ArticlePDF Available

Systematic Palaeontology (Vertebrate Palaeontology) A basal sauropod dinosaur from the Early Jurassic of Morocco

Authors:

Abstract and Figures

Continental strata of Early Jurassic age are seldom exposed, and little is known of the history of sauropod dinosaurs prior to the Middle Jurassic radiation of neosauropods. Well-preserved skeletons and skulls have not been recovered from strata older than the Middle Jurassic. Here we report, in the Early Jurassic of the Moroccan High Atlas, the discovery of the skeleton, including cranial material, of a new vulcanodontid sauropod. Tazoudasaurus naimi n.g., n.sp. represents with Vulcanodon the sister group of the eusauropods and the most complete basal sauropod material available to date. To cite this article: R. Allain
Elements of the holotypic material of Tazoudasaurus naimi . ( a, b ) Left mandible in medial ( a ) and lateral ( b ) views; ( c, d ) right quadrate in posterior ( c ) and lateral ( d ) views; ( e, f ) serrated teeth in lateral ( e ) and medial ( f ) views; ( g ) dorsal vertebrae in left lateral view; ( h ) right pubis in anterior view; ( i, j ) right astragalus in ventral ( i ) and posterodorsal ( j ) views; ( k ) left postorbital in lateral view; ( l ) distal chevron in ventral view; ( m ) ungual phalanx of pedal digit II in dorsal view; ( n ) left metatarsal II in dorsal view. Scale bars are 10 cm ( g, h ); 4 cm ( a, b, i, j, l, n ); 3 cm ( c, d, k ), and 1 cm ( e, f ). a , angular; ar , articular; asp , ascending process; d , dentary; emf , external mandibular fenestra; pra , prearticular; sa , surangular. Fig. 2. Éléments de l’holotype de Tazoudasaurus naimi . ( a, b ) Mandibule gauche en vues médiale ( a ) et latérale ( b ) ; ( c, d ) carré droit en vues postérieure ( c ) et latérale ( d ) ; ( e, f ) dents en vues latérale ( e ) et médiale ( f ) ; ( g ) vertèbres dorsales en vue latérale gauche ; ( h ) pubis droit en vue antérieure ; ( i, j ) astragale droit en vues ventrale ( i ) et postérodorsale ( j ) ; ( k ) postorbitaire gauche en vue latérale ; ( l ) chevron distal en vue ventrale ; ( m ) phalange unguéale du doigt II du pied en vue dorsale ; ( n ) métatarsien II gauche en vue dorsale. Barres d’échelle : 10 cm ( g, h ) ; 4 cm ( a, b, i, j, l, n ) ; 3 cm ( c, d, k ) et 1 cm ( e, f ). a , angulaire ; ar , articulaire ; asp , processus ascendant ; d , dentaire ; emf , fenêtre mandibulaire externe ; pra , préarticulaire ; sa , surangulaire.
… 
Content may be subject to copyright.
Systematic Palaeontology (Vertebrate Palaeontology)
A basal sauropod dinosaur from the Early Jurassic of Morocco
Ronan Allain
a,b,
*, Najat Aquesbi
c
, Jean Dejax
a
, Christian Meyer
d
,
Michel Monbaron
e
, Christian Montenat
f
, Philippe Richir
a
, Mohammed Rochdy
c
,
Dale Russell
g
, Philippe Taquet
a
a
Laboratoire de paléontologie, département « Histoire de la Terre », Muséum national d’histoire naturelle, UMR 8569 CNRS,
8, rue Buffon, 75005 Paris, France
b
Université Rennes 1, Geosciences, Campus de Beaulieu, av. du Général-Leclerc, 35042 Rennes cedex, France
c
Institut Agdal, ministère de l’Énergie et des Mines, BP 6 208, Rabat, Morocco
d
Naturhistorisches Museum Basel, Augustinergasse 2, CH-4001 Basel, Switzerland
e
Département de Géosciences, université de Fribourg, chemin du Musée 4 , CH-1700 Fribourg, Switzerland
f
Institut géologique Albert-de-Lapparent (IGAL), 13, bd de l’Hautil, 95092 Cergy-Pontoise, France
g
North Carolina Museum of Natural Sciences, and Department of Marine, Earth and Atmospheric Sciences,
North Carolina State University, Box 8208, Raleigh, NC 27695, USA
Received 12 February 2004; accepted 15 March 2004
Available online 30 April 2004
Presented by Philippe Taquet
Abstract
Continental strata of Early Jurassic age are seldom exposed, and little is known of the history of sauropod dinosaurs prior to
the Middle Jurassic radiation of neosauropods. Well-preserved skeletons and skulls have not been recovered from strata older
than the Middle Jurassic. Here we report, in the Early Jurassic of the Moroccan High Atlas, the discovery of the skeleton,
including cranial material, of a new vulcanodontid sauropod. Tazoudasaurus naimi n.g., n.sp. represents with Vulcanodon the
sister group of the eusauropods and the most complete basal sauropod material available to date. To cite this article: R. Allain
et al., C. R. Chimie 00 (2004).
© 2004 Académie des sciences. Published by Elsevier SAS.All rights reserved.
Résumé
Parce que les dépôts continentaux du Jurassique inférieur affleurent rarement, l’histoire des dinosaures sauropodes est très
mal connue avant la radiation des néosauropodes au Jurassique moyen. Les premiers crânes de sauropodes associés à des restes
osseux bien préservés datent ainsi du Jurassique moyen. Nous rapportons ici la découverte, dans le Jurassique inférieur du Haut
Atlas marocain, du squelette et du crâne d’un nouveau sauropode. Tazoudasaurus naimi n.g., n.sp. est le groupe frère de
Vulcanodon et le sauropode basal le plus complet connu à l’heure actuelle. Pour citer cet article : R. Allain et al., C. R. Chimie
00 (2004)
© 2004 Académie des sciences. Published by Elsevier SAS.All rights reserved.
* Corresponding author.
E-mail address: ronan_allain@yahoo.fr (R. Allain).
C. R. Palevol 3 (2004) 199–208
© 2004 Académie des sciences. Published by Elsevier SAS.All rights reserved.
doi:10.1016/j.crpv.2004.03.001
Keywords: Dinosaurs; Sauropoda; Early Jurassic; Morocco; Phylogeny
Mots clés : Dinosaures ; Sauropoda ; Jurassique inférieur ; Maroc ; Phylogénie
Version française abrégée
Nous décrivons ici le squelette d’un nouveau sauro-
pode, incluant des restes crâniens, récolté dans des
pélites recouvrant des bancs carbonatés marins datés
de la fin du Jurassique inférieur, de la nappe de Toun-
doute du Haut Atlas, au Maroc [9,17,24] (Fig. 1). Des
restes de dinosaures théropodes de grande et de
moyenne taille, mais d’affinités pour l’instant incertai-
nes, ainsi que des débris de végétaux, essentiellement
constitués de restes de fougères, de cycadales et de
conifères, ont été découverts, associés aux restes de
sauropode.
