ArticlePDF Available

Observations on the larval morphology of the Antlion Myrmeleon bore (Tjeder, 1941) (Neuroptera Myrmeleontidae) and its life cycle in the Po Valley (northern Italy)

Authors:
59
Ann. Mus. civ. St. nat. Ferrara Vol. 8 2005 [2007] pp. 59-66 ISSN 1127-4476
Observations on the larval morphology of the Antlion Myrmeleon
bore (Tjeder, 1941) (Neuroptera Myrmeleontidae) and its life cycle
in the Po Valley (northern Italy)
Rinaldo Nicoli Aldini
1, 2
1) Istituto di Entomologia e Patologia vegetale, Facoltà di Agraria, Università Cattolica del Sacro Cuore, via Emi-
lia Parmense 84, I – 29100 Piacenza (Italy); 2) Scienze degli Alimenti, Polo Scientifico-Didattico di Cesena della
Facoltà di Agraria, Alma Mater Studiorum, Università degli Studi di Bologna, Piazza Goidanich 60, I-47023 Ce-
sena (Italy), e-mail: rinaldo.nicoli@unicatt.it
Myrmeleon bore (Tjeder), an Eurasian antlion, has hitherto been recorded only in few locali-
ties of northern Italy, the southernmost part of its range. The author carried out observations in
the Pavia province (western Po Valley) and rearings of this species, in order to obtain data con-
cerning larval morphology, ecology and ethology, as well as to study its life cycle. Field observa-
tions and laboratory rearings indicate that the life cycle of M. bore in northern Italy may be com-
pleted in one year. The morphological characteristics of its three larval stages are noted and il-
lustrated by SEM micrographs, discriminating them from those of the very similar and syntopic M.
inconspicuus Rambur.
Key words – larval taxonomy, SEM, geographic distribution, voltinism, myrmeleontids.
Introduction
Myrmeleon bore (Tjeder, 1941) (Neuro-
ptera: Myrmeleontidae), an Eurasian antlion,
occurs in Europe mostly in the central and
northern regions (Ohm, 1965; Aspöck et al.,
1980, 2001; Letardi, 1998; Röhricht, 1998);
in Italy it has hitherto been recorded very
rarely and only in the North (Aspöck &
Aspöck, 1969; Nicoli Aldini, 1983; [Bernardi]
Iori et al., 1995; Hellrigl & Hölzel, 1996). Field
studies in the Lomellina area (Province of
Pavia, Lombardy) and laboratory rearings
have been carried out by the author, since
the seventies, for obtaining data on the eco-
logy, behaviour and life cycle of this species.
Observations have also been conducted u-
sing a scanning electron microscope in order
to depict the morphological characteristics of
its larval stages and differences between
them and the corresponding stages of the
very similar and syntopic M. inconspicuus
Rambur, 1842. The mature larva of the latter
was described masterfully by Principi (1943);
taxonomical characteristics of the larva of M.
bore were summarily presented by Friheden
(1973), other illustrations are to be found in
Dobosz (1993) and Ábrahám (1995).
Materials and methods
After the first findings of M. bore larvae in
the Lomellina area, the research was widened
to other stations in this region; moreover, some
collections were examined to obtain further
data on the presence and distribution of this
antlion species in Italy.
The observations and samplings of larvae
of M. bore and other antlions digging pits, were
made in the Lomellina area during a period of
nearly thirty years (1977 to 2005), in June-July
and September-October. Laboratory rearings
were conducted in Bologna, in an uncondi-
tioned environment.
Larval specimens were examined alive and
shortly before death, as well as specimens
preserved in ethanol 70-75%, dry specimens
and cast skins from 1st and 2nd instar larvae,
in order to study larval morphology. SEM mi-
crographs were carried out in the Electron Mi-
Proceedings of the IX International Symposium on Neuropterology
60
croscope Laboratory of the Faculty of Agricul-
ture, Università Cattolica, Piacenza, employing
both non-metallized and metallized dry mate-
rial, by means of a SEM Philips XL30 ESEM.
Measurements of total larval length were con-
ducted on live specimens; measurements of
larval head (Fig. 3B) were conducted on
specimens preserved in ethanol 70-75% (12
specimens for each stage of each species
were examined), by means of a Leica Wild M
10 stereoscope, using an ocular micrometer.
Other observations on larval morphology were
carried out on prepared parts or appendages,
previously clarified in KOH and mounted on
slides in Faure’s fluid. The “digging-setaelay-
out patterns of the 9th sternite and their rela-
tive frequencies were observed by examining
a total of 263 M. bore larvae (L1: 69, L2: 150,
L3: 44) (Tab. II) and 392 M. inconspicuus lar-
vae (L1: 27, L2: 256, L3: 109). Detailed data
on the latter species will be published in a fu-
ture paper.
Results
Distributional data for M. bore
M. bore larvae were found in various
localities of the southeastern Lomellina
area (Pavia), both along river beds, and
in some zones of the inland plain: a)
Mezzana Rabattone, Po river; b) Pieve
Albignola: Cascinotto Mensa, Po river; c)
Pieve Albignola, Terdoppio stream; d)
Pieve Albignola to Scaldasole: sandy
banks and oak-wood borders near Ca-
scina Rossa (now demolished) and Ca-
scina Paralupo; e) Scaldasole, locality “I
Dossi”: borders of a small oak-wood; f)
Alagna. In the collections of the Istituto di
Entomologia, Università Cattolica, Pia-
cenza, 3 adults of this species are pre-
served, labelled as follows: Cremona,
Pizzighettone, farm “La Tencara”,
19.VII.1970, light trap (1 female); Piacen-
za, 28.VII.1989 (1 male); Piacenza, Po
river, VI.1991 (1 male). M. bore therefore,
as published up to now, occurs in three
Italian regions: Alto Adige (Aspöck &
Aspöck, 1969; Hellrigl & Hölzel, 1996),
Lombardy and Emilia (Nicoli Aldini, 1983,
and present data) (Fig. 1).
Larval morphology of M. bore
1st instar larva (L 1)
Colouring – Basic colouring whitish straw,
dorsally tending towards beige, with several
brown or dark brown spots and blotches dor-
sally and ventrally (Fig. 2, Fig. 3A) (newhat-
ched larva with only the cephalic and some,
more or less evident, thoracic and abdominal
spots). Head capsule dorsally almost entirely
dark brown, due to the presence of large and
confluent spots in the fronto-clypeal and epi-
cranial areas (the epicranial spots extending to
the sides); ocular tubercles black; head cap-
sule also with a dark spot on each side poste-
riorly; ventrally yellowish brown with a pair of
large and shaded brown spots in the hy-
postomal areas. Antenna dark brown. Mandi-
ble and maxilla iron-brown; labial palp with the
last segment darker. Legs light, without spots,
pretarsal claws of metathoracic legs clearly
iron-coloured.
