, but rather the
process and self-evaluation of the learner. The standard pencil-and-paper tests of mastery learning are not used
in constructive design; instead, evaluation is based on notes, early drafts, final products and journals.
(Assessment [On-line])
Because of the divergent, subjective nature of constructive learning, it is easier for a designer to work from the
systems, and thus the objective approach to instructional design. That is not to say that classical instructional
design techniques are better than constructive design, but it is easier, less time consuming and most likely less
expensive to design within a "closed system" rather than an "open" one. Perhaps there is some truth in the
statement that "Constructivism is a 'learning theory', more than a 'teaching approach'." (Wilkinson, 1995)
Learning Theories - Some Strengths and Weaknesses
What are the perceived strengths and weaknesses of using certain theoretical approaches to instructional
design?
Behaviorism
Weakness -the learner may find themselves in a situation where the stimulus for the correct response does not
occur, therefore the learner cannot respond. - A worker who has been conditioned to respond to a certain cue at
work stops production when an anomaly occurs because they do not understand the system.
Strength - the learner is focused on a clear goal and can respond automatically to the cues of that goal. -
W.W.II pilots were conditioned to react to silhouettes of enemy planes, a response which one would hope
became automatic.
Cognitivism
Weakness - the learner learns a way to accomplish a task, but it may not be the best way, or suited to the
learner or the situation. For example, logging onto the internet on one computer may not be the same as logging
in on another computer.
Strength - the goal is to train learners to do a task the same way to enable consistency. - Logging onto and off
of a workplace computer is the same for all employees; it may be important do an exact routine to avoid
problems.
Constructivism
Weakness - in a situation where conformity is essential divergent thinking and action may cause problems.
Imagine the fun Revenue Canada would have if every person decided to report their taxes in their own way -
although, there probably are some very "constructive" approaches used within the system we have.
Strength - because the learner is able to interpret multiple realities, the learner is better able to deal with real life
situations. If a learner can problem solve, they may better apply their existing knowledge to a novel situation.
(Schuman, 1996)
Is There One Best Learning Theory for Instructional Design?
Why bother with Theory at all?
A solid foundation in learning theory is an essential element in the preparation of ISD professionals because it
permeates all dimensions of ISD (Shiffman, 1995). Depending on the learners and situation, different learning
theories may apply. The instructional designer must understand the strengths and weaknesses of each learning
theory to optimize their use in appropriate instructional design strategy. Recipes contained in ID theories may
have value for novice designers (Wilson, 1997), who lack the experience and expertise of veteran designers.
Theories are useful because they open our eyes to other possibilities and ways of seeing the world. Whether we
realize it or not, the best design decisions are most certainly based on our knowledge of learning theories.
An Eclectic Approach to Theory in Instructional Design
The function of ID is more of an application of theory, rather than a theory itself. Trying to tie Instructional
Design to one particular theory is like school vs. the real world. What we learn in a school environment does
not always match what is out there in the real world, just as the prescriptions of theory do not always apply in
practice, (the real world). From a pragmatic point of view, instructional designers find what works and use it.
What Works and How Can We Use It?
Behaviorism, cognitivism and constructivism - what works where and how do we knit everything together to
at least give ourselves some focus in our approach to instructional design? First of all we do not need to
abandon the systems approach but we must modify it to accommodate constructivist values. We must allow
circumstances surrounding the learning situation to help us decide which approach to learning is most
appropriate. It is necessary to realize that some learning problems require highly prescriptive solutions, whereas
others are more suited to learner control of the environment. (Schwier, 1995)
Jonnassen in ([On-line]) identified
the following types of learning and matched them with what he believes to be appropriate learning theory
approaches.
Manifesto for a Constructive Approach to Technology in Higher Education
1. Introductory Learning - learners have very little directly transferable prior knowledge about a
skill or content area. They are at the initial stages of schema assembly and integration. At this stage
classical instructional design is most suitable because it is predetermined, constrained, sequential
and criterion-referenced. The learner can develop some anchors for further exploration.
2. Advanced Knowledge Acquisition - follows introductory knowledge and precedes expert
knowledge. At this point constructivist approaches may be introduced.
3. Expertise is the final stage of knowledge acquisition. In this stage the learner is able to make
intelligent decisions within the learning environment. A constructivist approach would work well
in this case.
Having pointed out the different levels of learning, Jonassen stresses that it is still important to consider the
context before recommending any specific methodology.
Reigeluth's Elaboration Theory which organizes instruction in increasing order of complexity and moves from
prerequisite learning to learner control may work in the eclectic approach to instructional design, since the
learner can be introduced to the main concepts of a course and then move on to more of a self directed study
that is meaningful to them and their particular context.