1. Paléontologie systématique
Dinosauria Owen, 1842
Saurischia Seeley, 1888
Sauropodomorpha Huene, 1932
Sauropoda Marsh, 1878
Vulcanodontidae Cooper, 1984
Tazoudasaurus naimi gen. et sp. nov.
Étymologie. Le nom de genre dérive de celui de la
localité type Tazouda et de sauros, lézard en grec. Le
nom spécifique vient de naïmi, élancé en arabe, et fait
référence à la petite taille de l’holotype.
Holotype. To 2000–1, musée des Sciences de la
Terre de Rabat, Maroc ; squelette partiellement articulé
comprenant du matériel crânien, qui inclut une mandi-
bule gauche complète, carré, jugal, postorbitaire, pa-
riétal, frontal et exoccipital.
Autre spécimen. To 2000–2, restes associés d’un
spécimen juvénile.
Localité et Horizon. Douar de Tazouda, près du
village de Toundoute, dans la province de Ouarzazate,
Haut Atlas, Maroc. Nappe de Toundoute, série conti-
nentale détritique du Toarcien, qui recouvre en concor-
dance des carbonates marins datés du début et du
milieu du Jurassique inférieur.
Diagnose. Sauropode primitif, défini par les autapo-
morphies suivantes (Fig. 2a–n) : lame osseuse s’éten-
dant sur la marge postérodorsale du postorbitaire ;
chevrons distaux bifurqués avec des processus anté-
rieurs et postérieurs non fusionnés ; présence d’une
crête sur la face latérale de l’extrémité proximale de la
fibula. Tazoudasaurus présente aussi une combinaison
unique de synapomorphies de sauropode (préarticu-
laire étendu dorsoventralement ; couronne dentaire vue
en coupe, en forme de D ; émail dentaire plissé ;
centrum des vertèbres cervicales opisthocoele ; large
épine neurale dorsale ; quadrupédie obligatoire ; crête
deltopectorale de l’humérus réduite, rapport
humérus/fémur supérieur à 0,60 ; diaphyse fémorale
elliptique en coupe ; absence de foramens à la base du
processus ascendant de l’astragale ; phalange unguéale
du premier doigt du pied en forme de faucille) et de
symplésiomorphies de sauropodomorphe (20 dents
dentaires, avec des denticules sur les marges antérieure
et postérieure de la couronne dentaire ; extrémité anté-
rieure du dentaire peu étendue dorsoventralement ;
rangées dentaires convergentes en forme de V ; ab-
sence de fosse quadratique postérieure ; présence d’un
petit trochanter sur le fémur ; surface plantaire des
phalanges unguéales des doigts II et III aplatie).
Tazoudasaurus se différencie de Barapasaurus
[13,14] et de Kotasaurus [33,34] du Jurassique infé-
rieur d’Inde, et de Gongxianosaurus [11] du Jurassique
inférieur de Chine, sur la base de nombreux caractères
anatomiques. Il présente, en revanche, beaucoup plus
d’affinités avec Vulcanodon, du Jurassique inférieur du
Zimbabwe [5,23], duquel il diffère cependant par l’ab-
sence de sillon médian sur la face ventrale des vertè-
bres dorsales et par des épines neurales caudales plus
allongées antéropostérieurement. Une analyse phylo-
génétique incluant 29 taxons, dont les genres maro-
cains Tazoudasaurus et Atlasaurus, a été réalisée. Les
235 caractères utilisés dans cette analyse sont tirés de
la récente phylogénie de Wilson [30], auxquels nous
avons rajouté le caractère « surface articulaire proxi-
male des doigts II et III du pied significativement plus
large que haute », précédemment considéré comme
une autapomorphie de Vulcanodon [31]. Ce caractère
soutient la position de Tazoudasaurus comme groupe
frère de Vulcanodon à l’extérieur des Eusauropoda,
dans les six arbres les plus parcimonieux obtenus,
200 R. Allain et al. / C. R. Palevol 3 (2004) 199–208
après utilisation de la commande mhennig*, bb* du
logiciel Hennig86 [8] (Fig. 3). Les récentes datations
effectuées sur les basaltes du plateau du Karoo mon-
trent que Vulcanodon serait contemporain de Tazouda-
saurus [7,15], même si de nombreux auteurs conti-
nuent à le placer dans le Jurassique basal (Hettangien)
[3–5,10,13,23,28,30,32]. Les deux taxons sont regrou-
pés ici au sein de la famille monophylétique des Vul-
canodontidae, qui exclut les autres sauropodes connus
au Jurassique inférieur [5,25,26,32].
Atlasaurus imlakei du Jurassique moyen (Batho-
nien) du Haut Atlas central [20,21] est le groupe frère
des Neosauropoda (Fig. 3) [30] et est donc beaucoup
plus dérivé que Tazoudasaurus. La succession, dans le
Haut Atlas, de ces deux taxons montre que des change-
ments majeurs interviennent dans la morphologie des
sauropodes durant les 20 millions d’années qui sépa-
rent le Toarcien du Bathonien. Certains de ces change-
ments semblent liés à l’alimentation (perte de la fenê-
tre mandibulaire externe, robustesse mandibulaire
accrue au niveau de la symphyse, forme en U de la
symphyse, réduction du nombre de dents), alors que
d’autres peuvent être reliés à la locomotion et à la taille
du corps (configuration en arche des métacarpiens,
extension transversale de l’extrémité proximale du ti-
bia et changement d’orientation de la crête cnémiale,
forme en faucille des phalanges unguéales du pied).
Tazoudasaurus est le sauropode primitif le plus
complet connu à ce jour. En tant que tel, il partage de
nombreux caractères primitifs avec les prosauropodes,
tels que l’absence de fosse quadratique, une faible
extension dorsoventrale de l’extrémité antérieure de la
mandibule, un nombre important de dents qui ne se
recouvrent pas, la rétention d’un petit trochanter sur le
fémur, une crête cnémiale orientée antérieurement ou
de longues phalanges au pied. Cette évolution en mo-
saïque des caractères typiques des prosauropodes vers
des caractères propres aux sauropodes remet en ques-
tion la position phylogénétique de certains sauropodo-
morphes primitifs au sein des Prosauropoda. Cette
observation est en accord avec celles consécutives aux
descriptions d’Isanosaurus du Rhétien de Thaïlande
[3] et d’Antetonitrus du Norien d’Afrique du Sud [35].