Size – Total length (including jaws) 3.8 (new-
hatched larva) to approx. 6 mm; morphometri-
cal data of the head: Tab. I.
Relevant morphological features
Black setae, of various shapes and sizes, scat-
tered almost all over the body; the fine struc-
ture of some of them from the anterior margin
of the head, with longitudinal series of short
spinules, is shown in Fig. 4A. Delicate white
sinuous filaments (detail in Fig. 4C) dorsally
scattered almost all over the body, latero-
ventrally over thorax and abdomen. Head cap-
sule longer than broad, with maximum width at
the ocular tubercles. Antenna (Fig. 4D) 11- to
15-segmented (scape stout, pedicel and apical
flagellomere more or less elongate). Mandible
falcate, tridentate, slender and finely sharp-
Fig. 1 – Myrmeleon bore, Italian distribution (biblio-
graphic data and author’s data); inside the circle:
stations in the Lomellina area.
R. Nicoli Aldini – Observations on the larval morphology of Myrmeleon bore (Tjeder, 1941)
61
Fig. 2 – Myrmeleon bore: 1st, 2nd, 3rd instar larva (R. Nicoli Aldini del.).
ened, longer than the cephalic capsule; labium
(Fig. 4E) with palps 3-segmented. Thoracic
spiracle: Fig. 4F. “Digging setae” of the 9th
sternite: Fig. 3C-D, Fig. 4G, Tab. II. Their most
frequent pattern comprises 8 setae in the pos-
terior row (4 on each side, forming the struc-
ture named “palette” by Steffan (1975), in
which the most lateral seta is longer and
sharpened), near the hind margin of the ster-
num; 4 setae in the row immediately in front;
and 2 in front of them, in the discal area of the
sternite, placed side by side or asymmetrically,
more or less distant from each other. Some-
times there is only one or none of the latter.
Proceedings of the IX International Symposium on Neuropterology
62
Tab. I – Myrmeleon bore and M. inconspicuus, measurements of the head and number of antennal segments
(12 specimens were measured and examined for each larval stage of each species).
Myrmeleon bore Myrmeleon inconspicuus
Measurements (mm)
L 1 L 2 L 3 L 1 L 2 L 3
Head length (incl. jaws) 1.77-1.93 2.65-2.92 4.16-4.62 1.46-1.64 2.10-2.35 3.20-3.77
Length of the head capsule 0.84-0.92 1.28-1.45 2.06-2.26 0.68-0.81 1.05-1.17 1.62-1.90
Width of the head capsule 0.75-0.81 1.12-1.26 1.71-1.90 0.64-0.75 0.94-1.07 1.45-1.71
Number of antennal seg-
ments
11-15 8-14 9-15 11-15 13-16 10-15
Tab. II – Myrmeleon bore, layout patterns of “digging setae” on the 9th sternite, and their relative frequencies for
each larval stage and for the whole number of larvae examined.
Layout patterns
of the “digging
setae”
L 1
(69 larvae
examined)
L 2
(150 larvae
examined)
L 3
(44 larvae
examined)
L 1 + L 2 + L 3
(263 larvae
examined)
2 (asymm.) – 5 – 7 - 1 (0.66%) - 1 (0.38%)
2 (asymm.) – 3 – 8 - 1 (0.66%) - 1 (0.38%)
0 – 4 – 8 5 (7.25%) 5 (3.35%) - 10 (3.80%)
1 – 4 – 8 9 (13.04%) 11 (7.35%) 4 (9.09%) 24 (9.13%)
2 (asymm.) – 4 – 8 42 (60.87%) 109 (72.66%) 31 (70.46%) 182 (69.20%)
2 (symm.) – 4 – 8 11 (15.94%) 13 (8.66%) 4 (9.09%) 28 (10.65%)
3 (asymm.) – 4 – 8 - 7 (4.66%) 5 (11.36%) 12 (4.56%)
1 – 5* – 8 2 (2.90%) 3 (2.00%) - 5 (1.90%)
* symmetric (i. e. in one row) or asymmetric but close to each other.
Tab. III – Morphological features discriminating Myrmeleon bore and M. inconspicuus larvae.
Species/Characteristics Myrmeleon bore Myrmeleon inconspicuus
SIZE Slightly larger (see Tab. I for the
head).
Smaller (see Tab. I for the head).
MANDIBLE Relatively longer, more slender
distally; in all stages, mandible a
little longer than the head capsule.
Relatively shorter, less slender
distally; only in L 1 mandible longer
than the head capsule.
L
ABIAL PALP 3-segmented (see Fig. 4E). 4-segmented.
T
HICK CEPHALIC SETAE With longitudinal series of short
spinules (evident mainly in 1st in-
star larva, see Fig. 4A).
With longitudinal series of slightly
longer and thinner spinules (evi-
dent mainly in 1st instar larva, see
Fig. 4B).
N
UMBER AND LAYOUT OF DIGGING
SETAE
ON THE 9TH STERNITE
Intermediate group forming a row
of 4 setae (only exceptionally 5);
anterior (discal) group comprising
0-3 setae (see Fig. 3C-F, Fig. 4G,
and Tab. 2).
Intermediate group consisting of at
least 6 setae (only exceptionally 5,
not rarely 7, rarely 8-9) disposed in
more or less regular row; anterior
(discal) group comprising 0-7 setae
disposed more or less irregularly
(see Fig. 3G-I).
R. Nicoli Aldini – Observations on the larval morphology of Myrmeleon bore (Tjeder, 1941)
63
2nd instar larva (L 2) (main differ-
ences in comparison with L1)
Colouring – Dark colouring of the head cap-
sule generally a little less wide than in L 1, with
large dark spots dorsally (Fig. 2) and a dark
spot on each side posteriorly; ventrally with a
pair of oval dark spots.
Size – Total length (including jaws) approx. 6-
8 mm; morphometrical data of the head: Tab. I.
Relevant morphological featuresMa-
ximum width of the head capsule a little behind
the ocular tubercles. Antenna 8- to 14-
segmented. Layout pattern of “digging setae”
of the 9th sternite rather variable (Tab. II), their
more frequent settings correspond to the 2
(asymmetric or symmetric) – 4 – 8 type.
3rd instar larva (L 3) (main differ-
ences in comparison with L 2)
Colouring Head capsule dorsally with one
frontoclypeal dark spot and some symmetric
epicranial dark spots, less wide than in L 2
(Fig. 2); on each side with a dark spot poste-
riorly; ventrally with a pair of dark spots with
shaded margins in the hypostomal areas. An-
tenna uniformly brown or yellow ochre, with the
last segment darker; mandible yellow ochre,
gradually darker in the points.
Size – Total length (including jaws) approx.
8.5-12.5 mm; morphometrical data of the head:
Tab. I.
Relevant morphological features An-
tenna 9- to 15-segmented (only 6 segments in
both antennae, with various flagellomeres
fused together, in an anomalous specimen).
