Binge Alcohol-Induced Bone Damage is Accompanied by Differential Expression of Bone Remodeling-Related Genes in Rat Vertebral Bone

Department of Orthopaedic Surgery and Rehabilitation, Loyola University Stritch School of Medicine, 2160 S. First Ave., Maywood, IL 60153, USA.
Calcified Tissue International (Impact Factor: 3.27). 04/2009; 84(6):474-84. DOI: 10.1007/s00223-009-9240-z
Source: PubMed


Binge alcohol-related bone damage is prevented by concurrent administration of bisphosphonates, suggesting an activation of bone resorption with patterned alcohol exposure. Although chronic alcohol abuse is known to cause osteopenia, little is known about the effects of binge drinking on bone metabolism. We examined the effects of binge alcohol exposure on the relationship between bone damage and modulation of bone remodeling-specific gene expression profiles. Our hypothesis was that bone damage observed in young adult rats after binge alcohol exposure is associated with differential expression of bone remodeling-related gene expression. We further hypothesized that this differential gene expression specific to bone remodeling (bone resorption or formation related) would be influenced by the duration of binge alcohol exposure. Binge alcohol (3 g/kg, i.p.) was administered on 3 consecutive days each week, for 1 or 4 weeks, to adult male rats. Matched control animals were injected with an equal volume of isotonic saline. Lumbar vertebrae, L4-5, were analyzed for the presence of bone damage by quantitative computed tomography and compressive strength analysis. Total RNA was isolated from an adjacent vertebrae (L3), and whole transcriptome gene expression data were obtained for each sample. The expression levels of a subset of bone formation and resorption-associated differentially expressed genes were validated by quantitative reverse transcriptase-polymerase chain reaction. Bone loss was not observed after 1 week of treatment but was observed after four binge alcohol cycles with a 23% decrease in cancellous bone mineral density and 17% decrease in vertebral compressive strength compared with control values (P < 0.05). We observed that the duration of binge alcohol treatment influenced the modulation of expression profiles for genes that regulate the bone formation process. The expression of key bone formation-related marker genes such as osteocalcin and alkaline phosphatase were significantly reduced (P < 0.05) after acute binge alcohol exposure, and expression of regulators of osteoblast activity such as bone morphogenetic proteins and parathyroid hormone receptor displayed significantly (P < 0.05) decreased differential expression. The expression of sclerostin, a key canonical Wnt inhibitory protein, was significantly increased after acute binge alcohol treatment. The expression of important regulators of osteoclast maturation and activity such as NF-kappabeta (nuclear factor kappabeta) ligand (RANKL) and interleukin-6 were significantly increased (P < 0.05) by binge alcohol, and osteoprotegerin levels were significantly decreased (P < 0.05) in vertebral bone. These results show that expression patterns of several key bone remodeling genes are significantly perturbed by binge alcohol treatment, suggesting that perturbation of gene expression associated with bone remodeling may be one mechanism contributing to the disruption of bone mass homeostasis and subsequent bone loss observed after binge alcohol exposure in rodents.