Ces deux genres montrent, en effet, que certains carac-
tères, longtemps considérés comme des synapomor-
phies de sauropode (quadrupédie obligatoire, section
elliptique du fémur), étaient déjà apparus au Trias
supérieur.
1. Introduction
Sauropod remains were documented from the
Middle Jurassic strata of the High Atlas Mountains in
Morocco through the descriptions of Cetiosaurus
mogrebiensis [16] and Atlasaurus imelakei [20,21].
Recently, we collected a partly articulated sauropod
skeleton, including cranial material, from the Early
Jurassic of the High Atlas near Toundout, in the Prov-
ince of Ouarzazate (Fig. 1). In this area, the entire
Jurassic series, decoupled from its base, has been over-
thrusted to the south where it overlies the Cretaceous–
Eocene [17]. The two principal fossiliferous sites are
near the summit of a detrital series about 300 m thick
that conformably overlies early Lower Jurassic marine
carbonates containing algal spheres, and benthic fora-
miniferal and mollusc shells [9,24]. The two sites,
separated from each other stratigraphically by about
30 m, are sedimentologically and palaeobotanically
similar. Associated with the sauropod material were
isolated elements of medium-sized and large theropods
of uncertain affinities. Greenish, channel-filling silts
and sands are preserved within a red, relatively unfos-
siliferous clastic sequence. Submacroscopic woody
debris include homoxylous particles devoid of paren-
chyma, evenly distributed uniseriate rays, tracheids
bordered by uniseriate pits of abietinian form, and
cross-fields with piceoid oculipores bearing narrow,
perpendicular slits. The anatomy suggests affinities
with pinacean, abietoidean or taxacean conifers. Nu-
merous, tiny fragments of vegetal material scattered
through the sediment were derived from fern and, less
frequently, cycad pinnulae. Although fragments of cu-
ticle were common, no palynomorphs were recovered.
The local flora was apparently dominated by ferns,
cycads and conifers.
2. Systematic palaeontology
Dinosauria Owen, 1842
Saurischia Seeley, 1888
Sauropodomorpha Huene, 1932
Sauropoda Marsh, 1878
Vulcanodontidae Cooper, 1984
Tazoudasaurus naimi gen. et sp. nov.
201R. Allain et al. / C. R. Palevol 3 (2004) 199–208
Fig. 1. (a, b) Geographic location; (c) stratigraphic section of the Toundoute fossil site (white point), in Ouarzazate province, Morocco; (d) Early Jurassic palaeogeographical map.
Fig. 1. (a, b) Localisation géographique ; (c) coupe stratigraphique du site fossilifère de Toundoute (point blanc), dans la province de Ouarzazate, Maroc ; (d) carte paléogéographique
du Jurassique inférieur.
202 R. Allain et al. / C. R. Palevol 3 (2004) 199–208
Etymology. Generic name is from the type locality
of Tazouda, plus sauros, Greek for lizard. Specific
name from naimi, Arabic, masculine, for slender, refer-
ring to the small size of the holotype.
Holotype. To 2000–1, ‘Musée des Sciences de la
Terre’, Rabat, Morocco, partially articulated skeleton
and cranial material including complete left mandible
with teeth, quadrate, jugal, postorbital, parietal, frontal
and exoccipital.
Referred specimen. To 2000–2, associated re-
mains of a juvenile skeleton.
Locality and horizon. Douar of Tazouda near
Toundoute village in the Province of Ouarzazate, High
Atlas of Morocco. Toundoute overthrust, Toarcian
continental detrital series concordantly overlying early
to middle Lower Jurassic marine carbonates.
Diagnosis. A primitive sauropod displaying the fol-
lowing autapomorphies: a thin bony plate extending
from posterodorsal margin of postorbital; distal chev-
rons forked with unfused anterior and posterior pro-
cesses, prominent crest on the lateral surface of the
proximal end of the fibula. Moreover, Tazoudasaurus
exhibits a unique combination of sauropod synapo-
morphies (see below) and sauropodomorph symplesio-
morphies including: 20 dentary teeth with denticulate
crown margins; anterior end of the dentary only
slightly expanded relative to depth of dentary at
midlength (Fig. 2a–b); dentaries meet in a V-shaped
symphysis; posterior fossa absent on quadrate
(Fig. 2c); lesser trochanter present laterally on femur;
flat pubic apron; plantar surface of pedal unguals II–III
flattened (Fig. 2m).
Preliminary description.Tazoudasaurus (Fig. 2)
was a small, ~9-m-long sauropod. A left mandible,
originally ~40 cm long, was broken at the level of the
last dentary alveolus and its posterior portion was ro-
tated dorsally relative to the tooth row (Fig. 2a–b). The
mandible resembles that of a prosauropod. The 20 al-
veoli occupy the entire length of the dentary. The tooth
row is only slightly arched anteriorly and the symphy-
sis is not ‘U’-shaped as in other sauropods. The tooth
crowns do not overlap. The teeth are spatulate and
‘D’-shaped in cross-section. Denticles are present on
both anterior and posterior carinae (Fig. 2e–f). The
teeth bear ‘V’-shaped wear facets indicating tooth-to-
tooth occlusion and suggest that, contrary to previous
reports, ‘vulcanodontids’ used oral processing in feed-
ing [27]. A large external mandibular fenestra is
present. The ventral process of the postorbital is nar-
row transversely; the element contacts the squamosal
posteriorly through a thin bony plate (Fig. 2k). The
parietal forms the entire medial border of a trans-
versely elongated supratemporal fenestra. There is no
quadratic fossa on the posterior surface of the quadrate
(Fig. 2c).
Cervical centra are elongate and opisthocoelous.
The lateral surface of the axis centrum is excavated but
there are no true pleurocoels. The odontoid process
projects forward from the centrum, but is not fused to
it. The neural arch extends the full length of the cen-
trum and broadens transversely posteriorly. The undi-
vided neural spine is short, but extends the full length
of the arch. A strong lamina projects anteriorly from
the postzygapophysis toward the diapophysis, but does
not reach it, in contrast to conditions in other sauro-
pods [19,34]. The mid-dorsal centra are amphicoelous
and bear large lateral depressions (Fig. 2g). Their
length, diameter and height are nearly equal. The dor-
sal neural spines are slightly posteriorly inclined, and
are broader transversely than anteroposteriorly. The
rod-like transverse processes are directed laterally and
upward. The architecture of dorsal neural arch includes
the six diapophyseal laminae, including an anterior
centroparapophyseal lamina, a prezygoparapophyseal
lamina, centrozygapophyseal laminae and spinozyga-
pophyseal laminae [29]. The spinodiapophyseal and
spinopostzygapophyseal laminae do not contact each
other. The caudal centra are amphicoelous and medi-
ally constricted. The anterior caudal centra are as long
as they are high, whereas the mid- and posterior caudal
centra are twice long as high. The neural arches extend
the full length of the centra. The neural spine of the
anterior and mid caudals is nearly perpendicular to the
neural canal, whereas in the distal caudals it is strongly
inclined posteriorly.
