Acoustic echo sounders are commonly used to survey zooplankton. An essential element in the methods is the acoustic scattering model, which relates acoustic echo data to meaningful biological parameters such as size and numerical density. Because of the importance of scattering models, there has been much development of models of increasing sophistication. With the increase in sophistication is an associated improvement in accuracy, but possibly at the cost of increased effort in implementing the model. Thus the practical question is which model provides sufficient accuracy for the scientific problem of interest. This paper presents a modelling study using a wide range of models, ranging from simple to complex representation of the animals, a synthesis of previously published laboratory scattering data from a variety of sources, and laboratory data presented for the first time. The focus is on fluid-like zooplankton (i.e., animals that do not support shear waves) with examples specific to euphausiids, shrimp, and copepods. The simplest model is the sphere with homogeneous material properties while the most complex is a high-resolution digitized form of each zooplankton taking into account surficial roughness and inhomogeneities of the material properties. The results shove that there are conditions under which very simple, easy-to-use models can be used with reasonable accuracy while there are other conditions where the more complex models must be used.