A Suzaku Observation of MCG -2-58-22: Constraining the Geometry of the Circumnuclear Material

The Astrophysical Journal (Impact Factor: 5.99). 05/2011; 732(1). DOI: 10.1088/0004-637X/732/1/36
Source: arXiv


We have analyzed a long-look Suzaku observation of the active galactic nucleus MCG -2-58-22, a type 1.5 Seyfert with very little X-ray absorption in the line of sight and prominent features arising from reflection off circumnuclear material: the Fe line and Compton reflection hump. We place tight constraints on the power-law photon index (Γ = 1.80 ± 0.02), the Compton reflection strength (R = 0.69 ± 0.05), and the Fe K emission line energy centroid and width (E = 6.40 ± 0.02 keV, v
FWHM < 7100 km s–1). We find no significant evidence either for emission from strongly ionized Fe, or for a strong, relativistically broadened Fe line, indicating that perhaps there is no radiatively efficient accretion disk very close in to the central black hole. In addition, we test a new self-consistent physical model from Murphy and Yaqoob, the "MYTORUS" model, consisting of a donut-shaped torus of material surrounding the central illuminating source and producing both the Compton hump and the Fe K line emission. From the application of this model we find that the observed spectrum is consistent with a Compton-thick torus of material (column density N
H = 3.6+1.3– 0.8× 1024 cm–2) lying outside of the line of sight to the nucleus, leaving it bare of X-ray absorption in excess of the Galactic column. We calculate that this material is sufficient to produce all of the Fe line flux without the need for any flux contribution from additional Compton-thin circumnuclear material.

Download full-text


Available from: Elizabeth Rivers, May 22, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: (Abridged) We present the results from the X-ray spectral analysis of high-z AGN in the CDFS, making use of the new 4Ms data set and new X-ray spectral models from Brightman & Nandra, which account for Compton scattering and the geometry of the circumnuclear material. Our goals are to ascertain to what extent the torus paradigm of local AGN is applicable at earlier epochs and to evaluate the evolution of the Compton thick fraction (f_CT) with z, important for XRB synthesis models and understanding the accretion history of the universe. In addition to the torus models, we measure the fraction of scattered nuclear light, f_scatt known to be dependant on covering factor of the circumnuclear materal, and use this to aid in our understanding of its geometry. We find that the covering factor of the circumnuclear material is correlated with NH, and as such the most heavily obscured AGN are in fact also the most geometrically buried. We come to these conclusions from the result that f_scatt decreases as NH increases and from the prevalence of the torus model with the smallest opening angle as best fit model in the fits to the most obscured AGN. We find that a significant fraction of sources (~ 20%) in the CDFS are likely to be buried in material with close to 4 pi coverage having been best fit by the torus model with a 0\degree opening angle. Furthermore, we find 41 CTAGN in the CDFS using the new torus models, 29 of which we report here for the first time. We bin our sample by z in order to investigate the evolution of f_CT. Once we have accounted for biases and incompleteness we find a significant increase in the intrinsic f_CT, normalised to LX= 10^43.5 erg/s, from \approx 20% in the local universe to \approx 40% at z=1-4.
    Full-text · Article · Mar 2012 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To constrain the origin of the soft X-ray excess phenomenon seen in many active galactic nuclei, the intensity-correlated spectral analysis, developed by Noda et al. (2011, PASJ, 63, S925) for Markarian 509, was applied to wide-band (0.5–45 keV) Suzaku data of five representative objects with a relatively weak reflection signature. They are the typical bare-nucleus type 1 Seyfert Fairall 9, the bright and typical type 1.5 Seyfert MCG $-$ 2–58–22, 3C 382, which is one of the X-ray brightest broad line radio galaxies, the typical Seyfert-like radio loud quasar 4C $ +$ 74.26, and the X-ray brightest radio quiet quasar MR 2251$-$ 178. In all of them, soft X-ray intensities in energies below 3 keV were tightly correlated with that in 3–10 keV, but with significant positive offsets. These offsets, when calculated in finer energy bands, define a stable soft component in 0.5–3 keV. In each object, this component successfully explained the soft excess above a power-law fit. These components were interpreted in several alternative ways, including a thermal Comptonization component that is independent of the dominant power-law emission. This interpretation, considered physically most reasonable, is discussed from a viewpoint of Multi-Zone Comptonization, which was proposed for the black hole binary Cygnus X-1 (Makishima et al. 2008, PASJ, 60, 585).
    Full-text · Article · Aug 2012 · Publications- Astronomical Society of Japan
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of a new spectroscopic study of Fe K-band absorption in Active Galactic Nuclei (AGN). Using data obtained from the Suzaku public archive we have performed a statistically driven blind search for Fe XXV Hea and/or Fe XXVI Lyb absorption lines in a large sample of 51 type 1.0-1.9 AGN. Through extensive Monte Carlo simulations we find statistically significant absorption is detected at E>6.7 keV in 20/51 sources at the P(MC)>95% level, which corresponds to ~40% of the total sample. In all cases, individual absorption lines are detected independently and simultaneously amongst the two (or three) available XIS detectors which confirms the robustness of the line detections. The most frequently observed outflow phenomenology consists of two discrete absorption troughs corresponding to Fe XXV Hea and Fe XXVI Lyb at a common velocity shift. From xstar fitting the mean column density and ionisation parameter for the Fe K absorption components are log(NH/cm^{-2})~23 and log(xi/erg cm s^{-1})~4.5, respectively. Measured outflow velocities span a continuous range from <1,500 km/s up to ~100,000 km/s, with mean and median values of ~0.1c and ~0.056c, respectively. The results of this work are consistent with those recently obtained using XMM-Newton and independently provides strong evidence for the existence of very highly-ionised circumnuclear material in a significant fraction of both radio-quiet and radio-loud AGN in the local universe.
    Preview · Article · Nov 2012 · Monthly Notices of the Royal Astronomical Society
Show more