The haemal canal on the chevrons is bridged dor-
sally.The middle chevrons exhibit the typical Y-shaped
morphology. The distal chevrons are forked and bear
unfused anterior and posterior projections.
The pelvis and hindlimb of Tazoudasaurus are
reminiscent of those of Vulcanodon [5,23]. The pubis
is 53% of the femur length (Fig. 2h). The pubic apron is
transversely oriented and the pubic symphysis is
straight. The ambiens process is poorly developed.The
203R. Allain et al. / C. R. Palevol 3 (2004) 199–208
femur is straight, approximately 115 cm long, and
elliptical in cross-section at midshaft. A lesser tro-
chanter is present on the lateral surface of the femur in
the juvenile specimen. The proximal condyle of the
tibia is expanded anteroposteriorly, and bears an ante-
riorly projecting cnemial crest. The fibula is a slender
bone measuring 67 cm in length. Its proximal end is
triangular in outline, and the medial surface is broad
and flat. A 20-cm-long lateral crest, which is absent in
Vulcanodon, and an inturned anteromedial crest de-
limit a large depression on the anterolateral surface of
the fibula. The distal end is expanded anteroposteriorly
and projects medially to contact the astragalus. The
astragalus is rectangular and robust (Fig. 2i–j). The
ascending process is abbreviated posteriorly. The ar-
ticular fossa for the tibia is divided by a low crest, and
a prominent tongue encircled the distal end of the tibia.
The first pedal phalanges of each digit are longer than
broad, the reverse of conditions in the remaining pha-
langes. The first ungual is deeper than wide and sickle-
Fig. 2. Elements of the holotypic material of Tazoudasaurus naimi.(a, b) Left mandible in medial (a) and lateral (b) views; (c, d) right quadrate
in posterior (c) and lateral (d) views; (e, f) serrated teeth in lateral (e) and medial (f) views; (g) dorsal vertebrae in left lateral view; (h) right pubis
in anterior view; (i, j) right astragalus in ventral (i) and posterodorsal (j) views; (k) left postorbital in lateral view; (l) distal chevron in ventral
view; (m) ungual phalanx of pedal digit II in dorsal view; (n) left metatarsal II in dorsal view. Scale bars are 10 cm (g, h);4cm(a, b, i, j, l, n);
3cm(c, d, k),and1cm(e, f). a, angular; ar, articular; asp, ascending process; d, dentary; emf, external mandibular fenestra; pra, prearticular;
sa, surangular.
Fig. 2. Éléments de l’holotype de Tazoudasaurus naimi.(a, b) Mandibule gauche en vues médiale (a) et latérale (b);(c, d) carré droit en vues
postérieure (c) et latérale (d);(e, f) dents en vues latérale (e) et médiale (f);(g) vertèbres dorsales en vue latérale gauche ; (h) pubis droit en vue
antérieure ; (i, j) astragale droit en vues ventrale (i) et postérodorsale (j);(k) postorbitaire gauche en vue latérale ; (l) chevron distal en vue
ventrale ; (m) phalange unguéale du doigt II du pied en vue dorsale ; (n) métatarsien II gauche en vue dorsale. Barres d’échelle : 10 cm (g, h);
4cm(a, b, i, j, l, n);3cm(c, d, k)et1cm(e, f). a, angulaire ; ar, articulaire ; asp, processus ascendant ; d, dentaire ; emf, fenêtre mandibulaire
externe ; pra, préarticulaire ; sa, surangulaire.
204 R. Allain et al. / C. R. Palevol 3 (2004) 199–208
shaped, as in other sauropods, but unguals II-III are
significantly broader than high with a nearly flat plan-
tar surface, as in Vulcanodon [5,23] (Fig. 2m).
3. Discussion
Other well-preserved Early Jurassic sauropod skel-
etons, which are diagnostic at the generic level, include
those of Barapasaurus [13,14] and Kotasaurus [33,34]
from the Indian Kota Formation, Vulcanodon from the
Zambezi Valley in Zimbabwe [5,23], and Gongxiano-
saurus from the Ziliujing Formation of China [11].
Barapasaurus can be separated from Tazoudasaurus
by the peculiar morphology of the neural arch of the
dorsal vertebrae (i.e., the development of concavities
on the anterior and posterior faces of the posterior
dorsal neural arches; and a infradiapophyseal pneu-
matopore on the middle and posterior dorsal neural
arches), the absence of lesser trochanter on the femur
and the laterally projecting cnemial crest. Among the
characters that distinguish Tazoudasaurus from Kota-
saurus [34] are the spinodiapophyseal laminae on the
dorsal vertebrae, the anterior and posterior marginal
tooth denticles, the square-shaped caudal centra, and
the limited proximal expansion of the pubes in the
former genus. A low dentary-tooth count, the absence
of serrations on dental crowns, platycoelous cervical
centra, the longer than high dorsal neural spines and
the ungual morphology of Gongxianosaurus separate
it from Tazoudasaurus. Minimally, Tazoudasaurus dif-
fers from Vulcanodon in lacking a ventral groove on
the caudal centra, and in possessing caudal neural
spines that are more elongated anteroposteriorly.