After having compared and contrasted behaviorism, cognitivism and constructivism, Ertmer and Newby
(1993) feel that the instructional approach used for novice learners may not be efficiently stimulating for a
learner who is familiar with the content. They do not advocate one single learning theory, but stress that
instructional strategy and content addressed depend on the level of the learners. Similar to Jonassen, they match
learning theories with the content to be learned:
... a can effectively facilitate mastery of the content of abehavioral approach
profession (knowing what); are useful in teaching problem
-solving tactics where defined facts and rules are applied in unfamiliar situations
(knowing how); and are especially suited to dealing with
ill-defined problems through reflection-in-action. (Ertmer P. & Newby, T., 1993)
cognitive strategies
constructivist strategies
Behavioral
... tasks requiring a low degree of processing (e.g., basic paired associations,
discriminations, rote memorization) seem to be facilitated by strategies most
frequently associated with a behavioral outlook (e.g., stimulus-response, contiguity
of feedback/reinforcement).
Cognitive
Tasks requiring an increased level of processing (e.g., classifications, rule or
procedural executions) are primarily associated with strategies
having a stronger cognitive emphasis (e.g., schematic organization, analogical
reasoning, algorithmic problem solving).
Tasks demanding high levels of processing (e.g., heuristic problem solving,
personal selection and monitoring of cognitive strategies) are frequently
Constructive
est learned with strategies advanced by the constructivist perspective (e.g.,
situated learning, cognitive apprenticeships, social negotiation.
(Ertmer P. & Newby, T., 1993)
Ertmer and Newby (1993) believe that the strategies promoted by different learning theories overlap (the same
strategy for a different reason) and that learning theory strategies are concentrated along different points of a
continuum depending of the focus of the learning theory - the level of cognitive processing required.
Ertmer and Newby's suggestion that theoretical strategies can complement the learner's level of task
knowledge, allows the designer to make the best use of all available practical applications of the different
learning theories. With this approach the designer is able to draw from a large number of strategies to meet a
variety of learning situations.
Conclusion
Upon completion of this site on learning theories and instructional design, I have not only accomplished my
objective, but gained insight and appreciation for the different learning theories and their possible application to
instructional design.
It was interesting for me to find that I am not alone in my perspective regarding learning theories and
instructional design. There is a place for each theory within the practice of instructional design, depending upon
the situation and environment. I especially favor the idea of using an objective approach to provide the learner
with an "anchor" before they set sail on the open seas of knowledge. A basic understanding of the material in
question provides the learner with a guiding compass for further travel.
Another consideration is the distinction between "training" and "education". In today's competitive business
world, the instructional designer may be required to establish and meet the objectives of that business. On the
other hand, in a school setting, the designer may be challenged to provide material that fosters an individual to
find divergent approaches to problem solving. Whichever situation the instructional designer finds themselves
in, they will require a thorough understanding of learning theories to enable them to provide the appropriate
learning environment.
Finally, though Instructional Design may have a behaviorist tradition, new insights to the learning process
continue to replace, change and alter the process. Advancements in technology make branched constructivist
approaches to learning possible. Whether designing for training or education, the instructional designer's
toolbox contains an ever changing and increasing number of theoretical applications and physical possibilities.
With intelligent application of learning theory strategies and technology, the modern designer will find
solutions to the learning requirements of the 21st century.
**Web addresses updated Feb. 5, 2001. Some sites seem to be no longer available, but I am searching for
them.
References & Bibliography
Assessment in a constructivist learning environment. [On-line] http://
www.coe.missouri.edu:80tiger.coe.missouri.edu/
Bednar, A.K., Cunningham, D., Duffy, T.M., Perry, J.P. (1995). Theory into practice: How do we link? In
G.J. Anglin (Ed.), Instructional technology: Past, present and future (2nd ed., pp. 100-111)., Englewood, CO:
Libraries Unlimited, Inc.
.
Behaviorism and constructivism. [On-line]. Available: http://hagar.up.ac.za/catts/learner/debbie/
CADVANT.HTM
Behaviorism. [On-line]. Available: http://sacam.oren.ortn.edu/~ssganapa/disc/behave.html
Beyond constructivism - contextualism. [On-line]. Available: http://tiger.coe.missouri.edu/~t377/cx_intro.html
Black, E. (1995). Behaviorism as a learning theory. [On-line]. Available: http://129.7.160.115/inst5931/
Behaviorism.html
Bracy, B. (Undated) Emergent learning technologies. [On-line]. Available: gopher://unix5.nysed.gov/00/
TelecommInfo/Reading%20Room%20Points%20View/
Burney, J. D. (Undated). Behaviorism and B. F. Skinner. [On-line]. Available: http://www2.una.edu/
education/Skinner.htm
Conditions of learning (R. Gagne). [On-line]. Available: http://www.gwu.edu/~tip/gagne.html
Constructivist theory (J. Bruner). [On-line]. Available: http://www.gwu.edu/~tip/bruner.html
Cunningham, D. J. (1991). Assessing constructions and constructing assessments: A dialogue.