Spinosity of the ventral side of the mandible:
Fig. 4H. Layout pattern of “digging setae” of
the 9th abdominal sternum rather variable (Fig.
3E-F, Tab. II), their more frequent settings as
in L 2.
Through the development from L1 to
L3, therefore, the dark colouring of the
head decreases in width; the mandible is
dark in L1 and L2, lighter in L3. The head
capsule modifies its shape a little and re-
mains slightly shorter than the mandible.
On the 9th sternite, the “digging setae” of
the discal group tend to increase in num-
ber (in L3, not rarely 3 setae, placed
asymmetrically, are to be found) (Tab. II).
Fig. 3 – Myrmeleon bore: A, schematic distribution of ventral spots in 1st instar larva; B, technique of measure-
ment of larval head (htl = total length of the head; hcl = length of the head capsule; hcw = width of the head
capsule); C-F, some layout patterns of “digging setae” of 9th sternite in 1st (C: 0-4-8; D: 1-4-8) and 3rd (E: 2-4-
8; F: 3-4-(7)8) instar larva. M. inconspicuus: G-I, idem in 1st (G: 2-6-8; H: 3-7-8) and 3rd (I: 4-8-8) instar larva.
(Various magnification; R. Nicoli Aldini del.).
Proceedings of the IX International Symposium on Neuropterology
64
Fig. 4 – A, Myrmeleon bore, L 1: detail of two setae on the anterior margin of the frontoclypeal region; B, ditto of
Myrmeleon inconspicuus, L 1; C, M. bore, L 1 (cast skin): detail of a delicate sinuous filament from the thoracic
perispiracular region, at high magnification; D, M. bore, L 1: antenna. E, M. bore, L 1: labium; F, M. bore, L 1
(cast skin): thoracic spiracle; G, M. bore, L 1: 9th abdominal sternite; H, M. bore, L 3: ventral detail of mouth-
parts (inside the circle: spinosity of the ventral side of the mandible). (SEM photos).
R. Nicoli Aldini – Observations on the larval morphology of Myrmeleon bore (Tjeder, 1941)
65
Tab. IV – Myrmeleon bore, number and percentages of the three larval stages in three subsequent samplings
made in the span of twelve months in the same poplar grove with sandy soil, at Pieve Albignola near Terdoppio
stream (Province of Pavia), years 1983-1984.
Larval stage
1.X.1983
(89 larvae)
1.VII.1984
(25 larvae)
28.IX.1984
(61 larvae)
L 1 23 (25.8%) 0 (0.0%) 31 (50.8%)
L 2 62 (69.7%) 2 (8.0%) 30 (49.2%)
L 3 4 (4.5%) 23 (92.0%) 0 (0.0%)
Almost all over the body, black setae of
various shapes and sizes, as well as deli-
cate white sinuous filaments, increase in
number.
Some morphological characteristics
discriminating between M. bore and M.
inconspicuus larvae are summarized in
Tab. I (head measurements) and Tab. III.
Bio-ecological notes, life cycle
duration
Only a short account can be reported
here. In the southern Lomellina area, M.
bore occurs in various localities, in envi-
ronments with suitable sandy soil: the
banks of the Po river bed, the poplar gro-
ves near this major river and its tributaries,
and the sandy banks (the typical “dossi” of
the Lomellina area, with the surviving
small oak-woods (Quercus pedunculata),
associated with the invasive robinia (Ro-
binia pseudacacia) and a few other spe-
cies of trees) in the inland agricultural
plain. In all these environments, this ant-
lion is syntopic with M. inconspicuus,
which is generally more abundant, only
rarely the larvae of these two species we-
re found in similar percentages. The pits
of M. bore are located in the same places
as those of M. inconspicuus, in bare soil
or, especially for the pits of the 1st and
2nd instar larvae, which are closer toge-
ther, near the base of herbs and small
shrubs, in any case in sunny places. Syn-
topy with Myrmeleon formicarius Linné,
1767 and Euroleon nostras (Geoffroy in
Fourcroy, 1785) (both, but especially the
latter, scarcer than the other two species)
was observed in some environments such
as sandy banks in the inland plain, near
small oak woods (Nicoli Aldini, 1983), and
on a sandy slope far from rivers. These
four species display partially different pre-
ferences in the location of their pits. The
pits of E. nostras, for instance, are always
found under overhangs – as has been well
known for many years, see e.g. Steffan
(1975), Yasseri & Parzefall (1996). It is
likely that M. bore larvae, as well as those
of M. inconspicuus (Steffan, l.c.), are able
to survive the prolonged submersions of
the sand banks of the Po river bed, which
occur in some periods of the year.
Field samplings and laboratory rea-
rings in climatic conditions similar to those
of the natural habitat indicate that the life
cycle of M. bore in the Po valley may be
completed for the majority of the indivi-
duals in one year, compared with 2-3 ye-
ars in central Europe (Hölzel, 1973; Gepp
& Hölzel, 1996; Hölzel & Wieser, 1999).
This fact in the Lomellina area is demon-
strated by the high number of 3rd instar
larvae of M. bore in July and their low
number or absence in September-
October, as well as by the very low num-
ber of 1st and 2nd instar larvae in July and
their abundance in September-October
(Tab. IV). Only a small number of larvae
takes two years (personal observations),
as has also been found for M. inconspi-
cuus (Principi, 1943; Steffan, 1975; Panta-
leoni, 1982; Nicoli Aldini, unpublished da-
ta). In the laboratory rearings, M. bore a-
dults started to emerge in the first ten
days of June, ending in the second ten
days of August. During field research in
the Lomellina area, in June-July adults of
this species were never found (maybe
Proceedings of the IX International Symposium on Neuropterology
66
they emerge later or are scarcer), where-
as some specimens of M. inconspicuus
were captured in July on herbaceous
plants.
Acknowledgements
The author thanks Mr. Andrea Roverselli,
Laboratorio Microscopia Elettronica, Facoltà di
Agraria dell’Università Cattolica, Piacenza, for
his technical assistance, and Dr. Robert Gü-
sten, Naturgeschichtliche Abteilung, Hessi-
sches Landesmuseum Darmstadt, for his va-
luable suggestions and comments on the ma-
nuscript.
References
Ábrahám L., 1995 – A tervezett Duna-Dráva Nemzeti
Park recésszárnyú-alkatú (Megaloptera, Raphidiopte-
ra, Neuroptera) faunájának természetvédelmi vizsgá-
lata, I. Dunántúli Dolgozatok (A) Termeszettudományi
Sorozat / Studia Pannonica (A) Series Historico-
Naturalis, 8: 53-70. [In Hungarian with English sum-
mary: Natural protection studies on the neuropteroids
(Megaloptera, Raphidioptera, Neuroptera) fauna of
the projected Duna-Dráva National Park, I.]
