ArticlePDF Available

The effect of Earthing (grounding) on human physiology

Authors:

Abstract and Figures

Previous research (12) showed that connecting the human body to the earth during sleep normalizes circadian cortisol profiles and reduces or eliminates various subjectively reported symptoms, including sleep dysfunction, pain and stress. We therefore hypothesized that earthing might also influence other aspects of physiology. Fifty-eight healthy adult subjects (30 controls) participated in a double blind pilot study. Earthing was accomplished with a conductive adhesive patch placed on the sole of each foot. An earthing cord led outdoors to a rod driven into the earth. A biofeedback system recorded electrophysiological and physiological parameters. Upon earthing, about half the experimental subjects showed an abrupt, almost instantaneous change in root mean square (rms) values of electroencephalograms (EEG) from the left hemisphere (but not the right hemisphere) and all of them presented an abrupt change in rms values of surface electromyograms (SEMGs) from right and left upper trapezius muscles. Signal variance in rms muscle potentials also increased significantly. Earthing decreased blood volume pulse (BVP) in 19 of 22 experimental subjects (p < 0.001) and in 8 of 30 controls (p ≅ 0.1, not significant); heart rate (HR) was not affected. From these results, it appears that earthing the human body has significant effects on electrophysiological properties of the brain and musculature, on the blood volume pulse, and on the noise and stability of electrophysiological recordings. Taken together, the changes in EEG, EMG, and BVP suggest reductions in overall stress levels and tensions, and a shift in autonomic balance upon earthing. The results therefore extend the conclusions of the previous study (12).
Content may be subject to copyright.
The effect of earthing (grounding) on human physiology
Gaétan Chevalier
1
, Kazuhito Mori
2
, and James L. Oschman
3
1
California Institute for Human Science, Graduate School & Research Center, Encinitas, CA
2
California Institute for Human Science, Graduate School & Research Center, Encinitas, CA
3
Nature’s Own Research Association, Dover, NH
Corresponding Author: Gaétan Chevalier
Abstract
Previous research (12) showed that connecting the human body to the earth during sleep normalizes
circadian cortisol profiles and reduces or eliminates various subjectively reported symptoms, including
sleep dysfunction, pain and stress. We therefore hypothesized that earthing might also influence other
aspects of physiology. Fifty-eight healthy adult subjects (30 controls) participated in a double blind
pilot study. Earthing was accomplished with a conductive adhesive patch placed on the sole of each
foot. An earthing cord led outdoors to a rod driven into the earth. A biofeedback system recorded
electrophysiological and physiological parameters. Upon earthing, about half the experimental
subjects showed an abrupt, almost instantaneous change in root mean square (rms) values of
electroencephalograms (EEG) from the left hemisphere (but not the right hemisphere) and all of them
presented an abrupt change in rms values of surface electromyograms (SEMGs) from right and left
upper trapezius muscles. Signal variance in rms muscle potentials also increased significantly.
Earthing decreased blood volume pulse (BVP) in 19 of 22 experimental subjects (p < 0.001) and in 8
of 30 controls (p 0.1, not significant); heart rate (HR) was not affected. From these results, it appears
that earthing the human body has significant effects on electrophysiological properties of the brain and
musculature, on the blood volume pulse, and on the noise and stability of electrophysiological
recordings. Taken together, the changes in EEG, EMG, and BVP suggest reductions in overall stress
levels and tensions, and a shift in autonomic balance upon earthing. The results therefore extend the
conclusions of the previous study (12).
Keywords: sleep; stress; electroencephalogram; surface electromyogram; blood volume pulse;
autonomic balance
2
2
Introduction
Until a few generations ago, most humans walked and slept in direct contact with the surface of the
earth. Our modern life style involves wearing insulating shoes and sleeping in buildings that
electrically isolate the body from the ground plane. While some people intuitively sense that they feel
better when they walk or even sleep directly on the earth (as on a camping trip), most of the
population is more or less permanently isolated from the earth’s electrical influences.
The earth’s surface is electrically conductive and is maintained at a negative potential by a global
electrical circuit. This circuit has three main generators: the solar wind entering the magnetosphere;
the ionospheric wind; and thunderstorms (35). An estimated 1000 to 2000 thunderstorms are
continually active around the globe, emitting thousands of lightening strikes per minute. This creates a
constant current of thousands of amperes transferring positive charge to the upper atmosphere and
negative charge to the surface of the earth. The earth’s surface is therefore an abundant source of free
electrons (11).
When humans are in direct contact with the earth (barefoot), free electrons are conducted onto the skin
surface and into the body via the mucus membranes of the digestive and respiratory systems. The body
is thereby maintained at the same electrical potential as the earth (6,9). This has been the natural
bioelectrical environment of the human body and of other organisms throughout most of evolutionary
history. We refer to this condition as “earthing” to distinguish it from the equipment “grounding”
commonly used to protect consumers from electrical shock when appliances have a short circuit.
When standing outdoors, the unearthed body (wearing shoes with insulating soles) equilibrates with
the potential of the atmosphere, which is electrically positive in normal weather conditions. When one
is standing or sleeping inside a building, the unearthed body becomes electrified by ambient electric
and electromagnetic fields. Connecting such person to the earth immediately reduces this
electrification. In the previous study (12), body voltages in 12 subjects decreased from an average of
3.27 volts (V) unearthed to an average of 0.007 V upon earthing. This is on average a 467-fold
decrease in voltage, attendant with regularization of cortisol profiles and reduction in sleep
dysfunction, pain and stress (12). In view of the electrical nature of the intervention used in that study
(i.e., connecting the human body to a natural source of electrons during sleep) we hypothesized that
earthing might also affect electrical and physiological properties of the body, and might also influence
the electrophysiological measuring process itself.
The parameters chosen for this study included EEG, which records changes in the dynamics of large
neuronal populations in the cortex (34). EEG is rapidly sensitive to environmental stimuli (32), and it
will be seen that earthing caused virtually instantaneous changes in signals recorded from the left
hemisphere.
We also studied SEMG, a sensitive measure of the activity of underlying muscles and resting muscle
tension (4,20,28).
Finally, we studied HR and BVP. The latter parameter is a relative measure of peripheral blood flow,
and has been related to sympathetic/parasympathetic balance (5).