May, 13-17.
Educational
Technology,
Davidson, K. (1998). Education in the internet--linking theory to reality. [On-line]. Available: http://
www.oise.on.ca/~kdavidson/cons.html
Dembo, M. H. (1994). (5th ed.). White Plains, NY: Longman Publishing
Group.
Applying educational psychology
Dick, W. (1991). An instructional designer's view of constructivism. May, 41-44.Educational Technology,
Dorin, H., Demmin, P. E., Gabel, D. (1990). (3rd ed.). Englewood Cliffs, NJ:
Prentice Hall, Inc.
Chemistry: The study of matter.
Duffy, T. M., Jonassen, D. H. (1991). Constructivism: New implications for instructional
technolgy? May, 7-12.Educational Technology,
Ertmer, P. A., Newby, T. J. (1993). Behaviorism, cognitivism, constructivism: Comparing critical features
from an instructional design perspective. 6 (4), 50-70.Performance Improvement Quarterly,
Genetic epistemology (J.Piaget). [On-line]. Available: http://www.gwu.edu/~tip/piaget.html
Good, T. L., Brophy, J. E. (1990). (4th ed.).White Plains, NY:
Longman
Educational psychology: A realistic approach.
Information processing theory and instructional technology. [On-line]. Available: http://tiger.coe.missouri.edu/
~t377/IPTools.html
Information process theory of learning. [On-line]. Available: http://tiger.coe.missouri.edu/~t377/
IPTheorists.html
Jonassen, D. H. (1991) Objectivism versus constructivism: do we need a new philosophical
paradigm? 39 (3), 5-14.Educational Technology Research and Development,
Jonasson, D.H. (Undated). Thinking technology: Toward a constructivist design model. [On-line].
Available: http://ouray.cudenver.edu/~slsanfor/cnstdm.txt
Jonassen, D. H., McAleese, T.M.R. (Undated). A Manifesto for a constructivist approach to technology in
higher education. [Last Retrieved December 12, 2005]. http://apu.gcal.ac.uk/clti/papers/TMPaper11.html
Khalsa, G. (Undated). Constructivism. [On-line]. Available: http://www.gwu.edu/~etl/khalsa.html
Kulikowski, S. (Undated). The constructivist tool bar. [On-line]. Available: http://
www.coe.missouri.edu:80tiger.coe.missouri.edu/
Learning theory: Objectivism vs constructivism.[On-line]. Available: http://media.hku.hk/cmr/edtech/
Constructivism.html
Lebow, D. (1993). Constructivist values for instructional systems design: Five principles toward a new
mindset. 41 (3), 4-16.Educational Technology Research and Development,
Lewis, D. (1996). Perspectives on instruction. [On-line]. Available: http://edweb.sdsu.edu/courses/edtech540/
Perspectives/Perspectives.html
Lieu, M.W. (1997). Final project for EDT700, Learning theorists and learning theories to modern instructional
design. [On-line]. Available: http://www.itec.sfsu.edu/faculty/kforeman/edt700/theoryproject/index.html
Merrill, M. D. (1991). Constructivism and instructional design. May, 45-53.Educational Technology,
Military. [On-line]. Available: http://www.gwu.edu/~tip/military.html
Operant conditioning (B.F. Skinner). [On-line]. Available: http://www.gwu.edu/~tip/skinner.html
Operant conditioning and behaviorism - an historical outline. [On-line]. Available: http://
www.biozentrum.uni-wuerzburg.de/genetics/behavior/learning/behaviorism.html
Perkins, D. N. (1991). Technology meets constructivism: Do they make a marriage? ,
May, 18-23.
Educational Technology
Reigeluth, C. M. (1989). Educational technology at the crossroads: New mindsets and new
directions. 37(1), 1042-1629.Educational Technology Research and Development,
Reigeluth, C. M. (1995). What is the new paradigm of instructional theory. [On-line]. Available:
http://
itech1.coe.uga.edu/itforum/paper17/paper17.html
Reigeluth, C. M. (1996). A new paradigm of ISD? May-June, 13-20.Educational Technology,
Reigeluth, C. (Undated). Elaboration theory. [On-line]. Available: http://www.gwu.edu/~tip/reigelut.html
Rizo,F.M. (1991). The controversy about quantification in social research: An extension of Gage's "historical
sketch." Educational Researcher, 20 (12), 9-12
Saettler, P. (1990). The evolution of american educational technology . Englewood, CO: Libraries Unlimited,
Inc.