Download full-text


Available from: Kristen Lauing
  • Source
    • "Intraperitoneal alcohol administration was made by receiving a single intraperitoneal injection of alcohol (20% v/v) in isotonic saline solution (3 g/Kg/d) (Callaci et al., 2009). Alcohol injections were given starting at 7:00 p.m., when the dark cycle began, for 3 consecutive days each week for 3 weeks. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims: An important mechanism in alcohol-induced injury is biomolecular oxidative damage. Folic acid is supplied to chronic alcoholic patients in order to prevent this situation, as this is the main vitamin deficiency that they suffer from. Acute alcohol exposure, such as binge drinking, is one of the most widespread ethanol consumption models practiced by adolescents. However, there is no evidence of folic acid body profiles after this pattern of consumption. Methods: Four groups of adolescent rats were used: control, alcohol (exposed to intraperitoneal binge drinking), control folic acid-supplemented group and alcohol folic acid-supplemented group. Folic acid levels, protein, lipid and DNA oxidative damage in serum, and liver glutathione (GSH) and reduced/oxidized glutathione ratio (GSH/GSSG) were measured. Results: Binge-drinking rats had higher lipids and DNA oxidation levels. They also had lower hepatic GSH levels and GSH/GSSG ratio. Folic acid supplementation to binge-drinking rats does not change the serum protein oxidation but decreases lipid and DNA oxidation. Finally, GSH increased to control levels with folic acid supplementation. Conclusion: Folic acid supplementation is an economic and efficient therapy against the oxidative damage in lipids and mainly in DNA stability caused by binge drinking during adolescence. It has also been demonstrated that folic acid increases GSH levels, improving the antioxidant status and revealing a hepatoprotective effect during binge drinking.
    Full-text · Article · Oct 2015 · Alcohol and Alcoholism
  • Source
    • "). Intraperitoneal injections and gavage are efficient methods for achieving high blood alcohol levels (BALs; Callaci et al., 2009), but these techniques are stressful for the animals and may lead to inflammation and necrosis of tissues. It is difficult to administer alcohol with these techniques for a long period of time (several months; Lieber et al., 1989). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Different models are used to study the effects of chronic alcohol consumption on bone tissue in the rat. However, the current models take several months to show indices of osteopenia as observed in chronic drinkers. Numerous studies have supported that chronic and intermittent exposure to ethanol vapors has predictive validity as a model of alcohol dependence in humans. However, this model has never been applied to bone research to study its effects on the parameters that define osteopenia. This was the goal of this study in the rat. Male Wistar rats were exposed to ethanol vapor inhalation (n = 6) or air (controls, n = 6). Animals were exposed to chronic (11 weeks) and intermittent (14 hours a day) ethanol vapor reaching stable blood alcohol levels (BALs; 150 to 250 mg/dl) at the end of the third week of inhalation. After the sacrifice, right and left femur and tibia were dissected free of fat and connective tissue and bone mineral density (BMD) was assessed by dual X-ray absorptiometry. The microarchitecture of the femur was studied using microcomputed tomography. The BMD of the left and right femurs and the left tibia was lower in the ethanol group compared with the control group. The bone volume fraction (BV/TV) and the bone surface density (BS/TV) were lower in the ethanol group compared with control animals. The trabecular number (Tb.N) was lower in the ethanol group while the trabecular spacing was higher. The decrease in the BMD, BV/TV, and Tb.N is in the same range as what is observed in human drinkers and what is reported with other animal alcohol models (Lieber–DeCarli liquid diet, ethanol in the tap water). Therefore, this model could be useful to study the effects of chronic alcohol consumption in the bone research field and has the advantage of controlling easily targeted BALs.
    Full-text · Article · Jul 2012 · Alcoholism Clinical and Experimental Research
  • Source
    • "For example, individuals with a high risk of carcinogenesis should abstain from alcohol use [6]. Certain devastating chronic diseases such as heart disease [7–9], Alzheimer’s disease [10], stroke [11,12], liver disease [13–15], cancer [16–18], chronic respiratory disease [19,20], diabetes mellitus [21–23] and bone disease [24,25] may develop following chronic alcohol ingestion and contribute to the alcoholism-related high morbidity and mortality. In addition to chronic diseases, alcohol abuse may also trigger a cascade of acute health problems such as traffic accident-related injuries. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alcohol abuse is a serious medical and social problem. Although light to moderate alcohol consumption is beneficial to cardiovascular health, heavy drinking often results in organ damage and social problems. In addition, genetic susceptibility to the effect of alcohol on cancer and coronary heart disease differs across the population. A number of mechanisms including direct the toxicity of ethanol, its metabolites [e.g., acetaldehyde and fatty acid ethyl esters (FAEEs)] and oxidative stress may mediate alcoholic complications. Acetaldehyde, the primary metabolic product of ethanol, is an important candidate toxin in developing alcoholic diseases. Meanwhile, free radicals produced during ethanol metabolism and FAEEs are also important triggers for alcoholic damages.
    Full-text · Article · Apr 2010 · International Journal of Environmental Research and Public Health
Show more