3
3
Materials and Methods
The protocol and informed consent form were approved by an Institutional Review Board, the
Biomedical Research Institute of America, San Diego, CA. Informed consent was obtained from all
subjects in the study.
Subjects
Exclusion criteria were: below the age of 18 or above 75; pregnancy; taking pain, anti-inflammatory
medication, sedatives or prescription sleeping medication (less than 5 days prior to testing); taking
psychotropic drugs or diagnosed with mental disorder; recent surgery (less than 1 year); documented
life threatening disease (such as cancer, AIDS, etc.); consumption of alcohol within 48 hours of
participation; use of recreational drugs. The health status of prospective subjects was ascertained using
the Past Medical Inventory (PMI) questionnaire. The PMI is designed to provide information not only
on major medical issues but also on past surgeries, injuries or accidents, major mental problems and
medication.
Of 65 subjects selected and tested, 58 (30 controls and 28 earthed subjects) had complete data sets.
Twenty-two (22) earthed subjects had complete data sets suitable for statistical analysis. Basic
information on subjects is summarized in Table 1.
Table 1: Basic information on subjects
Subjects: Females Males Total Mean Age SD
Earthed
19 9 28 51.12 12.46
Not earthed
21 9 30 49.69 12.43
Total
40 18 58
Mean Age
50.89 49.18
SD
12.66 11.92
Ratios of female to male subjects (F/M) = 2.22. The mean age and standard deviation for each gender
were similar and were also similar between the earthed (experimental) and the not earthed (control)
group.
Instrumentation
The I-410 biofeedback system from J & J Engineering, Inc., Poulsbo, Washington, was utilized for
this study. Parameters measured were: EEG, 2 channels, left and right frontal lobes (locations F
p1
and
F
p2
); surface EMG, 2 channels, left and right upper trapezius muscles; BVP (from a
photoplethysmograph placed around a finger); and HR (from a photoplethysmograph placed around a
finger).
The EEG and SEMG scales were monitored by the I-410 biofeedback system at a data acquisition
speed of 1,024 data points per second and 12 bits resolution. The means and standard deviations of the
4
4
rms voltage values of these data points were then calculated for every 10-second period and presented
in a report automatically generated by the system. HR and BVP were processed by the system from
the photoplethysmograph raw waveform using the instrument’s software proprietary algorithms. The
recording system includes an impedance test that can be performed before an experiment to ensure
electrode impedance is within accepted standards.
Earthing Intervention
Prior to measurement, subjects were seated in a comfortable reclining chair and a conductive adhesive
patch was placed on the sole of each foot. Patches were connected to a ground cord that attached to a
dedicated ground rod driven into the earth outdoors. A switch placed about 4 feet from the subject
completed or interrupted the earthing connection for experimental and control subjects respectively.
The ground cord also had a fuse that was replaced by a plastic object for control subjects.
Experimental subjects were exposed to 28 minutes in the unearthed condition followed by 28 minutes
with the earthing wire connected. Controls were unearthed for 56 minutes. Subject participation
(experimental vs. control) was determined randomly by an assistant before subjects’ arrival. This
assistant was the only person knowing into which group (experimental vs. control) each subject was
placed and he was in charge of secretly changing the fuse before the arrival of each subject. An
experimenter (Mori) was in charge of flipping the switch at the appropriate time (after 28 minutes of
relaxation) regardless of the subject’s assigned group. Records of each subject’s group assignment
remained confidential until all data were recorded. Subjects were tested one at a time over a 14-day
period. Each subject’s participation, including time for electrode placement, lasted approximately 1
hour and 10 minutes. Subjects were asked to relax in the chair and to move their bodies as little as
possible.
Measurement Protocol
PG-100 pre-gelled disposable electrodes (Stens Corporation, San Rafael, California) were used in the
study. Prior to attaching the electrodes, the skin was thoroughly degreased with 95% alcohol. Two
EEG electrodes were placed on the forehead, one above the left and one above the right frontal lobes
at regions referred to as F
p1
and F
p2
in the international 10-20 system of electrode placement (8).
Ground and reference electrodes were placed according to the same standard protocol. To measure
surface EMG, two electrodes were placed laterally 2 centimeters (cm) apart on the skin above the left
upper trapezius muscle, the medial electrode being placed 2.5 cm lateral from the middle point (C7).
Two other electrodes were placed on the skin above the right upper trapezius muscle in a manner
mirroring the placement on the left upper trapezius muscle. BVP and HR were measured via a
photoplethysmograph placed around the middle finger of the left hand (secured via a Velcro strap).
Earthing wire effects
There was concern that the earthing patch and the wire attached to it could act as an antenna for stray
electrical fields, particularly when the lead was disconnected from the earth during the control periods
in the study. There was also concern that the electric wiring of the room could induce body voltages.
To avoid these problems, care was taken to choose a room with modern well-grounded electrical
outlets (all wiring was clad in grounded electrical conduit). Absence of induced body voltages, such as
from the 60 Hz wiring, was confirmed by using a voltmeter with a separate dedicated grounding
system (a rod driven into the earth, identical to the body earthing system). The voltmeter had a large
5
5
(approximately ½ inch diameter) metal contact attached to the ungrounded terminal. Subjects were
asked to place their thumb on this contact to measure induced body voltage with respect to the earth.
The meter had an accuracy of about 0.3 %, and readings on the body were typically less than 5
millivolts (mV). Thus the subjects, patches, and wires did not have appreciable induced body voltages
that could interfere with the electrophysiological measurements.
Data Analysis
Subjects were recorded for a total of 56 minutes; the data sets for statistical analyses of pre- and post-
earthing EEG recordings were taken from the last 14-minute period before earthing and the first 14-
minute period after earthing, respectively. Hence there was a 14-minute period for the EEG signals to
stabilize prior to the period that was analyzed. The I-410 system automatically separated the EEG
signal into 6 scales: Beta, Alpha, Theta, Delta, Theta/Beta ratio, and Delta/Beta ratio. The statistical
methods used in this study were Student’s t-test, F-test of differences between variances, Chi Square
and Pearson Product Moment Correlation.
Results
EEG
As mentioned earlier, EEG recordings were taken for both left and right hemispheres at points F
p1
(left
hemisphere) and F
p2
(right hemisphere) in the international 10-20 system of electrode placement.