Schiffman, S. S. (1995). Instructional systems design: Five views of the field. In G.J. Anglin
(Ed.), (2nd ed., pp. 131-142)., Englewood, CO: Libraries
Unlimited, Inc.
Instructional technology: Past, present and future.
Schuman, L. (1996). Perspectives on instruction. [On-line]. Available: http://edweb.sdsu.edu/courses/
edtec540/Perspectives/Perspectives.html
Schwier, R. A. (1995). Issues in emerging interactive technologies. In G.J. Anglin (Ed.),
(2nd ed., pp. 119-127)., Englewood, CO: Libraries Unlimited, Inc.
Instructional
technology: Past, present and future.
Schwier, R. A. (1998). Schwiercourses, EDCMM 802, Unpublished manuscript, University of Saskatchewan
at Saskatoon, Canada.
Shank, P. (Undated). Constructivist theory and internet based instruction. [On-line]. Available: http://
www.gwu.edu/~etl/shank.html
Skinner, Thorndike, Watson. [On-line]. Available: http://userwww.sfsu.edu/~rsauzier/Thorndike.html
Smorgansbord, A., (Undated). Constructivism and instructional design. [On-line]. Available: http://
hagar.up.ac.za/catts/learner/smorgan/cons.html
Spiro, R. J., Feltovich, M. J., Coulson, R. J. (1991). Cognitive flexibility, constructivism, and hypertext:
Random access instruction for advanced knowledge acquisition in ill-structured domains.
May, 24-33.
Educational
Technology,
White, A. (1995) Theorists of behaviorism. [On-line]. Available: http://tiger.coe.missouri.edu/~t377/
btheorists.html
Wilkinson. G.L. (Ed.) (1995). Constructivism, objectivism, and isd. IT forum discussion, April 12 to August
21, 1995. [On-line]. Available: http://itech1.coe.uga.edu/itforum/extra4/disc-ex4.html
Wilson, B. G. (1997). Thoughts on theory in educational technology. January-
February, 22-27.
Educational Technology,
Wilson, B. G. (1997). Reflections on constructivism and instructional design. [On-line]. Available: http://
www.cudenver.edu/~bwilson/construct.html
... With some learning strategies, learners link new information to prior knowledge to make the new information meaningful (Oxford, 1990). For an effective outcome with learning strategies, it is important to include the strategy along with the material to be learnt since mere presentation of the material and the strategy independently does not have the same impact (Mergel, 1998). Also, the learner must be directed in using the prescribed strategy while limiting the use of a number of strategies all at once (Pressley, 1990). ...
... Cognitivism is based on observations of behaviour changes, which are indicators of thought processes in the learner's mind. Table 4 presents the key concepts in cognitive theory (Mergel, 1998). ...
... In constructivism, the learners use their problem solving in ambiguous situations as they can construct their own viewpoint of the world based on their individual and/or social negotiation of meaning experiences and schema (Mergel, 1998). Mergel (1998) categorised the construction in this process into realistic and radical categories; the former as "(cognition is) the process by which learners eventually construct mental structures that correspond to or match external structures located in the environment" and the latter as "cognition serves to organise the learner's experiential world rather than to discover ontological reality" (Mergel, 1998, p. 8). ...
Thesis
Full-text available
Learning new vocabulary is one of the challenges in language learning yet crucial for mastering another language. It is also essential in any discipline or professional field where mastering new terminology is indispensable. VLASTWA is a Vocabulary Learning and Strategy Teaching Web Application designed to help Persian native speakers improve their English vocabulary knowledge. In this study, I examined the effects of VLASTWA’s use on improving Persian learners’ vocabulary. The conducted research presents an evaluation of efficacy and usability of this custom-built (for this project), targeted and learnable web application for teaching an extensively researched vocabulary learning strategy, the keyword method, and for facilitating learning of new vocabulary with the aid of this method. In this longitudinal study (n = 240, age 18+), effectiveness of the use of the keyword method taught within the designed web application (app) or traditional pen and paper (P&P) was compared between four experimental (two P&P and two app groups – with differences in receiving the encoding or encoding and recall keyword method training) and two control groups (one app and one P&P). In the experimental groups, participants learned to use the keyword method, applied it in learning 22 new (English) words, and tested the recall of this newly learned vocabulary within the app and P&P methods on four different occasions (times) while in the control groups – the only difference was not being given any keyword method instruction.