Aspöck H. & Aspöck U.,
1969 Die Neuropteren Mit-
teleuropas. Ein Nachtrag zur „Synopsis der Syste-
matik, Ökologie und Biogeographie der Neuropte-
ren Mitteleuropas“. Naturkundliches Jahrbuch der
Stadt Linz, 1969: 17-68.
Aspöck H., Aspöck U. & Hölzel H.
(unter Mitarbeit
von Rausch H.), 1980 – Die Neuropteren Europas.
Eine zusammenfassende Darstellung der Syste-
matik, Ökologie und Chorologie der Neuropteroi-
dea (Megaloptera, Raphidioptera, Planipennia) Eu-
ropas. Goecke & Evers, Krefeld, vol. 1: 495 pp.;
vol. 2: 355 pp.
Aspöck H., Hölzel H. & Aspöck U., 2001 – Kommen-
tierter Katalog der Neuropterida (Insecta: Raphi-
dioptera, Megaloptera, Neuroptera) der West-
paläarktis. Denisia, 2: 1-606.
[Bernardi] Iori A., Kathirithamby J., Letardi A., Panta-
leoni R.A. & Principi M.M.,
1995 Neuropteroidea
(Megaloptera, Raphidioptera, Planipennia), Meco-
ptera, Siphonaptera, Strepsiptera. In: Minelli A.,
Ruffo S., La Posta S. (eds.) - Checklist delle specie
della fauna italiana, 62. Calderini, Bologna: 20 pp.
Dobosz R., 1993 – Remarks on Myrmeleon bore
Tjeder, with new localities from Poland and North
Korea (Neuroptera: Myrmeleontidae). Annals of the
Upper Silesian Museum, Entomology, 4: 53-58.
Friheden J.,
1973 Morphological characteristics of
North-European myrmeleontid larvae (Neuroptera).
Entomologica scandinavica, 4: 30-34.
Gepp J. & Hölzel H., 1996 Ameisenlöwen und Amei-
senjungfern (Myrmeleonidae). Die Neue Brehm-
Bücherei, A. Ziemsen Verlag, Wittenberg: 108 pp.
Hellrigl K. & Hölzel H., 1996 Neuropteroidea - Netz-
flügler. - In: Hellrigl, K. (ed.), Die Tierwelt Südtirols.
Kommentiertes systematisch-faunistisches Verzei-
chnis der auf dem Gebiet der Provinz Bozen-
Südtirol (Italien) bekannten Tierarten. Veröffentli-
chungen des Naturmuseums Südtirol, 1: 515-521.
Hölzel H.,
1973 Die Netzflügler Kärntens. 1. Na-
chtrag. Carinthia II, 83: 497-506.
Hölzel H. & Wieser C., 1999 Die Netzflügler Kärn-
tens. Eine zusammenfassende Darstellung der Au-
tökologie und Chorologie der Neuropterida (Mega-
loptera, Raphidioptera, Neuroptera) Kärntens. Ca-
rinthia II, 109: 361-429.
Letardi A., 1998 – Myrmeleon bore (Tjeder, 1941)
new to Spain (Neuroptera Myrmeleontidae). Fru-
stula entomologica, n.s. 20 (33)(1997): 150-151.
Nicoli Aldini R., 1983 – Note sulla geonemia di alcuni
Neurotteri Planipenni italiani. Giornale italiano di
Entomologia, 1: 123-127.
Ohm P., 1965 – Zur Kenntnis von Grocus bore Tje-
der (Neuroptera, Myrmeleontidae). – Nachrichten-
blatt der bayerischen Entomologen, 14: 17-24.
Pantaleoni R.A., 1982
Neuroptera Planipennia del
comprensorio delle Valli di Comacchio: indagine
ecologica. Bollettino dell’Istituto di Entomologia
dell’Università di Bologna, 37: 1-73.
Principi M.M., 1943 – Contributi allo studio dei Neu-
rotteri italiani. II. Myrmeleon inconspicuus Ramb.
ed Euroleon nostras Fourcroy. Bollettino
dell’Istituto di Entomologia della R. Università di
Bologna, 14: 131-192.
Röhricht W., 1998 – Distribution of Myrmeleon (Mor-
ter) bore (Tjeder 1941). Acta zoologica Fennica,
209: 221-225.
Steffan J.R., 1975 – Les larves des fourmilions (Pla-
nipennes: Myrmeleontidae) de la faune de France.
Annales de la Société entomologique de France,
11: 383-410.
Yasseri A.M. & Parzefall J., 1996 – Life cycle and re-
productive behaviour of the antlion Euroleon nostras
(Geoffroy in Fourcroy, 1785) in northern Germany (In-
secta: Neuroptera: Myrmeleontidae). In: Canard M.,
Aspöck H., Mansell M.W. (eds.) - Pure and Applied
research in Neuropterology. Proceedings of the 5
th
Int.
Symposium on Neuropterology. Cairo, 269-288.
... In Deutschland sind vor allem die Arten E. nostras und M. formicarius weit verbreitet (Gepp & Hölzel 1989;siehe aber Köhler & Creutzburg 2016), es gibt jedoch zunehmend Hinweise auf das verbreitetere Auftreten der Dünen-Ameisenjungfer M. bore. So existieren nach den mitteleuropäischen Erstnachweisen im niedersächsischen Elbtal (Rosenbohm 1959), in Bayern (Ohm 1965) und an der Ostseeküste (Kleinsteu-ber 1969) mehrere neue Nachweise aus Niederbayern (Weihrauch 2018), entlang des gesamten Elbtales von Sachsen bis Hamburg (Röhricht 1995, 1998, Yassari et al. 1997, Heidger 2008, aber auch aus dem nördlichen wie südlichen Polen (Szawaryn & Dobosz 2017), der Slowakei (KačÍrek 1997), Österreichs (Denner 2015) oder Norditalien (Aldini 2005). Für Sachsen erfolgten die neueren Funde in der Oberlausitz (Franke 1994), der Bergbaufolgelandschaft in Nordwestsachsen (Klaus 2001) und der Dübener Heide (Freistaat Sachsen 2008). ...
... 3). L1-Larven können maximal etwa 6 mm groß werden, L2-Larven bis zu 8 mm, und L3-Larven bis etwa 14 mm (Aldini 2005). Es wurden, bis auf einen Fund, nur Larven entdeckt, die anhand Ihrer Größe L2-oder L3-Larven zugeordnet werden könnten (Abb. ...
... In unserer Untersuchung ist jedoch auch ein fließender Übergang der Larven und Trichtergrößen zu sehen, so dass die Altersstruktur nicht leicht zuzuordnen ist. Um ein Monitoring der Altersstruktur verlässlich durchführen zu können, müsste neben der Larvengröße sowohl Färbung als auch morphologische Besonderheiten des jeweiligen Larvenstadiums dokumentiert werden (Aldini 2005). ...