Inspection of rms EEG recordings showed an abrupt change (decrease or increase) at earthing time in
the left hemisphere for a number of subjects but no change was visible in any recording of the right
hemisphere (see Figure 1 for examples of recording displays). Consequently, it was decided to test if
the changes observed in left hemisphere recordings were statistically significant. The results for 22
earthed subjects are presented in Table 2. Only the data of 22 experimental subjects were used because
the data of the 6 others were not complete enough due to instrumental error.
Table 2: t-tests results for rms EEG recordings of 22 earthed subjects (left hemisphere)
Parameter pre-test post-test change t-test probability
M SD M SD df* = 20 (two tails)
Beta left 1.98 1.77 0.61 0.50 -1.37 1.86 0.10
Alpha left 3.44 1.54 3.00 1.32 -0.44 1.09 ns**
Theta left 3.24 8.7 3.03 0.94 -0.21 0.89 ns
Delta left 3.98 1.74 3.54 1.95 -0.44 1.01 ns
T/B left 2.07 0.56 2.04 0.78 -0.03 0.13 ns
D/B left 2.45 1.32 2.35 1.39 -0.10 0.39 ns
* df = degrees of freedom ** ns = not significant
As shown in Table 2, on all scales the earthed subjects tended to show a decrease in mean rms values
pre- and post-earthing, although no statistical significance was reached (Beta left just failed to reach
significance with p < 0.10). However, inspection of rms data recordings of experimental subjects
clearly shows an abrupt change for many of these subjects at the time of earthing, and this change
continued throughout the earthing period. However the changes were increases or decreases and it
6
6
seemed as though there was a wash-out or cancelling effect in the results shown in Table 2 when both
increases and decreases were pooled in the same statistical analysis. To see if this was correct, pre-
and post-earthing data were compared using a t-test for correlated samples of the absolute rms values
of the changes. Statistical significance was found at the 0.001 level of confidence for Beta left, Alpha
left, Theta left and Delta/Beta (D/B) left and at the 0.004 level of confidence for Delta left and
Theta/Beta (T/B) left (see Table 3).
Table 3: t-test results of absolute changes for rms EEG recordings of 22 earthed subjects (left
hemisphere)
__________________________________________________________________________________
Parameter pre-test post-test change t-test probability
M SD M SD df = 20 (two tails)
Beta left 2.07 0.57 1.73 0.43 -0.34 5.07 0.001
Alpha left 3.87 1.62 2.77 1.07 -1.10 4.89 0.001
Theta left 3.49 1.01 2.78 0.61 -0.71 4.17 0.001
Delta left 4.23 1.95 3.09 1.55 -1.14 3.61 0.004
T/B left 2.27 0.70 1.83 0.57 -0.44 3.52 0.004
D/B left 2.75 1.35 2.06 1.26 -0.69 4.10 0.001
As mentioned earlier the abrupt changes pre- and post-earthing occurred only in the left hemisphere
rms signals. Figure 1 shows examples of two subjects from the experimental group (subjects 4 and 6).
Each scale (Beta, Alpha, Theta, Delta) represents 56 minutes of recording: the first half of the scales
are pre-earthing and the second half after earthing. Right hemisphere rms recordings are shown in
blue; left hemisphere rms recordings are shown in red. The abrupt shift in the left hemisphere (red) is
clearly seen exactly at the midpoint of these graphs, when the subjects were earthed (arrow). This shift
continues throughout the intervention period. Little if any change occurs in the right hemisphere
(blue). Similar graphs for control subjects showed no observable change in left or right hemisphere
rms recordings.
7
7
Figure 1. EEG changes in left hemisphere rms recordings. First 28 minutes pre-earthing; second
28-minutes after earthing (arrow shows when earthing intervention begins). An immediate and abrupt
shift occurs in the left hemisphere (red) in one or more of the EEG scales (Beta, Alpha, Theta, Delta)
when subjects are earthed; changes are maintained throughout the earthing period. The right
hemisphere (blue) did not change.
During earthing, 12 out of 24 graphically analyzed earthed subjects showed a significant increase or
decrease in one or more of the 4 EEG scales for the left hemisphere (Beta, Alpha, Theta, Delta). There
is a relatively equal distribution of increases verses decreases in all scales, for the subjects in which
change occurred (Table 4). For example, in 4 subjects both Beta left and Alpha left increased and in 5
subjects both Beta left and Alpha left decreased. In general changes were more dramatic and obvious
for Beta left and Alpha left than Theta left and Delta left.
Table 4: Analysis of the abrupt changes in left hemisphere rms EEG recordings seen at earthing time
in 4 scales (Beta, Alpha, Theta, and Delta) for 12 experimental subjects.
Subject ID: 23 2 24 1 4 25 18 5 3 6 7 8 Total
Beta Up
6
Beta Down
6
Alpha Up
5
Alpha Down
7
Theta Up
4
Theta Down
6
Delta Up
5
Delta Down
3
Earthing intervention begins
Earthing intervention begins
Al
p
ha ri
g
ht Al
p
ha left
Alpha right
Alpha left
Beta right
Beta left
Beta right
Beta left
Theta left
Theta left
Delta right
Delta left
Delta right
Delta left
8
8
SEMG
T-test analyses of rms data (Table 5) revealed no significant difference for right or left SEMG pre- and
post-earthing. However there was a significant change (p < 0.025) for right rms SEMG when
comparing after earthing results between experimental and control groups.
Table 5: t-tests for right and left rms SEMG data
Subjects Earthed Earthed Control
Earthed
vs.
Control
Parameter
Before After
Before
vs. After Before After After
Measured Mean SD Mean SD t-test* p-level Mean SD Mean SD t-test** p-level
Right
SEMG 32.2 44.4 43.4 64.9 1.7 ns 28.1 32.5 28.1 32.5 2.4 0.025
Left
SEMG 34.9 61.7 36.5 48.6 0.3 ns 17.6 15.7 17.6 15.7 0.8 ns
*df = 20; **df = 48
To understand the lack of significance for the pre- and post-earthing rms SEMG data, examine Figures
2a, 2b and 2c. These are composite graphs of rms data from 22 experimental subjects. Just as is the
case with EEG data, only 22 experimental subjects were used because the data of the 6 others were not
complete enough due to machine error. Also, in similarity with EEG data, visual inspection of rms
recordings reveals abrupt and distinct changes when subjects are earthed; these changes continue
throughout the earthing period; they were seen for every subject in the experimental group and were
not observed in the control group. Again the changes are either dramatic increases or dramatic
decreases. The increases and decreases cancel each other out in the statistical analysis.