... The reasons for this vary from the individual's preferences to learn or their current skill or knowledge level to the perceived value of the learning task or the subject matter itself and the level of cognitive processing required (Ertmer & Newby, 1993;Kolb, 1984;Mergel, 1998;O'Connor et al., 2007;Snelbecker, 1983). For example, Kolb's learning styles research focuses on individual preferences for learning, recognizing that people's life experiences and the demands of their everyday environments can influence their learning preferences. ...
... Because no single theoretical learning theory predominates, it is important to combine learning theories effectively based on the learner and learning situation to maximize learning outcomes. Therefore, instructional designers must know a great deal about the theories being combined (Ertmer & Newby, 1993;Kolb, 1984;Mergel, 1998;O'Connor et al., 2007;Snelbecker, 1983). O'Connor et al. (2007) summarize this well by asking, "What will help this target population, in this set of circumstances, learn in the most efficient and effective way?" (p. ...
... The reasons for this vary from the individual's preferences to learn or their current skill or knowledge level to the perceived value of the learning task or the subject matter itself and the level of cognitive processing required (Ertmer & Newby, 1993;Kolb, 1984;Mergel, 1998;O'Connor et al., 2007;Snelbecker, 1983). Because no single theoretical learning theory predominates, it is important to combine learning theories effectively based on the learner and learning situation to maximize learning outcomes. ...
Article
The New Digital Age is characterized by a rapid growth in the use of digital technology in society and business. Technology has become integral to how people live and work, changing the skills people need every day and how companies operate. Digital disruption is forcing companies to urgently reskill their employees and provide effective training in the new technologies to keep up with the rapid pace of technological advancement. Companies need to encourage their employees to take ownership for their self-development and participate in lifelong learning in the Race Against the Machine or risk their skills becoming obsolete. The purpose of this study is to understand the importance of organizational human resource knowledge management practices through learning to business success in a high technology knowledge-intensive industry firm. This study focuses on one company, and what Executives and Learning Leaders perceive to be the relationship between the Learning Experience Platform, business performance, organizational agility, and sustained competitive advantage. Additionally, the practices and processes that drove the successful adoption of the platform are explored. This dissertation used qualitative methods to explore the connections among learning and business success. Executives and Learning Leaders in a professional services firm believe that the Learning Experience Platform enabled the reskilling of the professional services firm employee’s to the technologies of the New Digital Age and this resulted in improved financial performance, increased organizational agility, and differentiation in the marketplace that led to competitive advantage. The most effective practices that drove the adoption of the Learning Experience Platform were local leadership role modeling and local adaptation of the platform. In addition, marketing and communication programs explained the benefits of self-directed continuous learning to employees and generated interest and awareness of the platform. However, all these practices were secondary to the many other factors that were already existent in the professional services firm’s culture. These included a strong legacy learning culture, and the importance of needing to stay relevant and ahead of clients. In addition, the employees themselves were intrinsically motivated lifelong learners encouraged by the strong learning culture. This study makes a unique contribution to the current body of knowledge connecting knowledge management through learning and business performance.
... Later in the 20 th century, cognitivism gained attention, offering a perspective on learning in which internal processes of the mind play a more important role (Brown & Green, 2019). Although cognitivist learning theory also acknowledges reinforcement and environmental factors as motivators (Mergel, 1998), it is less mechanistic in its understanding of the human response to stimuli (Yilmaz, 2011). Instead, cognitive theories highlight the importance of mental processes (perception, thought, memory, attention, problem solving, and information processing) in learning, and seek to explain how information processing (receiving, organizing, storing, and retrieving of information) is happening in the mind (Currie, 2004;Ertmer & Newby, 2013). ...
... Pedagogical designs founded on cognitivist principles typically consider learners be more active participants in the acquisition of knowledge, with learning understood as an active process of receiving, organizing, storing, and retrieving information and knowledge. Educators are less central, and play a guiding role through design and provision of instructional supports such as scaffolding, examples, feedback, and advance organizers for new topics (Mohammadi et al., 2010), and by facilitating recall of prior knowledge (Mergel, 1998) and design of authentic situations for learning. ...
... Constructivism argues that what people know about the world depends primarily on their own interpretation of their experiences (Ertmer & Newby, 2013). Learning is therefore understood as a process of personal construction of knowledge from their experiences and building on prior knowledge (Altun & Büyükduman, 2007;Mergel, 1998;Merrill, 1991;Parker, 2009;Weegar & Pacis, 2012), rather than acquisition of knowledge transmitted from educators to learners. Social constructivist theories go even further, asserting that collaboration, social interaction, thought sharing, and meaning negotiation offer significant routes to conceptual development and understanding (Altun & Büyükduman, 2007;Parker, 2009). ...