We conducted a phylogenetic analysis with 29 in-
group taxa, including the Moroccan genera Tazouda-
saurus and Atlasaurus. The 235-character dataset used
in our analysis is after the recent sauropod phylogeny
of Wilson [30], to which we add the character ‘proxi-
mal dimensions of pedal digits II and III significantly
broader then deep’, previously recognized as an auta-
pomorphy of Vulcanodon [31] (see supplementary in-
formation). This character supports the placement of
Tazoudasaurus as the sister taxon of Vulcanodon, out-
side the eusauropods (Fig. 3), using the mhennig*, bb*
option of Hennig86 [8].Tazoudasaurus also exhibits a
set of sauropod plesiomorphic characters, otherwise
known only in Vulcanodon: flat pubic apron, lesser
trochanter present on femur, nonungual pedal phalan-
ges longer than broad, and flat plantar surface on pedal
unguals II and III. Although widely considered to be
of basal Jurassic age (Hettangian) [3–5,10,13,23,28,
30,32], recent dates support a Toarcian (late Early
Jurassic) age for the Karoo basalts [7,15], thereby
rendering Vulcanodon a contemporary of Tazoudasau-
rus. Both taxa are placed within the monophyletic
family Vulcanodontidae to the exclusion of other
primitive sauropods, such as Barapasaurus[13,14],
Kotasaurus [33,34] and Shunosaurus [6] (Fig. 3). Vul-
canodontidae was originally created by Cooper to in-
clude Vulcanodon and Barapasaurus [5]. Such a
grouping is now widely considered as paraphyletic
Fig. 3. Phylogenetic relationships of Tazoudasaurus and Atlasaurus
within Sauropoda. Shown is the strict consensus tree of the six most
parsimonious trees (tree length = 422; consistency index = 0.61;
retention index = 0.78). The 235 characters were drawn from the
most recent sauropod phylogeny [15]. The tree was produced using
the mhennig*, bb* option of Hennig86 [8].
Fig. 3. Relations phylogénétiques de Tazoudasaurus et d’Atlasaurus
au sein des sauropodes. Arbre de consensus strict des six arbres les
plus parcimonieux (L= 422 ; CI = 0,62 ; RI = 0,78). Les 235 carac-
tères utilisés sont tirés de la phylogénie des sauropodes la plus
récente. Cet arbre a été obtenu par l’intermédiaire de la commande
mhennig*, bb* d’Hennig86 [8].
205R. Allain et al. / C. R. Palevol 3 (2004) 199–208
[25,26,32], and Vulcanodontidae is redefined here as
all sauropods closer to Vulcanodon than to eusauro-
pods (i.e. Vulcanodon and Tazoudausaurus). Derived
characters of Tazoudasaurus shared with other sauro-
pods include: dorsoventrally expanded prearticular,
crown-to crown occlusion, D-shaped crowns, wrinkled
enamel surfaces, opisthocoelous cervical centra, broad
dorsal neural spines, obligately quadrupedal posture,
humeral deltopectoral crest reduced to a ridge,
humerus-to-femur ratio greater than 0.60, reduced
femoral fourth trochanter, femoral midshaft with ellip-
tical cross section, foramina absent near base of as-
cending process of astragalus, pedal digit I 25% longer
than pedal digit II and sickle-shaped pedal ungual I.
As previously suggested [30],Atlasaurus imlakei
from the Bathonian of the central High Atlas [20,21] is
the sister taxon to a diversified neosauropod clade
(Fig. 3). In less than 20 million years, between late
Early Jurassic (Toarcian) and Middle Jurassic (Batho-
nian) time, major changes evidently occurred in sauro-
pod morphology as shown in Moroccan specimens
Tazoudasaurus and Atlasaurus. Some were related to
feeding, such as the loss of the external mandibular
fenestra, increase of mandibular robustness towards
the symphysis, anteriorly U-shaped tooth rows and
reduction in the number of teeth. Others were related to
locomotion and body size [31], such as the tightly
arched configuration of the metacarpus, transversely
expanded proximal condyle of the tibia with a laterally
directed cnemial crest, wedge-shaped astragalus and
sickle-shaped pedal unguals.
As the most primitive and relatively completely
known sauropod, Tazoudasaurus augments our under-
standing of basal sauropod features, and resets some
previously ambiguous eusauropod synapomorphies to
the base of the sauropod clade [26,30]. Nevertheless,
like Vulcanodon, Tazoudasaurus still shares many
primitive characters with prosauropods, including the
absence of quadratic fossa, the slightly expanded ante-
rior end of the dentary, the high dentary-tooth count,
the V-shaped tooth rows, the non-overlapping tooth
crowns, the lesser trochanter on the femur, the anteri-
orly projecting tibial cnemial crest and the long pedal
phalanges. Although a phylogenetic analysis of pro-
sauropods is beyond the scope of this paper, this mo-
saic transition from prosauropod to sauropod features
challenges the phylogenetic position of certain sau-
ropodomorph taxa within Prosauropoda. This is con-
sistent with the recent description of Antetonitrus in-
genipes from the Lower Elliot Formation of South
Africa, which documents the acquisition of certain key
sauropod characters, such as a quadrupedal posture,
large humero-femoral ratio and elliptical femoral mid-
shaft, as early as the Late Triassic [35]. If graviportal
sauropod adaptations began to appear during the Late
Triassic, as shown by the morphology of Antetonitrus
[35] and Isanosaurus [3] from the Rhaetian of Thai-
land, the evolution towards a more derived eusauropod
condition was not complete before the end of the Early
Jurassic time, as suggested by the retention of some
primitive sauropodomorph characters in Tazoudasau-
rus.
Skeletal parts of a sauropod originally ~13 m long
and weighing ~15 tonnes have been identified in the
Rhaetian (Late Triassic) of Thailand [2,4,19], and
trackways of equally large sauropods occur in Pliens-
bachian (Middle Liassic) carbonates in Morocco [12].
In contrast to an apparently abrupt increase in theropod
size across the Triassic–Jurassic boundary [22], sauro-
pods had already become gigantic in the Rhaetian
[4,18] and continued to be gigantic through to the end
of the Mesozoic. Thus, Tazoudasaurus was surpassed
in size by other contemporary sauropods. The record of
Early and Middle Jurassic sauropods is exceptionally
rich in Morocco, but unknown in North America [28].
Because sea-floor spreading along the central Atlantic
axis did not begin until early in Middle Jurassic time
(Fig. 1d)[1], the Moroccan dinosaur record probably
samples an assemblage that also inhabited North
America.
Supplementary information
Supplementary information accompanies the paper
on website (http://www.sciencedirect.com).
Acknowledgements
The field excavations in Morocco were supported
by the Ligabue Foundation (Venice, Italy); we thank
Giancarlo Ligabue for his generosity. We also thank
Mr Mohammed Sadiqui and Mr Larbi Tabit from the
‘Ministère de l’Énergie et des Mines’ of Morocco for
permission to conduct fieldwork and for logistic sup-
port from their Institution. We thank Moha M’ghari for
206 R. Allain et al. / C. R. Palevol 3 (2004) 199–208
his skilful preparation of the material, Philippe Loubry
and Denis Serrette for photographs and the Moroccan
people for their help and generous hospitality. We are
grateful to Michael Raath for counsel on the age of
Vulcanodon, and Pierre Stine and Gedeon Films for
providing heavy equipment to assist in the excavations.
English translations of Chinese papers cited in this
article are available at The Polyglot Paleontologist
website.