As seen in Figure 2c, the amplitude of left rms SEMG for one subject (subject 5) was about 300 micro
volts rms (μV), dropping to 175 μV rms after earthing, while all other subjects were in the
approximately 0-70 μV rms range during the pre-earthing and intervention periods. This “outlier”
contributed to the cancellation effect in the statistical analysis of the left rms SEMG data. After testing
was completed, subject 5 (who also had high right rms SEMG values of about 100 μV rms before
earthing and about 50 μV rms after earthing) reported experiencing discomfort while seated in the
recliner due to an old injury. This discomfort was the likely cause of this extreme amplitude range
(and the “outlier” effect).
9
9
Right trapezius rms SEMG
0.00
35.00
70.00
105.00
140.00
0 550 1100 1650 2200 2750 3300
Time (seconds)
Amplitude (
μ
Vrms)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Figure 2a. Graph of right rms SEMG recordings of 22 experimental subjects. Note the abrupt change
when earthing intervention begins for all the subjects (arrow).
Left trapezius rms SEMG
0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
0 550 1100 1650 2200 2750 3300
Time (seconds)
Amplitude (
μ
Vrms)
1
2
3
4
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Figure
2b. Graph of left rms SEMG recordings of 21 experimental subjects. One experimental subject (5) has
been omitted for clarity (see figure 2c). Note the abrupt change when earthing intervention begins for
all the subjects (arrow).
Earthing intervention begins
Earthing intervention begins
10
10
Left trapezius rms SEMG
0.00
100.00
200.00
300.00
0 550 1100 1650 2200 2750 3300
Time (seconds)
Amplitude (
μ
Vrms)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Figure 2c. Graph of left rms SEMG recordings of 22 experimental subjects. Note the abrupt change
when earthing intervention begins for all the subjects (arrow). One subject (number 5) presents a
drastic decrease while others show drastic increases. This situation canceled out in the statistical
analysis, but the shift at the time of earthing is unmistakable.
When looking at absolute differences between pre- and post-earthing for the experimental group
(Table 6), significant differences can be seen for right and left rms SEMG, with the most significant
differences (p < 0.004) seen for the left rms SEMG. In the unearthed control group, rms SEMG
recordings did not change.
Table 6: t-tests for right and left rms SEMG recordings based on absolute differences
Parameter
Measured t-test* p-Level
Right SEMG 2.4 0.03
Left SEMG 3.6 0.004
*df = 20
Figure 3 shows the increase in rms SEMG variance when subjects are earthed. A close look at this
figure (examples of 4 subjects’ left rms SEMG charts) reveals that this increased variance is due to the
presence of low frequency oscillations (between 0.025 and 0.05 Hz). When comparing variances
before and after earthing for 22 subjects it was found that the increased variance is highly statistically
significant (p < 0.001) for both right and left rms SEMG’s.
Earthing intervention begins
11
11
Increase in Variance
0.00
15.00
30.00
45.00
60.00
75.00
0 550 1100 1650 2200 2750 3300
Time (seconds)
Amplitude (
μ
Vrms)
4
8
12
14
Figure 3. Details of left rms SEMG data for four experimental subjects shown in Figure 2. At the
midway point subjects were earthed (arrow). Note the dramatic increase in rms voltage variances after
earthing.
Heart Rate and BVP
Earthing had no detectable effect on heart rate.
With regard to BVP, statistical analysis using t-tests on raw scores before and after earthing did not
show any change. However, careful inspection of recordings showed that earthing decreased BVP in
86.4 % (19) of the 22 experimental subjects, and only in 32.0% (8) of the 25 control subjects with
adequate data for analysis. As can be seen from Table 7, the number of earthed subjects for which the
reading went up has a very low probability to be due to chance (p < 0.001) while the result obtained
for the controls is within chance limits (and shows an opposite tendency compared to the earthed
subjects).
Table 7: Summary of observations on BVP
Controls % Earthed %
Down:
8
32.0%
19
86.4%
Up:
16
64.0%
3
13.6%
Stable:
1
4.0%
0
0.0%
Total:
25 100.0% 22 100.0%
Expected down:
12 50.0% 11 50.0%
Expected up:
12 50.0% 11 50.0%
Chi Square p =
0.1025 n.s. 0.0006
n.s. = not significant
Earthing intervention begins
12
12
DISCUSSION
The principal discovery reported here is that electrically coupling the human body to the earth
produces immediate and lasting changes in electrophysiological measures: the left hemisphere EEG
and right and left trapezius EMG. These changes appear to take place in less than one second after
earthing. At the same time, BVP, which is a direct physiological measure and not an
electrophysiological measure, decreases steadily and significantly after earthing. Taken with the
results of the previous study (12), which showed that earthing changes cortisol profiles and affects
subjective reports of quality of sleep, pain, and stress, we begin to see a picture of systemic effects of
earthing.
The validity of the results presented here depends on a number of methodological considerations. Care
must always be taken to insure that the electrodes on the skin have low impedance and are not,
themselves, generating signals. Ideally, the measuring equipment does not produce any voltage or
current, and the system records only signals generated by the body. In this study a variety of
precautions, mentioned in the Methods section, insured that the changes in the electrophysiological
measures after earthing resulted from connecting the earth to the body, which was the purpose of the
study. Importantly, the subjects were relaxed and were asked to avoid moving during the measurement
period. The electrodes used in the study adhered firmly to the skin and in no case were electrodes
loose at the end of the recording period.
The fact that BVP, which is not an electrophysiological measurement, changed at earthing time, just
like EEG and SEMG, supports the validity of the electrophysiological measurements; they were not
due to faulty electrode placements, changes in electrode impedance, noise, or other artifacts. The fact
that there was an effect only on the left hemisphere EEG of earthed subjects rules out the possibility
that this could be an SEMG artifact due to faulty electrode placement (e.g. the frontalis muscle SEMG
activity being picked up by the electrode) because there would be no reason why the electrode
placement would be wrong always on the left side of earthed subjects and never on controls (all
electrodes were put in place by the same experimenter regardless of which group the subject was in,
experimental or control). Chance occurrence would require that any SEMG artifact would happen on
average 50% on the left side and 50% on the right side of the forehead and with equal frequency in
each subject’s group. Hence the conclusion that the measured changes on the left EEG resulted from
the effects of earthing on the electrical activity taking place within the left frontal lobe of the brain,
with some of the primary rhythms increasing and others decreasing in amplitude, depending on the
subject.