Article
Full-text available
Which learning analytics (LA) approach might be the best choice for your teaching and learning context? Learning analytics as a field of research and application seeks to collect, analyze, report, and interpret educational data with the goal of improving teaching and learning. However, hasty adoption of learning analytics tools and methods that are simply convenient, promoted, or available risks allowing learning analytics to "drive the pedagogical bus." In this paper, we propose that careful reflection on pedagogical design choices and the learning theory that underpins them can and should inform selection of relevant learning analytics tools and approaches. We broadly review established learning theories and the implications of each for pedagogical design; for each design approach, we offer examples of learning analytics most clearly aligned with the theoretical perspectives on learning and knowledge that have shaped it. Moreover, we argue that careful consideration of the learning theory underpinning the pragmatics of pedagogical design choices should guide LA implementation, and help educators and designers avoid the risk of gathering data on, and measuring outcomes for, activities that are not relevant to their pedagogical design or goals.
... These learning procedures are related to the constructivist model of human cognition and depend on dynamic interactions with the environment (Panko, 2005). Hence, Mergel (1998) points out the critical aspects of those alternative learning theories in instructional design; Cognitivism and Behaviorism both support the practice of analyzing a task, establishing objectives, and measuring performance based on those objectives. On the other hand, Constructivism promotes a more open-ended learning experience where the methods and results are not easily measured and they may not have the same result for each learner (Mergel, 1998). ...
... Hence, Mergel (1998) points out the critical aspects of those alternative learning theories in instructional design; Cognitivism and Behaviorism both support the practice of analyzing a task, establishing objectives, and measuring performance based on those objectives. On the other hand, Constructivism promotes a more open-ended learning experience where the methods and results are not easily measured and they may not have the same result for each learner (Mergel, 1998). ...
Conference Paper
Full-text available
Intense and growing demand for affordable housing is pushing for the utilization of advanced industrialized building technologies to be implemented at a faster rate in the Malaysian construction industry. The purpose of this survey paper is to develop some understanding about the human capability gaps with the intention to developing a potential mechanism to facilitate the transfer of selected IBS technology more effectively between technology provider and the general laborers. This paper covers selected literature review covering the background of industrialized building scenario in Malaysia, capacity building in the construction industry, and techniques of capability transfer of advanced technologies with a view to improved productivity among general laborers in developing countries. The paper highlights literature gaps in the above themes in view of productivity improvement and presents points of departure in providing potential solutions to a better and effective method to improve the construction productivity in the long run. The paper concludes with a proposed model for developing capability training for low tech laborers and it contributes in recommending how the Malaysian construction industry could enhance its human capability for increasing its construction productivity for local and export market.
... The standard pencil-and-paper tests of mastery learning are not used in constructive design. The instructional design techniques are different for different instructional objectives (Mergel, 1998) Although cognitive psychology emerged in the late 1950s and began to take over as the dominant theory of learning, it wasn't until the late 1970s that cognitive science began to influence instructional design. Cognitive science began a shift from behavioristic practices that emphasized external behavior, to a concern with the internal mental processes of the mind and how they could be utilized in promoting effective learning. ...