Article
Full-text available
Following the first record of Myrmeleon bore in the Dresd- ner Heide area in 2019 (Kurth 2020), the population size and density of the species was determined. M. bore was mainly found in open, sparsely vegetated, sandy areas directly exposed to sunlight. The area-weighted density of the entire study site (4.05 hectares) was 0.177 larvae/m2. Population size estimates based on random quadrat counts lead to a figure of 4000-7000 individuals - the largest known population of this species. The positive correlation between larval size and pit diameter known for this species from laboratory trials was confirmed at our study site. This correlation may allow researchers to estimate the age structure of wild populations. The special responsibility of Germany for the protection of this species and the size of the population justify priority protection of the site over other protected species found in the area.
... Also, bristles (especially those located on head capsule and mandibles) are used to throw away sand during the construction of pitfall traps and to throw it to their preys, plumose hairs are used to retain soil particles in their body in a camouflage role, and digging setae allow to bury themselves (Lipovšek Delakorda et al., 2009;Devetak et al., 2013;Badano and Pantaleoni, 2014a;Acevedo Ramos et al., 2020). It is remarkable the absence of dolichasters, as on other genera that construct pitfall traps as Myrmecaelurus or Euroleon (Nicoli Aldini, 2007;Lipovšek Delakorda et al., 2009;Devetak et al., 2013;Badano and Pantaleoni, 2014a). Dolichasters are an specialized setae typical in Myrmeleontiformia Pantaleoni, 2014a, 2014b) and relatively common in many Myrmeleontidae genera (antlions or owflies on traditional terms) (e.g. ...
Article
Full-text available
Myrmeleon (tribe Myrmeleontini) is the most successful genus within Myrmeleontidae in number of species. This is probably due to its pit-building behavior, a famous adaptation of antlion larvae but present only in a few genera of the family. In the Iberian Peninsula, where only two other genera are able to construct these traps (Euroleon in tribe Myrmeleontini and Myrmecaelurus in tribe Myrmecaelurini), five species of Myrmeleon are present: M. formicarius, M. gerlindae, M. inconspicuus, M. almohadarum and M. hyalinus. There are some useful characters to tell apart the larvae of these species using optical microscope, including the disposition of digging setae or some color spots. In this work, we study the type of setae on these species in their larval stage using SEM. The type of bristles, digging setae, and the rest of sensilla found are not different in shape, surface or structure between species. All of these confer them a great equipment in their psammophilous lifestyle. Keywords: Myrmeleontini; Chaetotaxy; Pit-building traps; Spain; Sensorial receptors
... Each upper jaw (mandible) and corresponding lower jaw (maxilla) form a stylet, with which prey such as ants is pierced [22,[32][33][34]. Some antlion larvae are famous for being pit-builders (e.g., [35][36][37][38]), yet overall the larval ecology and behaviour of other representatives remain relatively unexplored [39][40][41]. Corresponding adults are aerial predators or consume pollen and nectar [33,42,43]. ...
Article
Full-text available
Among lacewings (Neuroptera), representatives of the groups Ascalaphidae (owlflies) and Myrmeleontidae (antlions) are likely the most widely known ones. The exact taxonomic status of the two groups remains currently unclear, each may in fact be nested in the other group. Herein, we refer to the group including representatives of both with the neutral term “owllion”. Owllion larvae are voracious ambush hunters. They are not only known in the extant fauna, but also from the fossil record. We report here new findings of a fossil owlfly larva from Eocene Baltic amber, as well as several owlfly-like larvae from Cretaceous Kachin amber, Myanmar. Based on these fossils, combined with numerous fossil and extant specimens from the literature, collections, and databases, we compared the morphological diversity of the head and mouthpart shapes of the larvae of owllions in the extant fauna with that of owllion-like larvae from three time slices: about 100 million years ago (Cretaceous), about 40 million years ago (Eocene), and about 20 million years ago (Miocene). The comparison reveals that the samples from the Eocene and Miocene are too small for a reliable evaluation. Yet, the Cretaceous larvae allow for some conclusions: (1) the larval morphological diversity of owllion larvae increased over time, indicating a post-Cretaceous diversification; (2) certain morphologies disappeared after the Cretaceous, most likely representing ecological roles that are no longer present nowadays. In comparison, other closely related lineages, e.g., silky lacewings or split-footed lacewings, underwent more drastic losses after the Cretaceous and no subsequent diversifications.
Article
Full-text available
Neuroptera, the group of lacewings, is well known to have been more diverse in the past, offering to study patterns of biodiversity loss over time. This loss of diversity has been quantitatively established by the morphological diversity of lacewing larvae. Here, we explore in more detail the diversity of lacewing larvae with tooth-bearing mouthparts. All these larvae are representatives of Myrmeleontiformia, the group of antlion-like lacewings. Today, larvae of several major ingroups bear teeth on their mouthparts: (1) owllions (formerly Ascalaphidae and Myrmeleontidae; taxonomic status is currently unclear); (2) Nymphidae; (3) Crocinae (mostly in younger larvae); and (4) Nemopterinae (only micro teeth). In addition, there are several now extinct larval types with teeth known from Cretaceous ambers (about 100 million years old). These larvae also possess several plesiomorphic characters, indicating that they were part of the early diversification of Myrmeleontiformia. We report numerous new specimens of these now extinct forms and provide a quantitative morphological comparison of head and mouthpart shapes, demonstrating that some of these Cretaceous larvae possessed morphologies not represented in the extant fauna. The resulting pattern is complex, indicating that at least some extinct morphologies have been later replaced by modern-day antlions due to convergent evolution.
Article
The morphology of third instar antlion larvae of Euroleon nostras (Geoffroy in Fourcroy, 1785) is described and figured using light and scanning electron microscopy. The specimens were collected in Adyaman Province, Turkey.
Article
Three species of Myrmeleontidae are currently known from Denmark: Myrmeleon bore, Myrmeleon formicarius and Euroleon nostras. Despite their unique and interesting life history, the faunistics of antlions in Denmark are in need of an update. Here, we primarily use the collections from the Natural Museum of Denmark and the Natural History Museum Aarhus to document the species distribution and richness. The antlion specimens were databased according to the distribution data, and distribution maps were created for each species. The maps are compared to previous analyses of Danish antlion faunistics as well as available online sources. The occurrence of the species in neighbouring countries is also considered. Identification keys to both larvae and adults of the Danish species are provided. Interspecific competition could explain why some locations only contain one species. In Denmark, there seems to be a marked correlation between the occurrence of antlions and the presence of aeolian sand. Aeolian sand is an excellent substrate for the larval funnels and is probably the core habitat of the antlion species occurring in Denmark.