EEG is sensitive to a continuum of states ranging from alertness to relaxation, hypnosis, and sleep
(32). It is intriguing that the abrupt and clear-cut changes (both increases and decreases) in EEG
parameters were seen only in the left hemisphere of the brain. The frontal lobes (the area of EEG
electrode placement in this study) are thought to be responsible for abstract thinking, judgment,
tactfulness and foresight (8). The left hemisphere is thought to be involved with ratiocinative
processes, with thinking that is analytical, rational, logical, and discursive; the right hemisphere with
intuitive processes, with synthesis and gestalts, with perceiving the whole, with music, art, and poetry
(13). Previous research has indicated that the left hemisphere predominantly influences
parasympathetic activities, while the right hemisphere regulates sympathetic activities (3,16). Hence
the significant change we observed in absolute values of the EEG recordings for the left hemisphere
13
13
(and not the right hemisphere) suggests that earthing may have influenced rational and
parasympathetic aspects of brain functioning. The BVP results also support a shift in the direction of
parasympathetic activation.
Abrupt and clear-cut changes occurred in the signals recorded with SEMG of the trapezius muscle for
all 28 subjects who were earthed. Unlike the EEG findings, changes occurred in both sides (left and
right trapezius). At the moment of earthing, we observed abrupt increases SEMG recordings in some
subjects and abrupt decreases in others. Individuals with initially high SEMG readings (above 40 μV
rms) generally decreased to the 20-50 μV rms range when they were earthed. Those with low SEMG
readings (below 30 μV rms) generally increased to the 10-60 μV rms range.
When considering these results it is important to realize that any randomly selected group of people
will show variations in their stress levels and consequently will have different “set points” in the
spectrum of sympathetic/parasympathetic balance, muscle tension, and related stress parameters. This
was the case in the previous study of cortisol levels (12). Some subjects had elevated cortisol; others
had depressed levels. Earthing “normalized” the study population by bringing the elevated cortisol
levels down and the depressed levels up. The results of the present study also indicate a normalization
or balancing process upon earthing.
SEMG measurements of the trapezius muscles are known to correlate with overall stress (30). In
essence, SEMG evaluates the overall “tone” of the musculature, which is set by the gamma motor
system (e.g. 24) and also by the hemispheric balance, as mentioned above. A subject’s position in the
“stress spectrum” will affect the way they respond to an intervention that normalizes physiological
processes. The stressed or sympathetically “charged” individual will tend to relax; the person who
tends toward excessive parasympathetic activation might be stimulated, and therefore display
increased tension in their musculature.
We found empirically that the subject’s body position is crucial to obtaining the results of this pilot
research. When subjects are in a normal sitting position, the variance in SEMG signals does not occur.
It seems therefore important that subjects are put in a relaxing position where they feel they can fall
asleep without fearing injury. In fact we found that many of our subjects slept during this experiment.
It is logical that directly connecting the body to the earth through a dedicated ground rod would reduce
the noise (non-biological signals) in electrophysiological recordings (2). Noise comes from both
natural and man-made electromagnetic sources (26). Common sources of noise include wiring,
appliances, cellular telephones, radio and TV stations, and so on.
Generally speaking, if a subject is not conductively connected to an AC voltage source (such as a
power outlet) any AC voltage induced on the body occurs because of capacitive coupling between the
source and the body. Capacitive coupling is the mechanism by which an electric field on one
conductor acts across a poorly conducting medium (or dielectric), such as air, to influence charges on
a nearby conductor. In essence, a wire carrying an AC voltage acts as one plate of a capacitor, with the
conductive tissues and fluids of the human body acting as another plate. The human body is composed
of a number of tissues and fluid spaces with finite electrical conductivity. The term, “cable
properties,” is used to describe the conductive aspects of elongated cells such as nerves and muscles
(29), and sheets of cells called epithelia (25). AC fields induce voltages in body tissues even when no
current is flowing in the AC circuit. The amount of this induced voltage depends on the source
14
14
voltage, the magnitude of the capacitive link between source and body and on the capacitive link
between the body and the source’s voltage reference, normally the potential of the earth. The degree of
capacitive coupling is highly dependent on the geometry of a particular situation (2).
Electrification of the body from more distant and higher frequency sources of electromagnetic
radiation takes place because the conductive tissues in the body act as antennas. As long as a person is
in conductive contact with the earth, however, electrons can flow rapidly back and forth between the
body and the earth with each AC cycle, as long as the spectral content is not of too high a frequency.
The earth is a vast and stable source of electrons and is therefore a “source” and a “sink” that can
essentially “swallow” noise-producing fields (17). Hence the earthed body is maintained at the same
potential as the ground plane, and any voltages (or noise) that might be induced from external sources
are effectively cancelled. Using the earthing system described in the present study, Applewhite (2) has
documented this alternating flow between the body and the earth and vice versa.
The system used for earthing the human body must be distinguished from the grounding systems used
in electrical wiring. Hence our use of the terms, “earthing” and “earthed” in this article refer to
dedicated conductive systems between the body surface and an earthing rod that has been inserted
directly into the earth. This connection is entirely separate from the so-called appliance or equipment-
grounding conductor in the mains, connected to the 3rd prong of a power outlet. The reason for this is
that equipment-grounding conductors are seldom, if ever, true grounds. For example, there is
considerable variation in wiring configurations where power lines enter buildings (the service
entrance). Different countries specify different earthing configurations. A list of standards around the
world has been published (22). In the US, older buildings, constructed prior to modern wiring codes,
are notorious for having poorly configured or faulty equipment grounds; before 1972 there were no
grounding terminals in electrical outlets. Moreover, grounding electrodes and connections can corrode
over time, increasing the resistance between grounding conductors and the earth. Finally, grounding
conductors commonly run parallel to electrified conductors, and measurable electrical fields are
therefore coupled or induced into the grounding conductors. The third “grounding” terminal in
electrical outlets may therefore measure several volts or more with respect to the earth. In the interest
of safety, most electrical codes do not allow connection of human subjects to the equipment ground
conductor in the mains.