Thesis
Full-text available
Education is a process of teaching and learning that go hand in hand. Instructions play an important role in it. The instructional process is multidimensional, which mainly involves learning theories based on which, instructional delivery is designed. The educational system of every country supports certain learning theories to meet learning objectives based on the needs of that particular country. There are many different learning theories that have been followed to date like behaviorist, cognitivist and constructivist. All the theories are focused on the change in behavior of the learners through information retention in different memory systems of the brain. Hence, the focus of instructions is on memory and thinking i.e. how that information stored in memory, is transferred to thinking, to further elicit the desired behavior to solve the problems or take decisions in real life. So, the behavior of an individual is the reflection of thinking involved to act in a particular way because the focus of the instruction is to develop thinking skills. Bloom et al.’s taxonomy of the cognitive domain has clearly outlined different thinking levels in the cognitive domain i.e. knowledge to evaluation. Since the new technologies have emerged and now learning in the brain is being studied from a different perspective, so with the birth of the science of learning, it has put forward a new theory of learning based on the principles of brain and learning interaction through the lens of behavior underpinnings. Researchers around the world have put forward different aspects of the brain and learning. Mind, brain, and education (MBE) have started gaining momentum as the new science of teaching and learning since last few years when researchers in this area, from Harvard to John Hopkins and Cambridge along with many more in different countries, started exploring the links of human learning with different human sciences from neurosciences to developmental biology and psychology. The main idea is to make learning more effective. Till now, the only major feeding science for educational theories is psychology, but now other science fields related to the brain also have their role to play in various learning problems from dyslexia, dyscalculia, and attention deficit hyperactivity syndrome. The research data of all the subfields like neuroscience genetics and psychology are filtered through the lenses of education being gathered, which is exploring new challenges and finding ways to solve various educational problems, may it be learning disabilities, motivational problems, memory, development of thinking or similar sort of teaching-learning problems. The objective of 7C’s instructional model, designed based on the principles of MBE, is to focus on the development of thinking skills among learners, to make the process of learning more meaningful and interesting to the learners, using positive emotions in teacher-student interactions, and creating a good learning environment. The role of the teacher is very important in any teaching activity. He acts as a catalyst for learning to take place in the teaching-learning process. It is expected that the 7C’s instructional model is useful in the alignment of teaching-learning activities to bring the desired changes in learners’ thinking. The main objective of the study was to develop an instructional model based on mind, brain, and education guidelines and to measure its effectiveness in terms of the thinking pattern of learners incongruence to parental cognitive stimulation. For the Development of the instructional model, ADDIE (Analysis, Design, Development, Implement, and Evaluation) model was used as a framework to outline different phases of the developmental process. The evaluation of the Instructional model is done in terms of its effectiveness in congruence to thinking pattern and parental cognitive stimulation. The t-test and ANCOVA were used along with measures of central tendency i.e. mean and standard deviation. The data was analyzed using SPSS 22 and testing of hypotheses was done at a level of significance p=.05 (two-tailed). It has been found that instructional model-based interventions have a significant impact on the achievement of thinking levels in life science. The Parental Cognitive Stimulation (PCS), data were analyzed, where it has been found that PCS alone does not impact Thinking variables in post-test when data of both the experimental and control groups were analyzed. Low PCS experimental group performed better (M dif=16.346, t=3.472, p=.005) over Low PCS control group (M dif= -0.638, t=0.202; p=0.842) where no statistical significant difference in pre-test and post-test performance was reported. Similarly, in the average PCS experimental group in pre-test and post-test, a statistically significant difference was found (M dif.=13.95, t=6.077; p=0.001). It has been concluded that PCS has no independent effect in influencing the thinking pattern. But, It is in congruence with 7C’s instructional model. Thinking Pattern data were analyzed by calculating the mean average percentage of each group at five variables i.e. Knowledge, Understanding, Application, Analysis, and Evaluation. The data were analyzed using independent and paired sample t-test, bar diagrams, and line charts of mean values were prepared to show a pattern, the reporting of results suggested that the experimental group performed better than the control group. The percentage gain in the mean is higher in the experimental group over the control group in post-test performance in thinking pattern. It has been observed that in thinking pattern control group has not shown any significant impact with low and average PCS, while in the experimental group with high PCS and Average PCS, students performed better than Low PCS in post-test, while in the control group, high PCS student’s performance declined in post-test and average and low PCS group performance is also less as compared to the experimental group. In the end, it is concluded that thinking pattern and parental cognitive stimulation are congruent with the instructional model. The thinking pattern has significantly improved in instructional model-based teaching in a classroom of life sciences. Parental cognitive stimulation, coupled with the instructional model, has significant improvement in results of students’ performance in the average PCS group while the low PCS group performed better due to instructional model-based intervention. This instructional model is based on the mind, brain, and education science approach, which primarily focuses on emotional regulation and strengthening neural pathways related to memory, attention, and perception further study to measure its effectiveness can be done. The brain learning principles highlighted in MBE are not subject-specific, hence not only life science but also other areas like languages, social sciences, and mathematics can be taught through this instructional model. It is suggested that more time in the timetable could be allotted to the activities for cognitive stimulation and comprehensive evaluation should be done. Keywords: mind, brain, and education science, instructional model, parental cognitive stimulation, thinking pattern, life science.
... Tüm bunlar beraberinde geleneksel yöntemlerden daha farklı ve zor bir ölçmeyi gerektirir. Örneğin, değerlendirmenin daha açık uçlu olması gerekir, aynı zamanda her öğrenci için de aynı olmayabilir (Mergel, 1998). Nitekim öğrenenler arasında bir örnek başarı beklenmek uygun değildir (Reiser, & Dempsey, 2007). ...
