Effect of Magnetite Nanoparticle Agglomerates on Ultrasound Induced Inertial Cavitation

Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Cambridge, United Kingdom.
Ultrasound in medicine & biology (Impact Factor: 2.21). 03/2009; 35(6):1010-4. DOI: 10.1016/j.ultrasmedbio.2008.12.010
Source: PubMed


High intensity focused ultrasound (HIFU) induced inertial cavitation has been shown to improve release and cellular uptake of drugs. The effects of magnetite nanoparticle agglomerates (290+/-10nm diameter), silica coated magnetite nanoparticle agglomerates (320+/-10nm diameter) and silica particles (320+/-10nm diameter) suspended in MilliQ water on the degree of inertial cavitation due to HIFU were investigated. The HIFU transducer was operated at a frequency of 1.1 MHz, 1.67 kHz pulse repetition frequency, with applied duty cycles (DC) between 0% and 5% and different peak negative focal pressures (PNFPs) applied up to 7.2 MPa. The inertial cavitation dose (ICD: time averaged root-mean-squared broadband noise amplitude in the frequency domain) was measured in the presence and absence of nanoparticles when subjected to HIFU. Magnetite nanoparticle agglomerates caused a significant increase in the ICD above 2.7 MPa PNFP compared with MilliQ water, silica coated magnetite agglomerates and silica particles. With the dramatic increase in ICD on introduction of these magnetite agglomerates, this technique could provide a method of HIFU triggered drug delivery by enhancing inertial cavitation. The superparamagnetic properties of these particles offer the possibility of magnetic targeting to the site of disease.

25 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article reports the development of a model, with supporting experimental data, which can predict the magnitude of the magnetic flux required to capture superparamagnetic nanoparticles flowing through a plastic capillary micro array. The model takes into account the shape of the magnetic field, the magnetically induced aggregation of the nanoparticles and a criterion to determine whether nanoparticles are held at the capillary wall or not. It was found that the model gave a semi-quantitative match to experimental data showing that, once steered out of the core of the fluid flow, nanoparticles could be held at a capillary wall within a weaker region of magnetic field. This result may have implications for the design of magnets for use in magnetic directed therapy in addition to having implications concerning the design of nanoparticle dosage regimes. KeywordsMagnetic directed therapy-Nanoparticle capture-Numerical modelling-Nanomedicine-Modeling and simulation
    No preview · Article · Oct 2010 · Journal of Nanoparticle Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To experimentally investigate the acoustical behavior of silica nanoparticles within conventional diagnostic ultrasound fields and to determine a suitable configuration, in terms of particle size and concentration, for their employment as targetable contrast agents. We also assessed the effectiveness of a novel method for automatic detection of targeted silica nanoparticles for future tissue typing applications. Silica nanospheres of variable size (160, 330, and 660 nm in diameter) and concentration (10¹⁰-10¹³ part/mL) were dispersed in different custom-designed agarose-based gel samples and imaged at 7.5 MHz with a conventional echograph linked to a research platform for radiofrequency signal acquisition. Off-line analysis included evaluation of backscattered ultrasound amplitude, image brightness, and nanoparticle automatic detection through radiofrequency signal processing. Amplitude of nanoparticle-backscattered signals linearly increased with particle number concentration, but image brightness did not show the same trend, because the logarithmic compression caused the reaching of a "plateau" where brightness remained almost constant for further increments in particle concentration. On the other hand, both backscatter amplitude and image brightness showed significant increments when particle diameter was increased. Taking into account particle size constraints for tumor targeting (pore size of tumor endothelium and trapping effects because of reticulo-endothelial system limit the dimension of effectively employable particles to less than 380 nm), a suitable compromise is represented by the employment of 330-nm silica nanospheres at a concentration of about 1 to 2 x 10¹¹ part/mL. These particles, in fact, showed the best combination of number concentration and diameter value to obtain an effective enhancement on conventional echographic images. Furthermore, also the sensitivity of the developed method for automatic nanoparticle detection had a maximum (72.8%) with 330-nm particles, whereas it was lower with both bigger and smaller particles (being equal to 64.1% and 17.5%, respectively). Silica nanoparticles at a diameter of about 330 nm are very promising contrast agents for ultrasound imaging and specific tumor targeting at conventional diagnostic frequencies, being in particular automatically detectable with high sensitivity already at low doses. Future studies will be carried out to assess the acoustic behavior of nanoparticles with different geometries/sizes and to improve sensitivity of the automatic detection algorithm.
    Full-text · Article · Nov 2010 · Investigative radiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Magnetite (Fe(3)O(4)) nanoparticle agglomerates have been shown to enhance the degree of inertial cavitation induced by high-intensity focused ultrasound (HIFU). To investigate the effect of these particles on the destruction of tumor spheroids using HIFU, HeLa spheroids were insonated in the presence and absence of magnetite nanoparticle agglomerates. The HIFU transducer was operated with a frequency of 1.1 MHz, pulse repetition frequency of 1.67 kHz, 5% and 50% duty cycles and peak negative focal pressure of 7.2 MPa for 10 s. The significant increase in the HIFU-induced inertial cavitation caused by the presence of magnetite particles at 50% duty cycle was sufficient to cause cell lysis and disintegrate the whole spheroid (p ≤ 0.001). This suggests that magnetite nanoparticle agglomerates can enhance the efficacy of HIFU in tumor ablation and other related therapies.
    No preview · Article · Nov 2010 · Ultrasound in medicine & biology
Show more