Bioelectrical measuring devices commonly have a “floating” ground that is required to be separate
from the chassis or instrument ground. Voltages detected on the surface of the body are therefore
recorded with respect to this floating ground, and never with respect to the grounding conductor in the
mains. This floating ground itself is normally connected to the human body (to a bony structure or an
ear lobe-a region of the body where no bioelectrical potentials can be generated). Special amplification
circuitry reduces the influence of noise by a process known as Common Mode Rejection. This is the
property of a differential amplifier to reject the part of an incoming signal that has the same amplitude
and phase on both electrodes, referenced to the floating ground. While this technique improves the
quality of the recordings (common mode rejection is never perfect), it does not eliminate the actual
electrical noise experienced by the body. Moreover, few electrophysiologists check whether their
equipment ground is well connected to the earth. Even if there is a good equipment ground, the
conductive tissues in the body still act as antennas, picking up AC fields (noise) from the environment.
We have noted above that living systems evolved in close relationship with the earth’s surface, which
serves as a virtually unlimited source of electrons. Direct contact with the surface of the earth and its
15
15
abundant electrons is rare in modern life. The extent to which contact with a natural source of
electrons is essential to normal physiological functioning and health is a new area for research.
Every physiological process in the human body has an electrical aspect, whether at the molecular,
cellular, tissue or organ level (23). Our modern understandings of sensation, nerve conduction, muscle
contraction, secretion, brain function and so on, have been derived in part from careful study of the
bioelectrical and biomagnetic correlates of physiological processes. With few if any exceptions, these
studies have been done on unearthed humans or animals. Hence the degree of earthing is a “hidden
variable” in most electrophysiological studies. The extent to which the findings from
electrophysiological research may have been influenced by the lack of earthing of the experimental
subjects is unknown. Since living systems have been in contact with the earth for most of their
evolutionary history, the question arises as to whether or not modern electrophysiologists have
actually been studying “normal” organisms. Our modern concepts of physiology as derived from
electrophysiological measurements may therefore require some reevaluation.
The possible effects of electromagnetic noise or interference on living systems is of interest to
researchers who are exploring the controversial subject of whether the voltages induced into the body
influence health (e.g. 7,10,19,21,27,31,33). This new topic of research has been given a name
“bioelectromagnetism” and there is increased interest in the topic in light of the popular use of cell
phones (18). Again, the degree of earthing is a hidden variable that could influence the conclusions in
many studies of electromagnetic field bioeffects.
We have not directly studied the health effects of voltages induced into the unearthed body. However,
this and the previous study (12) have indicated that induced voltages can be mitigated by means of a
simple earthing technique. When this is done, there are improvements in various subjectively reported
symptoms, including sleep dysfunction, pain and stress; and there is a shift in autonomic balance and
an adjustment in muscle tension toward an optimal level. This is a different approach to the subject of
health effects of environmental fields, since we are not looking for harmful conditions but are instead
looking at improvements in health taking place when the environmental influences are mitigated.
SUMMARY AND CONCLUSIONS
Highly significant EEG, EMG and BVP results demonstrate that restoring the natural electrical
potential of the earth to the human body (earthing) rapidly affects human electrophysiological and
physiological parameters. The extreme rapidity of these changes indicates a physical/bioelectrical
mechanism rather than a biochemical change. While more research is needed, it appears that the
changes are in the direction of normalization or balancing of the electrical parameters affecting
physiological systems. Taken together, the changes in EEG, EMG, and BVP reported here suggest
reductions in overall stress levels, tensions and autonomic balance in the organism upon earthing. The
results therefore correlate with the effects reported in the previous study (Ghaly, & Teplitz 2004),
which showed changes in cortisol profiles associated with decreases in subjectively reported
symptoms, including sleep dysfunction, pain and stress. Earthing appears to reduce the noise coupled
into the body from various sources. Hence the degree of earthing may have been a “hidden variable”
in many electrophysiological studies.
16
16
ACKNOWLEGEMENTS
The investigators would like to thank the following people whose efforts contributed to this project:
Clint Ober, who funded this study; Dr. Clifford Weedman for the statistical analyses; Kay Wilson, for
helping during the experiment, documentation of the results and preparation of the manuscript, Dale
Teplitz and Jacelyn Eckman, for taking care of the subjects and the staff of the California Institute for
Human Science, Encinitas, CA. We thank Earth Tether International Corporation for technical
assistance and donation of the earthing systems used in the study. The present addresses of the first
two authors are as follows: Gaetan Chevalier, Ph.D., 924 Encinitas Blvd. # 86, Encinitas, CA 92024,
Phone & Fax: 760-632-5612, E-mail: dlbogc@sbcglobal.net; Dr. Kazuhito Mori, 2-65 Namiuchi-cho,
Kita-ward, Nagoya-city, Aichi-prefecture, Japan 462-0041, E-mail: drmoriwoborder@hotmail.com.
REFERENCES
1. Anisimov S V, 1999. On the generation and evolution of aeroelectric structures in the surface layer,
j geophys, Res, Vol. 104, D12, 14359—14367.
2. Applewhite R, 2005. Effectiveness of a Conductive Patch and a Conductive Bed Pad in reducing
induced human body voltage via the application of earth ground European Biology and
Bioelectromagnetics 1(1). On the web at: http://www.ebab.eu.com/iss1%5Fhtml/rtcl3/ESS1ober.htm
3. Avnon, Y, Nitzan, M, Sprecher, E, Rogowski, Z, and Yarnitsky, D. 2004. Different patterns of
parasympathetic activation in uni- and bilateral migraineurs. Brain. 127(Pt 9):2099-2108.
4. Basmajian J V and DeLuca C J (1985). Muscles alive: Their functions revealed by
electromyography (5
th
Edition). Baltimore: Williams and Wilkins.
5. Bio-Medical Instruments, Inc., http://www.bio-
medical.com/product_info.cfm?inventory__imodel=SA9308M, July 6, 2004.
6. Callahan PS, Kornberg H. 1993. Photonic ionic cloth radio amplifier. United States Patent
5,247,933 issued September 28, 1993.
7. Carpenter DO Ayrapetyan S Ayrapetyan SN 1994. Biological effects of electric and magnetic
fields: Sources and Mechanisms. Academic Press, New York.