References
[1] M. Amrhar, M. Bouabdelli, A. Piqué, Les marqueurs structur-
aux et magmatiques de l’extension crustale dans le Haut-Atlas
occidental (Maroc) au Dogger, témoins de l’évolution de la
marge orientale de l’Atlantique central, C. R. Acad. Sci. Paris,
Ser. IIa 324 (1997) 119–126.
[2] J.F. Anderson, A. Hall-Martin, D.A. Russell, Long-bone cir-
cumference and weight in mammals, birds and dinosaurs, J.
Zool. Lond. 207 (1985) 53–61.
[3] E. Buffetaut, V. Suteethhorn, G. Cuny, H. Tong, J. Le Loeuff,
S. Khansubha, S. Jongautchariyakul, The earliest known sau-
ropod dinosaur, Nature 407 (2000) 72–74.
[4] E. Buffetaut, V. Suteethorn, J. Le Lœuff, G. Cuny, H. Tong,
S. Khansubha, The first giant dinosaurs: a large sauropod from
the Late Triassic of Thailand, C. R. Palevol 1 (2002) 103–109.
[5] M.R. Cooper, A reassessment of Vulcanodon karibaensis
Raath (dinosauria: Saurischia) and the origin of the Sau-
ropoda, Palaeontol. Afr. 25 (1984) 203–231.
[6] Z. Dong, S. Zhou, Y. Zhang, The dinosaurian remains from
Sichuan Basin, China, Palaeontol. Sinica 23 (1983) 1–145.
[7] R.A. Duncan, P.R. Hooper, J. Rehacek, J.G. Marsh, A.R. Dun-
can, The timing and duration of the Karoo igneous event,
southern Gondwana, J. Geophys. Res. 102 (1997) 127–138.
[8] J.S. Farris, Hennig86, Port Jefferson station, NewYork, 1988
Version 1.5.
[9] P. Fallot, L. Moret, E. Roch, Sur la série liasique du pays de
Skoura (Haut-Atlas marocain), C. R. Acad. Sci. Paris 199
(1934) 1135–1138.
[10] D.D. Gillette, The geographic and phylogenetic position of
sauropod dinosaurs from the Kota formation (Early Jurassic)
of India, J. Asian Earth Sci. 21 (2003) 683–689.
[11] X.-L. He, C.-S. Wang, S.-Z Liu, F.-Y. Zhou, T.-Q. Liu,
K.-J. Cai, B. Dai, A new sauropod dinosaur from the Early
Jurassic in Gongxian County, south Sichuan, Acta Geol.
Sichuan 18 (1998) 1–6.
[12] S. Ishigaki, Les empreintes de dinosaures du Jurassique
inférieur du Haut-Atlas central marocain, Notes Mém. Serv.
Géol. Maroc 44 (1988) 79–86.
[13] S.L. Jain, T.S. Kutty, T. Roy-Chowdhury, S. Chatterjee, The
sauropod dinosaur from the Lower Jurassic Kota formation of
India, Proc. R. Soc. Lond. 188 (1975) 221–228.
[14] S.L. Jain, T.S. Kutty, T. Roy-Chowdhury, S. Chatterjee, Some
characteristics of Barapasaurus tagorei, a sauropod dinosaur
from the Lower Jurassic of Deccan, India, IV Int. Gondwana
Symp., Calcutta, India, 1, 1979, pp. 204–216.
[15] D.L. Jones, R.A. Duncan, J.C. Briden, D.E. Randall, C. Mac-
Niocaill, Age of the Bakota basalts, northern Zimbabwe, and
the duration of Karoo Large igneous province magmatism,
Geochem. Geophys. Geosyst. 2 (2001) 2000GC000110.
[16] A.F. de Lapparent, Étude paléontologique des vertébrés du
Jurassique d’El Mers (Moyen Atlas), Notes Mém. Serv. Géol.
Maroc 124 (1955) 1–36.
[17] E. Laville, J.-L. Lesage, M. Séguret, Géométrie, cinématique
(dynamique) de la tectonique atlasique sur le versant sud du
Haut Atlas marocain.Aperçu sur les tectoniques hercyniennes
et tardi-hercyniennes, Bull. Soc. géol. France 29 (1977) 527–
539.
[18] M.G. Lockley, J.L. Wright, A.P. Hunt, S.G. Lucas, The Late
Triassic sauropod track record comes into focus: old legacies
and new paradigms, New Mexico Geol. Soc. Guidebook 52
(2001) 181–190.
[19] J.H. McIntosh, C.A. Miles, D.A. Cloward, J.R. Parker, A new
nearly complete skeleton of Camarasaurus, Bull. Gunma
Mus. Nat. Hist. 1 (1996) 1–87.
[20] M. Monbaron, P. Taquet, Découverte du squelette complet
d’un grand Cétiosaure (Dinosaure Sauropode) dans le bassin
jurassique moyen de Tilougguit (Haut-Atlas central, Maroc),
C. R. Acad. Sci. Paris, Ser. II 292 (1981) 243–246.
[21] M. Monbaron, D.A. Russell, P. Taquet, Atlasaurus imelakei,
n.g., n.sp., a brachiosaurid-like sauropod from the Middle
Jurassic of Morocco, C. R. Acad. Sci. Paris, Ser. IIa 329 (1999)
519–526.
[22] P.E. Olsen, D.V. Kent, H.-D. Sues, C. Koeberl, H. Huber,
A. Montanari, E.C. Rainforth, S.J. Fowell, M.J. Szajna,
B.W. Hartline, Ascent of dinosaurs linked to an iridium
anomaly at the Triassic–Jurassic boundary, Science 296
(2002) 1305–1307.
[23] M.A. Raath, Fossil vertebrate studies in Rhodesia: a new
dinosaur (Reptilia: Saurischia) from near the Trias-Jurassic
boundary,Arnoldia 5 (1972) 1–37.
[24] E. Roch, Description géologique des montagnes à l’Est de
Marrakech, Notes Mém. Serv. Mines Carte géol. Maroc 80
(1939) 1–438.
[25] P. Upchurch, The evolutionary history of sauropod dinosaurs,
Phil. Trans. R. Soc. Lond., Ser. B 349 (1995) 365–390.
[26] P. Upchurch, The phylogenetic relationships of sauropod
dinosaurs, Zool. J. Linn. Soc. 124 (1998) 43–103.
[27] P. Upchurch, P.M. Barrett, The evolution of sauropod feeding
mechanisms, in: H.-D. Sues (Ed.), The Evolution of Herbivory
in TerrestrialVertebrates, Perspectives from the Fossil Record,
Cambridge University Press, Cambridge, 2000, pp. 79–122.