Chapter
O termo Bioma refere-se a uma área do espaço geográfico representada por um tipo uniforme de ambiente, dentro do qual é possível identificar características similares de macroclima, fitofisionomia, solo e altitude (WALTER, 1986). Dentro dessas áreas espécies surgiram e se desenvolveram em resposta à essas características do ambiente. Tal processo permite que por exemplo, dentro dessas áreas os vegetais apresentem aspectos, formas e processos fisiológicos característicos (CRAWLEY, 1989). Dessa maneira, a manutenção desses biomas, com suas características ambientais únicas, é de fundamental importância para a manutenção da biodiversidade e dos serviços ecossistêmicos que ali ocorrem (regulação climática, ciclo de matéria, segurança alimentar, entre outros) (PBMC/BPBES, 2018; JOLY et al., 2019). O Brasil é formado por seis grandes biomas: Amazônia, Caatinga, Cerrado, Mata Atlântica, Pampas e Pantanal (IBGE, 2019). Dentro desses ambientes são encontrados uma grande diversidade de fauna e flora e características únicas de relevo e clima. Essa variedade de biomas está relacionada a grande extensão territorial do Brasil e a sua posição geográfica. Todas essas características fazem do Brasil o maior detentor de biota continental do mundo, sendo estimado um valor entre 15% e 20% das aproximadamente 1,5 milhões de espécies descritas no planeta. Só de plantas vasculares os números mais recentes citados são de 56108 espécies, com 12400 (22%) endêmicas. Esses dados representam aproximadamente 22% do total mundial (LEWINSOHN; PRADO, 2002; SHEPHERD, 2002; HUBBELL, 2008; GIAM et al., 2010). Dentro desse contexto, os biomas Cerrado e Pantanal se integram por meio dos rios que nascem nos planaltos do Cerrado. Esses rios contribuem na formação do Pantanal, nas planícies inundáveis da bacia do Paraguai (BRASIL, 2007). No Domínio Cerrado, a dinâmica ambiental é proveniente de uma marcada sazonalidade climática com duas estações bem definidas, o período seco e o período chuvoso (ASSAD, 1994; SILVA, 2011). Essa sazonalidade climática modifica constantemente as propriedades do solo, da flora e da paisagem e a reestruturação de muitas comunidades (AMARAL et al., 2013; MALHEIROS, 2016). No Pantanal as áreas conhecidas como planícies de inundação se caracterizam pela presença de hábitats que variam de aquáticos a terrestres, de acordo com o grau de comunicação com o rio principal (PAZ; TUCCI, 2010). Os ciclos de secas e cheias são um importante fenômeno hídrico para a região, criando um sistema complexo e dinâmico (JUNK; DA SILVA, 1999; RESENDE, 2008). O Cerrado é uma das 25 áreas do mundo consideradas críticas para a conservação, devido à riqueza biológica e à alta pressão antrópica a que vem sendo submetido (MYERS et al., 2000). O Pantanal, por sua vez, é reconhecido mundialmente pela abundância de sua fauna (MITTERMEIER et al., 1990; HARRIS et al., 2005) e é considerado Reserva da Biosfera e Patrimônio Natural da Humanidade pela Unesco (BRASIL, 2018). O conhecimento dos aspectos que envolvem a fauna, a flora e as características dessas paisagens são de extrema importância para a sua conservação e preservação. As áreas de transição entre esses dois biomas, chamadas áreas de ecótono, se fazem presentes no estado do Mato Grosso do Sul. Nessa região, os biomas Cerrado e Pantanal possuem correlações quanto aos aspectos geomorfológicos e fitogeográficos (RODRIGUES et al., 2017). Na região o encontro entre o Planalto de Maracaju-Campo Grande e a Planície Pantaneira é uma área comum de elementos bióticos e abióticos entre o planalto e a planície (FILHO et al., 2009). A transição entre dois ecossistemas implica a existência de uma área com valores intermediários para diversos parâmetros ambientais (NEIFF, 2003). Por um lado, a área de transição pode gerar um aumento na biodiversidade, dado o fato dessas áreas apresentarem representantes de fauna e flora dos dois ecossistemas (VELOSO et al., 1991). Contudo, essas áreas de transição podem também representarem barreira ou área de isolamento com ecossistemas vizinhos (MALANSON, 1997). Desta forma, uma análise voltada para as áreas de ecótono entre esses dois biomas faz-se necessária, uma vez que a preservação de um depende da preservação do outro. Sobretudo para o entendimento de que essas paisagens de ecótono podem ser responsáveis pelo isolamento e amortecimento das alterações dentro dos biomas Cerrado e Pantanal. Este E-book traz estudos desenvolvidos na área de ecótono Cerrado Pantanal no município de Aquidauana (MS) e entorno. O município está localizado a 130 Km a oeste da capital Campo Grande. Aquidauana por se tratar de um município com influência dos biomas Cerrado e Pantanal, abriga uma grande biodiversidade, sendo citada pelo Ministério do Meio Ambiente (BRASIL, 2002) como área prioritária para conservação da biodiversidade. Na mesma via, o município se destaca por sua vocação turística e agropecuária, o que demanda atenção, devido ao processo de intensa ocupação e exploração antrópica dos recursos naturais. Dessa maneira, o conhecimento de suas características ambientais e dos processos ecológicos desempenhados por sua fauna e flora contribuem para sua preservação e manutenção.