8. Clenney SL and Johnson SM. Back to Basics: A Handbook of EEG Technology. Pleasantville, NY,
Teca Vickers Medical and Beckman Instruments, Inc., 1983.
9. Feynman R P, Leighton R B, Sands M 1963. The Feynman Lectures on Physics. Addison Wesley,
Reading, MA.
10. Frey AH 1995. On the Nature of Electromagnetic Fields With Biological Systems. 2nd edition.
RG Landes Co.
17
17
11. Geophysics Study Committee 1986. The Earth's electrical environment. Washington, D.C.:
National Academy Press.
12. Ghaly M, Teplitz D. The biological effects of grounding the human body during sleep, as
measured by cortisol levels and subjective reporting of sleep, pain and stress. J Altern Complement
Med 2004 10(5):767-776.
13. Green E and Green A. Beyond Biofeedback. Ft. Wayne, Indiana, Knoll Publishing Co., Inc., 1989.
14. Grimnes S and Martinsen OG. Bioimpedance & Bioelectricity: Basics. San Diego, Academic
Press, 2000.
15. Halliday D, Resnick R. and Walker J. Fundamentals of Physics, Fourth Edition. New York,
John Wiley & Sons, Inc., 1993: 638.
16. Hilz MJ, Dutsch M, Perrine K, Nelson PK, Rauhut U, Devinsky O. Hilz, 2001. Hemispheric
influence on autonomic modulation and baroreflex sensitivity. Ann Neurol. 2001 May;49(5):575-84.
17. Horwitz P, Hill W, 1989. The Art of Electronics. Second edition. Cambridge University Press,
Cambridge, p. 456.
18. IEEE Committee on Man and Radiation; Human Exposure to Radio Frequency and Microwave
Radiation from Portable and Mobile Telephones and other Wireless Communication Devices;
COMAR Technical Information Statement; September 2000.
19. Institution of Electrical Engineers, 1992. The possible biological effects of low-frequency
electromagnetic fields. Iee Pub Report, No. 10. Institution of Electrical Engineers.
20. Kimura J. Electrodiagnosis in diseases of nerve and muscle: principles and practice. Philadelphia:
F.A. Davis, 1990.
21. Klauenberg BJ Miklavcic D 1995. Radio frequency radiation dosimetry and its relationship to the
biological effects of electromagnetic fields. Kluwer Academic.
22. Lacroix B Calvas R 1995. Earthing systems worldwide and evolutions. Cahier Technique Merlin
Gerin n
o
E/CT 173, page 10.
23. Loewenstein WR 1999. The Touchstone of Life: Molecular Information, Cell Communication, and
the Foundations of Life. Oxford, Oxford University Press, 1999.
24. Nigg BM Herzog W (Eds) 1999. Biomechanics of the Musculo-Skeletal System, 2nd Edition. John
Wiley & Sons, New York.
25. Northover, BJ, 1992. Electrical properties of mammalian tissues: An Introduction. Chapman &
Hall Boca Raton, FL.
18
18
26. Oschman, J.L. 2000. Energy Medicine: The scientific basis. Harcourt/Churchill Livingston,
Edinburgh, Chapter 13.
27. Polk C Postow E 1995. CRC Handbook of Biological Effects of Electromagnetic Fields, 2
nd
Edition. CRC Press.
28. Pullman SL, Goodin DS, Marquinez AI, Tabbal S, Rubin M. Clinical utility of surface SEMG:
report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of
Neurology. Neurology 2000 55:171-177.
29. Ruch, TC, Patton, HD, 1965. Physiology and Biophysics. W.B. Saunders, Philadelphia, pp. 31-38.
30. Schultz MC, and Schultz JT. The Effects of Age on Stress Levels and Its Affect on Overall
Performance. The American Association of Behavioral and Social Sciences,
http://www.aabss.org/journal2003/Schultz.htm, June 12, 2004.
31. Takebe H 2000. Biological and Health Effects from Exposure to Power-Line Frequency
Electromagnetic Fields. Ios Press, Inc.
32. Teplan M. Fundamentals of EEG measurement. 2002 Measurement Science Rev. Vol. 2, Section
2.
33. Ueno, S., Editor, 1996. Biological Effects of Magnetic and Electromagnetic Fields. New York:
Plenum).
34. von Stein A, Rappelsberger P, Sarnthein J, Petsche H. Synchronization between temporal and
parietal cortex during multimodal object processing in man. Cerebral Cortex Mar 1999 9:137-
150;1047-3211
35. Volland H 1984 Atmospheric electrodynamics. In Lanzerotti LJ (ed) Physics and Chemistry in
Space, Fol. 11. Springer-Verlag, Berlin
36. Westgaard RH, Bonato P and Holte KA. Low-Frequency Oscillations (<0.3 Hz) in the
Electromyographic (SEMG) Activity of the Human Trapezius Muscle During Sleep. J Neurophysiol
2002;88:1177-1184.
37. Williams ER, Boccippio DJ, Susskind J, Anyamba E, Sentman DD, Bold R. 1995. What lightning
type dominates the excitation of Schumann resonances, IUGG XXI General Assembly, Boulder,
Colorado, July.
... Chronic sustained elevation of cortisol from emotional stress can lead to a disruption of the body's circadian rhythms and contribute to sleep disorders, hypertension, and a whole host of pathological situations including cardiovascular disease. In multiple studies, grounding has been documented to have profound beneficial effects on physiological and emotional stress [ 27,30,31,32,33]. Grounding includes a normalizing influence on cortisol [20], a calming impact on the electrical activity of the brain [ 33,34], and a normalization of muscular tension [ 33]. ...
... In multiple studies, grounding has been documented to have profound beneficial effects on physiological and emotional stress [ 27,30,31,32,33]. Grounding includes a normalizing influence on cortisol [20], a calming impact on the electrical activity of the brain [ 33,34], and a normalization of muscular tension [ 33]. In addition, there is an improved response to trauma and tissue injuries with accelerated wound healing [ 21,24,25] . ...
... In multiple studies, grounding has been documented to have profound beneficial effects on physiological and emotional stress [ 27,30,31,32,33]. Grounding includes a normalizing influence on cortisol [20], a calming impact on the electrical activity of the brain [ 33,34], and a normalization of muscular tension [ 33]. In addition, there is an improved response to trauma and tissue injuries with accelerated wound healing [ 21,24,25] . ...