[28] D.B. Weishampel, Sauropoda, in: D.B. Weishampel, P. Dod-
son, H. Osmólska (Eds.), The Dinosauria, Univ. California
Press, Berkeley, CA, 1990, pp. 63–139.
[29] J.A. Wilson, A nomenclature for vertebral laminae in sauro-
pods and other saurischian dinosaurs, J. Vert. Paleontol. 19
(1999) 639–653.
207R. Allain et al. / C. R. Palevol 3 (2004) 199–208
[30] J.A. Wilson, Sauropod dinosaur phylogeny: critique and cla-
distic analysis, Zool. J. Linn. Soc. 136 (2002) 217–276.
[31] J.A. Wilson, M.T. Carrano, Titanosaurs and the origin of ‘wide
gauge’ trackways: a biomechanical and systematic perspective
on sauropod locomotion, Paleobiology 25 (1999) 252–267.
[32] J.A. Wilson, P.C. Sereno, Early evolution and higher-level
phylogeny of sauropod dinosaurs, Mem. Soc. Vert. Paleontol.
18 (1998) 1–68.
[33] P. Yadigiri, A new sauropod Kotasaurus yamanpalliensis from
Lower Jurassic Kota Formation of India, Rec. Geol. Surv.
India 11 (1988) 102–127.
[34] P. Yadigiri, The osteology of Kotasaurus yamanpalliensis,a
sauropod dinosaur from the Early Jurassic Kota Formation of
India, J. Vert. Paleontol. 21 (2001) 242–252.
[35] A.M. Yates, J.W. Kitching,The earliest known sauropod dino-
saur and the first steps towards sauropod locomotion, Proc. R.
Soc. Lond. B (2003) DOI 10.1098/rspb.2003.2417.
208 R. Allain et al. / C. R. Palevol 3 (2004) 199–208
... Great interest has been shown in the paleontology of vertebrates in the Middle Atlas, the first studies of which date back to 1927 (Termier 1927). Since that date, several works have appeared (De Lapparent 1942;Jenny et al. 1981; Monbaron and Taquet 1981;Jenny 1982;Monbaron 1983;Monbaron et al. 1999;Allain et al. 2004;Hadri and Pérez-Lorente 2012;Marinheiro et al. 2014;Marinheiro 2015;Maidment et al. 2020Maidment et al. , 2021. The vertebrate paleontology of the Middle Atlas, compared to other Middle Jurassic localities (England, United States and Portugal), presents the greatest paleontological diversity (Hadri and Pérez-Lorente 2012). ...
Chapter
Recognized by its paleontological sites of in-situ and ex-situ vertebrates, the Middle Atlas is the subject of increased attention and offers geoscientists and paleontologists a vast field of predilection for one of the richest fossiliferous deposits in the country and even to the world. The paleontological heritage “paleontoheritage” is considered as an indispensable resource in regional and national socio-economic development. In the region, vertebrate paleontological sites are under strong degradation pressure leading to the deterioration of this heritage despite some promotion and preservation initiatives. An inventory and a quantitative assessment of these sites by determining their degree of deterioration is necessary to preserve this paleontoheritage. The inventory resulted in 35 geosites inventoried in situ, of which 34.2% of the geosites held medium to high scores during the quantitative assessment (Ss) and the rest of the geosites presented average scores during the assessment of the degree of deterioration (Sd). Among the sum of the geosites, four (Aït Bazza, Ancherif, Boulahfa and El Mers) were chosen and studied due to their high scoring value of representativeness, rarity and geological diversity criteria.
Article
Linkages between hatchling and adult sauropods concerning morphological and ontogenetic growth remain enigmatic, which is even more tenuous in early sauropods. However, discoveries from Southeast Asia could provide significant insights into these questions of developmental history with the recent discovery of a partial juvenile vertebral series from an early sauropod from the early Middle Jurassic Nam Phong Formation, Chaiyaphum province, northeastern Thailand. Here we present the anatomical description of preserved portions of the axial skeleton, including cervical and dorsal vertebrae. Our study demonstrates the presence of 1) incipient laminae and fossae on the centrum; 2) unfused neural arch (cervical and dorsal); and 3) well-marked vertebral lamination system, all of which are osteological hallmarks of an immature growth phase. Particularly, we note that in this hatchling-juvenile specimen, the vertebral lamination complex resembles an adult early sauropod's form, along with no true pleurocoel in the vertebral arches. The co-occurrence of these two characters would strongly indicate a non-eusauropod sauropod affinity. With the presence of the lamination pattern, and the temporal placement of the specimen in the early Middle Jurassic, our material mostly resembles the Tazoudasaurus, so we assign the material to the Vulcanodontidae. Further analysis of this hatchling-juvenile specimen will provide crucial insights into the ontogenetic developmental history and musculoskeletal function, successfully filling a current knowledge gap within early sauropods evolutionary studies.
Article
The Lohan Cura Formation (Albian) at the Cerro de los Leones locality (Neuquén Province, Patagonia, Argentina) yielded several fossil materials, especially sauropod specimens. Among these, Agustinia ligabuei includes postcranial elements of a single individual, with widely debated taxonomy and phylogeny. Here, we provide an extended osteological description and illustrations of the axial and appendicular elements of Agustinia, as well as a revised diagnosis. Moreover, the phylogenetic analysis including a new combination of morphological features recognises Agustinia as a basal Rebbachisauridae, closely related with other South American rebbachisaurids. Our results suggest a more diversified sauropod fauna in the Neuquén Basin, where different members of both neosauropod lineages (i.e. Macronaria and Diplodocoidea) survived in the same region during the Albian age. The reassessment of Agustinia as a basal rebbachisaurid improves our knowledge about the early stages of evolutionary history of Rebbachisauridae, adding new information on the morphological and taxonomic diversification of the clade during the Early Cretaceous of southwestern Gondwana.
Article
The northern-most occurrence of Sauropoda in South America was collected in the 1940s from Early–Middle Jurassic-aged continental sediments on the western flank of the Serranía del Perijá in Colombia. Relocation of the site and re-preparation of the specimen, a well-preserved dorsal vertebra, provide important information about the initial diversification of sauropods at low latitudes. The specimen possesses autapomorphies and a unique combination of character states (e.g., divided centropostzygapophyseal lamina, strongly dorsally arched postzygapophyseal facets) that diagnose it as the new genus and species Perijasaurus lapaz. A medium-sized early eusauropod, Perijasaurus inhabited tropical lowland forested areas around the Toarcian–Aalenian boundary. Our phylogenetic analysis recovers Perijasaurus near the base of Eusauropoda, in an unresolved position near Cetiosaurus, Patagosaurus and kin (Bagualia, Spinophorosaurus, Nebulasaurus), and more deeply nested eusauropods. The phylogenetic position of Perijasaurus bolsters the idea that eusauropods achieved a broad geographic distribution during the Early–Middle Jurassic, before the deeper fragmentation of Pangea and after the Toarcian faunal turnover documented at high southern latitudes. Perijasaurus and other basally diverging sauropods display an intermediate level of bone weight reduction in the axial column that represents an antecedent to the more highly developed pneumatic system characterizing Neosauropoda.