Chapter
O termo Bioma refere-se a uma área do espaço geográfico representada por um tipo uniforme de ambiente, dentro do qual é possível identificar características similares de macroclima, fitofisionomia, solo e altitude (WALTER, 1986). Dentro dessas áreas espécies surgiram e se desenvolveram em resposta à essas características do ambiente. Tal processo permite que por exemplo, dentro dessas áreas os vegetais apresentem aspectos, formas e processos fisiológicos característicos (CRAWLEY, 1989). Dessa maneira, a manutenção desses biomas, com suas características ambientais únicas, é de fundamental importância para a manutenção da biodiversidade e dos serviços ecossistêmicos que ali ocorrem (regulação climática, ciclo de matéria, segurança alimentar, entre outros) (PBMC/BPBES, 2018; JOLY et al., 2019). O Brasil é formado por seis grandes biomas: Amazônia, Caatinga, Cerrado, Mata Atlântica, Pampas e Pantanal (IBGE, 2019). Dentro desses ambientes são encontrados uma grande diversidade de fauna e flora e características únicas de relevo e clima. Essa variedade de biomas está relacionada a grande extensão territorial do Brasil e a sua posição geográfica. Todas essas características fazem do Brasil o maior detentor de biota continental do mundo, sendo estimado um valor entre 15% e 20% das aproximadamente 1,5 milhões de espécies descritas no planeta. Só de plantas vasculares os números mais recentes citados são de 56108 espécies, com 12400 (22%) endêmicas. Esses dados representam aproximadamente 22% do total mundial (LEWINSOHN; PRADO, 2002; SHEPHERD, 2002; HUBBELL, 2008; GIAM et al., 2010). Dentro desse contexto, os biomas Cerrado e Pantanal se integram por meio dos rios que nascem nos planaltos do Cerrado. Esses rios contribuem na formação do Pantanal, nas planícies inundáveis da bacia do Paraguai (BRASIL, 2007). No Domínio Cerrado, a dinâmica ambiental é proveniente de uma marcada sazonalidade climática com duas estações bem definidas, o período seco e o período chuvoso (ASSAD, 1994; SILVA, 2011). Essa sazonalidade climática modifica constantemente as propriedades do solo, da flora e da paisagem e a reestruturação de muitas comunidades (AMARAL et al., 2013; MALHEIROS, 2016). No Pantanal as áreas conhecidas como planícies de inundação se caracterizam pela presença de hábitats que variam de aquáticos a terrestres, de acordo com o grau de comunicação com o rio principal (PAZ; TUCCI, 2010). Os ciclos de secas e cheias são um importante fenômeno hídrico para a região, criando um sistema complexo e dinâmico (JUNK; DA SILVA, 1999; RESENDE, 2008). O Cerrado é uma das 25 áreas do mundo consideradas críticas para a conservação, devido à riqueza biológica e à alta pressão antrópica a que vem sendo submetido (MYERS et al., 2000). O Pantanal, por sua vez, é reconhecido mundialmente pela abundância de sua fauna (MITTERMEIER et al., 1990; HARRIS et al., 2005) e é considerado Reserva da Biosfera e Patrimônio Natural da Humanidade pela Unesco (BRASIL, 2018). O conhecimento dos aspectos que envolvem a fauna, a flora e as características dessas paisagens são de extrema importância para a sua conservação e preservação. As áreas de transição entre esses dois biomas, chamadas áreas de ecótono, se fazem presentes no estado do Mato Grosso do Sul. Nessa região, os biomas Cerrado e Pantanal possuem correlações quanto aos aspectos geomorfológicos e fitogeográficos (RODRIGUES et al., 2017). Na região o encontro entre o Planalto de Maracaju-Campo Grande e a Planície Pantaneira é uma área comum de elementos bióticos e abióticos entre o planalto e a planície (FILHO et al., 2009). A transição entre dois ecossistemas implica a existência de uma área com valores intermediários para diversos parâmetros ambientais (NEIFF, 2003). Por um lado, a área de transição pode gerar um aumento na biodiversidade, dado o fato dessas áreas apresentarem representantes de fauna e flora dos dois ecossistemas (VELOSO et al., 1991). Contudo, essas áreas de transição podem também representarem barreira ou área de isolamento com ecossistemas vizinhos (MALANSON, 1997). Desta forma, uma análise voltada para as áreas de ecótono entre esses dois biomas faz-se necessária, uma vez que a preservação de um depende da preservação do outro. Sobretudo para o entendimento de que essas paisagens de ecótono podem ser responsáveis pelo isolamento e amortecimento das alterações dentro dos biomas Cerrado e Pantanal. Este E-book traz estudos desenvolvidos na área de ecótono Cerrado Pantanal no município de Aquidauana (MS) e entorno. O município está localizado a 130 Km a oeste da capital Campo Grande. Aquidauana por se tratar de um município com influência dos biomas Cerrado e Pantanal, abriga uma grande biodiversidade, sendo citada pelo Ministério do Meio Ambiente (BRASIL, 2002) como área prioritária para conservação da biodiversidade. Na mesma via, o município se destaca por sua vocação turística e agropecuária, o que demanda atenção, devido ao processo de intensa ocupação e exploração antrópica dos recursos naturais. Dessa maneira, o conhecimento de suas características ambientais e dos processos ecológicos desempenhados por sua fauna e flora contribuem para sua preservação e manutenção.
Book
O termo Bioma refere-se a uma área do espaço geográfico representada por um tipo uniforme de ambiente, dentro do qual é possível identificar características similares de macroclima, fitofisionomia, solo e altitude (WALTER, 1986). Dentro dessas áreas espécies surgiram e se desenvolveram em resposta à essas características do ambiente. Tal processo permite que por exemplo, dentro dessas áreas os vegetais apresentem aspectos, formas e processos fisiológicos característicos (CRAWLEY, 1989). Dessa maneira, a manutenção desses biomas, com suas características ambientais únicas, é de fundamental importância para a manutenção da biodiversidade e dos serviços ecossistêmicos que ali ocorrem (regulação climática, ciclo de matéria, segurança alimentar, entre outros) (PBMC/BPBES, 2018; JOLY et al., 2019). O Brasil é formado por seis grandes biomas: Amazônia, Caatinga, Cerrado, Mata Atlântica, Pampas e Pantanal (IBGE, 2019). Dentro desses ambientes são encontrados uma grande diversidade de fauna e flora e características únicas de relevo e clima. Essa variedade de biomas está relacionada a grande extensão territorial do Brasil e a sua posição geográfica. Todas essas características fazem do Brasil o maior detentor de biota continental do mundo, sendo estimado um valor entre 15% e 20% das aproximadamente 1,5 milhões de espécies descritas no planeta. Só de plantas vasculares os números mais recentes citados são de 56108 espécies, com 12400 (22%) endêmicas. Esses dados representam aproximadamente 22% do total mundial (LEWINSOHN; PRADO, 2002; SHEPHERD, 2002; HUBBELL, 2008; GIAM et al., 2010). Dentro desse contexto, os biomas Cerrado e Pantanal se integram por meio dos rios que nascem nos planaltos do Cerrado. Esses rios contribuem na formação do Pantanal, nas planícies inundáveis da bacia do Paraguai (BRASIL, 2007). No Domínio Cerrado, a dinâmica ambiental é proveniente de uma marcada sazonalidade climática com duas estações bem definidas, o período seco e o período chuvoso (ASSAD, 1994; SILVA, 2011). Essa sazonalidade climática modifica constantemente as propriedades do solo, da flora e da paisagem e a reestruturação de muitas comunidades (AMARAL et al., 2013; MALHEIROS, 2016). No Pantanal as áreas conhecidas como planícies de inundação se caracterizam pela presença de hábitats que variam de aquáticos a terrestres, de acordo com o grau de comunicação com o rio principal (PAZ; TUCCI, 2010). Os ciclos de secas e cheias são um importante fenômeno hídrico para a região, criando um sistema complexo e dinâmico (JUNK; DA SILVA, 1999; RESENDE, 2008). O Cerrado é uma das 25 áreas do mundo consideradas críticas para a conservação, devido à riqueza biológica e à alta pressão antrópica a que vem sendo submetido (MYERS et al., 2000). O Pantanal, por sua vez, é reconhecido mundialmente pela abundância de sua fauna (MITTERMEIER et al., 1990; HARRIS et al., 2005) e é considerado Reserva da Biosfera e Patrimônio Natural da Humanidade pela Unesco (BRASIL, 2018). O conhecimento dos aspectos que envolvem a fauna, a flora e as características dessas paisagens são de extrema importância para a sua conservação e preservação. As áreas de transição entre esses dois biomas, chamadas áreas de ecótono, se fazem presentes no estado do Mato Grosso do Sul. Nessa região, os biomas Cerrado e Pantanal possuem correlações quanto aos aspectos geomorfológicos e fitogeográficos (RODRIGUES et al., 2017). Na região o encontro entre o Planalto de Maracaju-Campo Grande e a Planície Pantaneira é uma área comum de elementos bióticos e abióticos entre o planalto e a planície (FILHO et al., 2009). A transição entre dois ecossistemas implica a existência de uma área com valores intermediários para diversos parâmetros ambientais (NEIFF, 2003). Por um lado, a área de transição pode gerar um aumento na biodiversidade, dado o fato dessas áreas apresentarem representantes de fauna e flora dos dois ecossistemas (VELOSO et al., 1991). Contudo, essas áreas de transição podem também representarem barreira ou área de isolamento com ecossistemas vizinhos (MALANSON, 1997). Desta forma, uma análise voltada para as áreas de ecótono entre esses dois biomas faz-se necessária, uma vez que a preservação de um depende da preservação do outro. Sobretudo para o entendimento de que essas paisagens de ecótono podem ser responsáveis pelo isolamento e amortecimento das alterações dentro dos biomas Cerrado e Pantanal. Este E-book traz estudos desenvolvidos na área de ecótono Cerrado Pantanal no município de Aquidauana (MS) e entorno. O município está localizado a 130 Km a oeste da capital Campo Grande. Aquidauana por se tratar de um município com influência dos biomas Cerrado e Pantanal, abriga uma grande biodiversidade, sendo citada pelo Ministério do Meio Ambiente (BRASIL, 2002) como área prioritária para conservação da biodiversidade. Na mesma via, o município se destaca por sua vocação turística e agropecuária, o que demanda atenção, devido ao processo de intensa ocupação e exploração antrópica dos recursos naturais. Dessa maneira, o conhecimento de suas características ambientais e dos processos ecológicos desempenhados por sua fauna e flora contribuem para sua preservação e manutenção.
