Heterogeneity in Mitotic Activity and Telomere Length Implies an Important Role of Young Islets in the Maintenance of Islet Mass in the Adult Pancreas

Multidisciplinary Research Center, Shantou University Medical School, Guangdong, China.
Endocrinology (Impact Factor: 4.5). 04/2009; 150(7):3058-66. DOI: 10.1210/en.2008-1731
Source: PubMed


Understanding the mechanisms of beta-cell dynamics in postnatal animals is central to cure diabetes. A major obstacle in evaluating the status of pancreatic cells is the lack of surface markers. Here we performed quantitative measurements of two internal markers to follow the developmental history of islets. One marker, cell-cycle activity, was established by measuring expression of Ki67 and the incorporation of 5-bromodeoxyuridine. The other marker, the aging process, was delineated by the determination of telomere length. Moreover, islet neogenesis, possibly from ductal precursors, was monitored by pancreatic duct labeling with an enhanced green fluorescence protein (EGFP) transgene. We found that islets from younger animals, on average, expressed higher Ki67 transcripts, displayed elevated 5-bromodeoxyuridine incorporation, and had longer telomeres. However, significant heterogeneity of these parameters was observed among islets from the same mouse. In contrast, the levels of proinsulin-1 transcripts in islets of different ages did not change significantly. Moreover, mitotic activities correlated significantly with telomere lengths of individual islets. Lastly, after 5.5 d pancreatic duct labeling, a few EGFP-positive islets could be identified in neonatal but not from adult pancreases. Compared with unlabeled control islets, EGFP-positive islets had higher mitotic activities and longer telomeres. The results suggest that islets are born at different time points during the embryonic and neonatal stages and imply that young islets might play an important role in the maintenance of islet mass in the adult pancreas.

Full-text preview

Available from:
  • Source
    • "PDL tail β-cell proliferation rates perfectly matched our PDL tail results (∼0.36 ± 0.03% per hour vs. our values of 0.42 ± 0.07% per hour) (9). Wei and colleagues similarly reported β-cell proliferation rates from 1-month-old Balb/c mice (∼15.5% over 48 h or ∼0.32% per hour) (42). Similarly, Stoffers and colleagues reported total islet proliferation in 8- to 10-week-old Balb/c control mice and obtained results that are also close to ours (∼1.7% over 6 h or ∼0.28% per hour) (43). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The existence of adult β-cell progenitors remains the most controversial developmental biology topic in diabetes research. It has been reported that β-cell progenitors can be activated by ductal ligation induced injury of adult mouse pancreas, which apparently act in a cell autonomous manner to double the functional β-cell mass within a week by differentiation and proliferation. Here, we demonstrate that pancreatic ductal ligation (PDL) does not activate progenitors to contribute to β-cell mass expansion. Rather, PDL stimulates massive pancreatic injury, which alters pancreatic composition and thus complicates accurate measurement of β-cell content via traditional morphometry methodologies that superficially sample the pancreas. To overcome this potential bias we quantified β-cells from the entire pancreas and observed that β-cell mass and insulin content are totally unchanged by PDL-induced injury. Lineage tracing studies using sequential administration of thymidine analogues, rat insulin 2 promoter driven cre-lox, and low-frequency ubiquitous cre-lox reveal that PDL does not convert progenitors to the β-cell lineage. Thus, we conclude that β-cells are not generated in injured adult mouse pancreas.
    Full-text · Article · Jan 2013 · Diabetes
  • Source
    • "The expression level of GAPDH [GAPDH(ct) ¼ 18] was used for normalization. A Ct of 38 was designated arbitrarily as 1 [29] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Polyhydroxyalkanoates, abbreviated as PHA, have been studied for medical applications due to their suitable mechanical properties, blood and tissue tolerance and in vivo biodegradability. As a new member of PHA family, terpolyester of 3-hydroxybutyrate, 3-hydroxyvalerate and 3-hydroxyhexanoate, abbreviated as PHBVHHx, was compared with polylactic acid (PLA), copolyester of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx) for their respective functions leading to differentiation of human bone marrow mesenchymal stem cell (hBMSC) into nerve cells. Results indicated that 3D scaffolds promoted the differentiation of hBMSC into nerve cells more intensively compared with 2D films. Smaller pore sizes of scaffolds increased differentiation of hBMSC into nerve cells, whereas decreased cell proliferation. PHBVHHx scaffolds with pore sizes of 30-60 microm could be used in nerve tissue engineering for treatment of nerve injury. The above results were supported by scanning electron microscope (SEM) and confocal microscopy observation on attachment and growth of hBMSCs on PLA, PHBHHx and PHBVHHx, and by CCK-8 evaluation of cell proliferation. In addition, expressions of nerve markers nestin, GFAP and beta-III tubulin of nerve cells differentiated from hBMSC grown in PHBVHHx scaffolds were confirmed by real-time PCR.
    Full-text · Article · Dec 2009 · Biomaterials
  • Source

    Full-text · Article · Oct 2010 · Diabetes
Show more