In vivo hip joint contact distribution and bony impingement in normal and dysplastic human hips

ArticleinJournal of Orthopaedic Research 31(10) · October 2013with28 Reads
DOI: 10.1002/jor.22414 · Source: PubMed
Our objectives were to clarify the 3D articular contact areas of the in vivo normal hip joint and acetabular dysplasia during specific positions using magnetic resonance imaging (MRI), voxel-based registration, and proximity mapping. Forty-two normal and 24 dysplastic hips were examined. MRI was performed at four positions: neutral; 45° flexion; 15° extension; and the Patrick position. Femur and pelvis bone models were reconstructed at the neutral position and superimposed over the images of each different position using voxel-based registration. The inferred cartilage contact and bony impingement were investigated using proximity mapping. The femoral head translated in the anterior or posteroinferior, anterosuperior, and posteroinferior direction from neutral to 45° flexion, 15° extension, and the Patrick position, respectively. Multiple regression analyses showed age, femoral head sphericity, and acetabular sphericity to be associated with higher hip instability. The present technique using subject-specific models revealed the in vivo hip joint contact area in a population of healthy individuals and dysplastic patients without radioactive exposure. These results can be used for analyzing disease progression in the dysplastic hip and pathogenesis of acetabular labral tear. © 2013 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res XX:XXX-XXX, 2013.
    • "Further, our results support clinical observations of OA progression for relatively young patients with acetabular dysplasia versus older patients. In patients with traditional dysplasia and early OA, labral tears and peripheral damage to the acetabular cartilage and delamination are the most common findings (Akiyama et al., 2013; Dorrell and Catterall, 1986; Fujii et al., 2009; Hartig-Andreasen et al., 2013; McCarthy et al., 2003, 2001a, 2001b; Tamura et al., 2012; Thomas et al., 2013). In contrast, older patients with early OA typically exhibit progressive joint space narrowing (Conrozier et al., 1998; Franklin et al., 2011; Goker et al., 2000). "
    [Show abstract] [Hide abstract] ABSTRACT: The mechanics of contacting cartilage layers is fundamentally important to understanding the development, homeostasis and pathology of diarthrodial joints. Because of the highly nonlinear nature of both the materials and the contact problem itself, numerical methods such as the finite element method are typically incorporated to obtain solutions. Over the course of five decades, we have moved from an initial qualitative understanding of articular cartilage material behavior to the ability to perform complex, three-dimensional contact analysis, including multiphasic material representations. This history includes the development of analytical and computational contact analysis methods that now provide the ability to perform highly nonlinear analyses. Numerical implementations of contact analysis based on the finite element method are rapidly advancing and will soon enable patient-specific analysis of joint contact mechanics using models based on medical image data. In addition to contact stress on the articular surfaces, these techniques can predict variations in strain and strain through the cartilage layers, providing the basis to predict damage and failure. This opens up exciting areas for future research and application to patient-specific diagnosis and treatment planning applied to a variety of pathologies that affect joint function and cartilage homeostasis. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Article · Dec 2014
  • [Show abstract] [Hide abstract] ABSTRACT: Various motions of the body trunk and extremities are performed through the joint. The interdependent aspects of joint function are stability, motion, and load distribution. Joint structure is related with the joint function. The range of joint motion depends on the joint structure, articular cartilage, and soft tissue around the joint including the ligament, tendon, and muscle. Generally, the range of motion of the body trunk is much smaller than that of the extremities. Articular cartilage is evaluated using various modalities. Especially, cartilage degeneration has been studied by magnetic resonance imaging including dGEMRIC, T2 mapping, and T1rho mapping. Pathological condition is derived from the biological abnormalities such as cartilage degeneration and synovial inflammation and from the mechanical abnormalities such as ligament rupture and meniscal injury. Joint diseases are monitored using various biochemical markers. Recently, joint instability or translation, which is thought to be causative factor of osteoarthritis, has been evaluated using several modern methods.
    Chapter · Jan 2015 · Journal of Biomechanics
  • Full-text · Article · Jan 2015 · Journal of Biomechanics
Show more