Technical Report
Full-text available
The technology of constructive learning is presented as a nanopsychopedagogical approach to learning. This is a creative-active learning. It puts student’s intellect in the forefront, creates circumstances in which every student builds up their own knowlodge based upon his/her existing experience and sets up an individual transition bridge to the future knowledge. The constructive teaching principles, its difference from constructivist approaches to teaching , structures and elements of the lesson are discribed in the article. This technology is based on Piaget’s logic integrity ( or completeness ) and on Zade‘s linguistic logic. Combining two logics in one single technology creates a new tendency in psychopedagogics – nanopsychopedagogies and profiles of changes are being outlined to which the tendency can be led in education. Principles of constructive education, elements of a lesson are described and the roles of teachers and students in this process of knowledge are given as well in the article. Logical structure of knowledge; Logical thought operations; Nanostructure of knowledge; Nanopysichopedagogy; Horizontal building of knowledge structure; Formal-logical modeling of the subject knowledge- knowledge nanostructure; The comparative machine translation.
... Dunia pendidikan dan Kurikulum 2013 pada saat ini bertumpu dengan filsafat pendidikan kontruksionisme. Filsafat konstruksionisme memusatkan pembelajaran dengan cara menyiapkan siswa agar mampu memecahkan masalah, pengetahuan dibangun melalui pengalaman (Mergel, 1998). Berdasarkan hal tersebut pembelajaran berdasarkan filsafat konstruksionisme artinya pembelajaran membangun pengalaman dan proses aktif terhadap siswa. ...
Article
Full-text available
Pendidikan kecakapan hidup merupakan suatu pengembangan potensi pada diri setiap siswa berdasarkan karakteristik, emosional dan spiritual dalam konteks pengembangan diri untuk menghadapi perannya disetiap masanya. Sedangkan tujuan khususnya yaitu untuk merangsang potensi siswa, memberikan wawasan pengembangan karir siswa, memberikan bekal nilai-nilai kehidupan, memberi kesempatan sekolah mengembangkan pembelajaran yang fleksibel. Pendidikan di Indonesia juga memerlukan pendidikan kecakapan hidup, dimana pendidikan kecakapan hidup artinya siswa diminta untuk memecahkan masalah dalam hidupnya sendiri terutama dalam pengembangan pembelajaran IPS Dalam Kurikulum 2013 siswa diminta untuk aktif dalam proses pembelajaran dan tenaga pengajar sebagai pembimbing dalam proses pembelajaran. artikel ini juga ada mensitasi dari tulisan Herry Porda Nugroho Putro
Chapter
Learning is a unique activity. There is no fixed pattern for learning as psychologists suggest different approaches to learning. For example, a section of psychologists says that learning brings changes in overt behavior and other group says that learning brings changes in thinking. In simple terms, these are two different approaches to learning. Basically, approaches to learning focus on how children learn and mainly refer to those skills and behaviors that children use to engage in learning (ECLKC, 2020). Therefore, as a teacher, it becomes essential for you to learn that what are different approaches to learning and how to use these approaches in classroom conditions? The approaches to learning mainly revolve around different theoretical perspectives: biological (learning as a brain-based activity), behaviorist (learning as a change in overt behavior), cognitivist (learning as a change in the state of knowledge), constructivist (learning as a change in thinking resulting from individual experiences), connectivist (learning as the process of creating connections), and humanistic (learning as individual responsibility one takes by becoming intrinsically motivated). Taking this discussion forward, the present chapter details six different approaches to learning and their implications in classroom conditions.
Chapter
Full-text available
Education is a related structure that can never be defined or even exist as separate from human beings. Behavioral, cognitive, and constructivist paradigms each try to explain learning with different concepts and principles. Well, did these theories survive the distance education process? Let's say each theory survived in distance education. Then the following questions come up: What does motivation mean for these theories? How do these theories make the motivational structure sustainable in distance education? Aiming at a comprehensive discussion of these questions, the chapter offers many answers and brings many different questions to mind. This chapter will guide instructors and instructional designers to design efficient learning opportunities for learners.
Chapter
Webinars are very powerful yet less used strategies for building the capacity of teachers to improve their pedagogical and andragogical practice, let alone to be used by teachers to offer education to their learners. The classroom learning environment has evolved to meet the needs of today and tomorrow by providing students with access to technology and online resources that support instruction especially during times when face-to-face interactions are impossible. This chapter offers research-based experience for the limitations and framework solution for effectively applying webinar through integrative tools as a framework for coaching educationists to promote active learning in blended environments. This chapter proposes an implementation framework based on a situation awareness model within empathetic participatory design principles. This model results in empowering and motivational outcomes for the instructors to extend the application of the use of the webinar tools among their fellow instructors.