Article
Lacewing larvae (Neuroptera) are known to be fierce predators which are morphologically highly specialised for a raptorial lifestyle. Mandibular-maxillary stylets are characteristic for all larvae of this group; these stylets can be extraordinarily massive. Despite these distinct suckingpiercing stylets, also other extreme features occur in some ingroups, such as an extremely elongated neck. In larvae of thread-winged lacewings (Crocinae) the neck can reach up to about one third of the body length; they are also called ‘long-necked antlions’. Even though the larvae of living neuropteran species show a variety of conspicuous morphologies today, indeed 100 million years ago, in the Cretaceous, Neuroptera seems to have had an even more “experimental phase”. Several larval specimens are known so far especially in Myanmar, Spanish and Lebanese amber from the Cretaceous with unique and unusual character combinations not found in any group living today. We describe here ten new fossil findings of one of these types of larvae with elongated head capsule in Myanmar amber, previously only known from a single specimen. We compared the head shapes of the new specimens with those of 190 specimens of other lacewing larvae and discuss further implications of our findings, especially making functional comparisons with long-necked antlions.
Article
During a physiological investigation of myrmeleontid larvae it became apparent that my material included three different species. These are: Euroleon nostras (Fourc.) Myrmeleon bore (Tjed.) and M. formicarius L. I have studied the larval characteristics of these and have reared them to imagines. Two determination keys are given, one for living larvae of all instars, the other for dried or alcohol-preserved larvae of the second and third instars.
Raphidioptera, Neuroptera) faunájának természetvédelmi vizsgálata, I. Dunántúli Dolgozatok (A) Termeszettudományi Sorozat / Studia Pannonica (A) Series Historico-Naturalis
  • L Ábrahám
Ábrahám L., 1995 -A tervezett Duna-Dráva Nemzeti Park recésszárnyú-alkatú (Megaloptera, Raphidioptera, Neuroptera) faunájának természetvédelmi vizsgálata, I. Dunántúli Dolgozatok (A) Termeszettudományi Sorozat / Studia Pannonica (A) Series Historico-Naturalis, 8: 53-70. [In Hungarian with English summary: Natural protection studies on the neuropteroids (Megaloptera, Raphidioptera, Neuroptera) fauna of the projected Duna-Dráva National Park, I.]
Die Neuropteren Mitteleuropas. Ein Nachtrag zur "Synopsis der Systematik, Ökologie und Biogeographie der Neuropteren Mitteleuropas
  • H Aspöck
  • U Aspöck
Aspöck H. & Aspöck U., 1969 -Die Neuropteren Mitteleuropas. Ein Nachtrag zur "Synopsis der Systematik, Ökologie und Biogeographie der Neuropteren Mitteleuropas". Naturkundliches Jahrbuch der Stadt Linz, 1969: 17-68.
Mecoptera, Siphonaptera, Strepsiptera
  • A Iori
  • J Kathirithamby
  • A Letardi
  • R A Pantaleoni
  • M M Principi
Iori A., Kathirithamby J., Letardi A., Pantaleoni R.A. & Principi M.M., 1995 -Neuropteroidea (Megaloptera, Raphidioptera, Planipennia), Mecoptera, Siphonaptera, Strepsiptera. In: Minelli A., Ruffo S., La Posta S. (eds.) -Checklist delle specie della fauna italiana, 62. Calderini, Bologna: 20 pp.
Ameisenlöwen und Ameisenjungfern (Myrmeleonidae)
  • J Gepp
  • H Hölzel
Gepp J. & Hölzel H., 1996 -Ameisenlöwen und Ameisenjungfern (Myrmeleonidae). Die Neue Brehm-Bücherei, A. Ziemsen Verlag, Wittenberg: 108 pp.
-Neuropteroidea -Netzflügler
  • K Hellrigl
  • H Hölzel
Hellrigl K. & Hölzel H., 1996 -Neuropteroidea -Netzflügler. -In: Hellrigl, K. (ed.), Die Tierwelt Südtirols. Kommentiertes systematisch-faunistisches Verzeichnis der auf dem Gebiet der Provinz Bozen-Südtirol (Italien) bekannten Tierarten. Veröffentlichungen des Naturmuseums Südtirol, 1: 515-521.
  • H Hölzel
Hölzel H., 1973 -Die Netzflügler Kärntens. 1. Nachtrag. Carinthia II, 83: 497-506.
Die Netzflügler Kärntens
  • H Hölzel
  • C Wieser
Hölzel H. & Wieser C., 1999 -Die Netzflügler Kärntens. Eine zusammenfassende Darstellung der Autökologie und Chorologie der Neuropterida (Megaloptera, Raphidioptera, Neuroptera) Kärntens. Carinthia II, 109: 361-429.
-Myrmeleon bore (Tjeder, 1941) new to Spain (Neuroptera Myrmeleontidae)
  • A Letardi
Letardi A., 1998 -Myrmeleon bore (Tjeder, 1941) new to Spain (Neuroptera Myrmeleontidae). Frustula entomologica, n.s. 20 (33)(1997): 150-151.