Article
Full-text available
A literature review showed that there is not a defined consensus on what specimens belong to Plateosaurus in current phylogenetic analyses, and after the assignation of SMNS 13200 as the neotype for Plateosaurus, the specimen composition of Plateosaurus as an operational taxonomic unit (OTU) needs to be addressed in further iterations of phylogenetic analyses. At least one of the specimens used to illustrate plateosaurian anatomy contains several characters identified in more derived sauropodomorphs commonly referred to as massopodans. This partial skeleton, traditionally known as specimen ‘GPIT IV’, was found in the lower dinosaur bone bed of the Obere Mühle, a Trossingen Formation outcrop, during an excavation in 1922 near the city of Tübingen, Germany. The holotype of Plateosaurus trossingensis and several other specimens referred to as this species were found in this level, which was initially interpreted as a synchronic deposit of animals. However, the current understanding of the Trossingen Formation indicates that this bed was probably a constant accumulation of carcasses through miring and transport down a river for hundreds of years. In this work, a framework to compare phylogenetic signals with morphological and histological data is provided to help in the species delineation of Plateosaurus, and support is found to refer the historic specimen ‘GPIT IV’ as a new genus and a new species.
Chapter
Full-text available
Eusauropods are large-bodied and long-necked dinosaurs that dominated the role of large herbivores in terrestrial ecosystems since at least the late Early Jurassic (Pliensbachian–Toarcian). Their early diversification is best recorded in South America where the best-preserved eusauropods and close relatives from this period of time have been found. The earliest sauropod from the Jurassic of South America is Amygdalodon patagonicus from the Cerro Carnerero Formation (Pliensbachian–early Toarcian), and its fragmentary remains suggest a position at the base of Gravisauria or as closely related to this clade. The Cañadón Asfalto Formation (middle–late Toarcian) has provided three named sauropods, although a higher diversity of sauropods may have existed. These are the basal eusauropod Patagosaurus fariasi, known from multiple specimens, the much more incompletely known early sauropod Volkheimeria chubutensis, and Bagualia alba that is known from multiple specimens and includes fairly complete craniomandibular remains. These taxa provide the earliest evidence of ecological predominance by large-bodied sauropods and are therefore significant for understanding the rise and success of this group in the Jurassic Period. The current knowledge of these sauropods from the late Early Jurassic of South America indicates that the evolutionary radiation of Eusauropoda occurred at least by the mid-Toarcian, subsequent to a large-scale volcanic event in the Southern Hemisphere that has been linked to global climatic change and the rise of conifers as the predominant components of Jurassic seasonal forests.
Article
Full-text available
Middle Jurassic sauropod taxa are poorly known, due to a stratigraphic bias of localities yielding body fossils. One such locality is Cerro Cóndor North, Cañadón Asfalto Formation, Patagonia, Argentina, dated to latest Early–Middle Jurassic. From this locality, the holotype of Patagosaurus fariasi Bonaparte 1986 is revised. The material consists of the axial skeleton, the pelvic girdle, and the right femur. Patagosaurus is mainly characterised by a combination of features mainly identified on the axial skeleton, including the following: 1) cervical centra with low Elongation Index; 2) high projection of the postzygodiapophyseal lamina; 3) deep anterior pleurocoels that are sometimes compartmentalized in cervicals; 4) high projection of the neural arch and spine in dorsal vertebrae and anterior(most) caudal vertebrae; 5) deep pneumatic foramina in posterior dorsals which connect into an internal pneumatic chamber; and 6) anterior caudal vertebrae with ‘saddle’ shaped neural spines. Diagnostic features on the appendicular skeleton include: 1) a transversely wide and anteroposteriorly short femur; 2) a medial placement of the fourth trochanter on the femur; and 3) an anteroposteriorly elongated ilium with a rounded dorsal rim, with hook-shaped anterior lobe. The characters that are diagnostic for Patagosaurus are discussed, and the osteology of Patagosaurus is compared to that of Early and Middle Jurassic (eu)sauropods from both Laurasia and Gondwana.
Article
The fossil record of abelisauroid carnivorous dinosaurs was previously restricted to Cretaceous sediments of Gondwana and probably Europe. The discovery of an incomplete specimen of a new basal abelisauroid, Berberosaurus liassicus, gen. et sp. nov., is reported from the late Early Jurassic of Moroccan High Atlas Mountains. Phylogenetic analysis recovers Ceratosauroidea and Coelophysoidea as sister lineages within Ceratosauria, and Berberosaurus as a basal abelisauroid. Berberosaurus is the oldest known abelisauroid and extends the first appearance datum of this lineage by about 50 million years. The taxon bridges temporal, morphological, and phylogenetic gaps that have hitherto separated Triassic to Early Jurassic coelophysoids from Late Jurassic through Cretaceous ceratosauroids. The discovery of an African abelisauroid in the Early Jurassic confirms at least a Gondwanan distribution of this group long before the Cretaceous.
Article
Full-text available
Analysis of tetrapod footprints and skeletal material from more than 70 lo- calities in eastern North America shows that large theropod dinosaurs appeared less than 10,000 years after the Triassic-Jurassic boundary and less than 30,000 years after the last Triassic taxa, synchronous with a terrestrial mass extinction. This extraordinary turnover is associated with an iridium anomaly (up to 285 parts per trillion, with an average maximum of 141 parts per trillion) and a fern spore spike, suggesting that a bolide impact was the cause. Eastern North American dinosaurian diversity reached a stable maximum less than 100,000 years after the boundary, marking the establishment of dinosaur-dominated communities that prevailed for the next 135 million years.
Article
The Bajocian-Bathonian red beds are affected by an extensive tectonic activity in the Atlantic passive margin of Morocco. Their sedimentation is controlled by NE-SW to NNE-SSW normal faults. In addition, the sequence formation is intruded by basaltic lavas and doleritic sills whose transitional affinity and within-plaque geodynamic setting are indicated by petrographic and geochemical studies. These tectonic and magmatic activities are related to the initial stage of the oceanic accretion in the Central Atlantic. There is an abridged English version.