Article
Grounding or earthing could be the anti-inflammatory antidote for modern man. It is one of the greatest kept secrets when it comes to our health and aliveness and only a small part of the scientific community really understands the concept. Once health professionals and others realize that grounding is especially important in preventing inflammatory illness, an incredible effect on public health will be realized. The breath of validation from previous published data and real-life testimonials is a testimony of the earth’s dramatic impact on healing the human body. Health information is constantly changing as a result of new research in various approaches to treating a multitude of inflammatory conditions. Sometimes, even with the most relevant published data, it is difficult to choose which advice is most conducive for healing. For example, it has been noted that perhaps one-third of the medical literature could be fraudulent.. Understanding absolute versus relative risk can also be confusing even for health professionals. And when data is reported in relative risk, only a fraction of the real science is revealed. However, one small established fact that conveys universal agreement is the simple correlation that inflammation is the root cause of almost all diseases!
... Pesquisas recentes têm enfatizado a importância da transferência de cargas iônicas em relação à eliminação ou neutralização dos radicais livres de regiões lesionadas no estresse oxidativo (CHEVALIER; MELVIN;BARSOTTI, 2015;OSCHMAN, 2009;MORI;OSCHMAN, 2006;OBER, 2003). ...
... Pesquisas recentes têm enfatizado a importância da transferência de cargas iônicas em relação à eliminação ou neutralização dos radicais livres de regiões lesionadas no estresse oxidativo (CHEVALIER; MELVIN;BARSOTTI, 2015;OSCHMAN, 2009;MORI;OSCHMAN, 2006;OBER, 2003). ...
... Recentes pesquisas mostram uma variedade de benefícios do contato direto do ser humano com a terra, conhecido como aterramento humano. Este contato promove uma transferência de cargas elétricas -íons -entre o indivíduo e a terra, equilibrando assim a "estrutura" iônica responsável pela estabilidade do organismo (SOKAL et al., 2013;OSCHMAN, 2009;MORI;OSCHMAN, 2006;OBER, 2003 Em outro estudo (BRUNO et al., 1995), foram avaliados os efeitos do aterramento humano no sono, dor e estresse em 12 indivíduos, dos quais foram coletados níveis de cortisol. Observou-se melhora nos níveis de cortisol diurno, com melhora significativa durante o sono, mostrando uma tendência de normalização do cortisol circadiano. ...
Article
Postpolyelitis Syndrome (PPS) is a slow-progressing degenerative neurological disorder that is in the category of motor neuron diseases. PPS is characterized by the development of new neuromuscular symptoms such as: abnormal fatigue, new muscle weakness - both of the muscles that were originally affected and those that were not previously affected. Patients with inflammatory conditions, by stimulating the migration of electrical charges at sites of acute or chronic inflammation, show improvement in their pictures, by preventing "collateral damage" to healthy tissues in the vicinity of an injury. To evaluate a technology to reduce ionic loads in the impact of joint, muscular and cramp pain in patients with PPS. Twenty patients were randomly selected and randomly selected to form two groups with 10 subjects each. The Control Group (CG) used a pad with soap plates, but without ion technology for the treatment of pain due to cramps. The Intervention Group (GT) used a pillow with plates wrapped in soap with ion technology. Each patient was submitted to evaluations related to pain, cramp and quality of life. In both groups there was a statistically significant reduction in the frequency and intensity of cramps after 10 days of use of the cushion with or without ion technology. The ionic reduction technology used reduced the intensity and frequency of cramps in patients with PPS.
... Contudo, verificaram-se várias limitações metodológicas nomeadamente o facto de não terem sido referenciados os instrumentos de medida utilizados, nem os critérios de exclusão, os participantes e os investigadores não foram cegos, e não foi realizada uma análise estatística dos resultados. Ghaly & Teplitz, (2004) & Oschman, 2006;Gaetan Chevalier & Ph, 2010;Sinatra & Chevalier, 2011;Sinatra, Oschman, & Delany, 2013;Sokal et al., 2013). Gaétan Chevalier et al., (2006) (Gaétan Chevalier et al., 2006). ...
... Gaétan Chevalier et al., (2006) (Gaétan Chevalier et al., 2006). As mudanças quase instantâneas no sinal de EMG e SEMG apontam para um mecanismo eletrofisiológico em vez de bioquímico (Gaétan Chevalier et al., 2006). (n=28) verificou-se uma diminuição estatisticamente significativa da concentração sérica de sódio, magnésio e potássio, após 7 horas de aterramento, seguido de uma subida estatisticamente ...
Research Proposal
Full-text available
Revisão da literatura: O aterramento/grounding consiste no contacto, direto ou indireto, entre a pele e a superfície terrestre.Os possíveis benefícios do aterramento cingem-se à ativação do sistema nervoso parassimpático (SNP), melhoria da qualidade do sono, à diminuição de mediadores pró-inflamatórios e à diminuição da intensidade da dor.O objetivo do estudo é avaliar o efeito do grounding versus ungrounding, ao nível da dor, em repouso, à contração e ao alongamento dos gémeos e do bicípite, após a realização de exercícios excêntricos direcionada para os músculos mencionados. Conclusão: O contacto direto com a terra, realizado bi-diariamente durante 30 minutos não altera a intensidade da DMIT, após a realização de exercícios excêntricos para os flexores plantares e flexores do cotovelo.
... No grounding of the body itself is applied, even though a connection to earth can yield physiological differences that are visible on the EEG [Chevalier, Mori, and Oschman 2006]. The degree of earthing of the subject may be a significant but hidden parameter that could be controlled. ...
Thesis
An analytical tool for the observation of the dynamics of living organisms is developed in this thesis, and applied to the study of interactions between the cardiac, respiratory and neural systems based on human recordings during sleep. These physiological signals are peculiar and complex: each recording is unique, non-stationary and cannot be reproduced. To solve this issue, a time-frequency analysis of physiological signals, based on analytic wavelets also called ``time-frequency atoms'', is proposed. The first part A of this thesis introduces this formalism, highlighting the adequacy of the log-normal wavelet in that context, the importance of the associated quality factor $Q$ and its correspondence with the Heisenberg uncertainty principle. Extending this approach to the estimation of the time-frequency coherence of physiological signals, we separate temporal from spectral resolutions in order to introduce statistical degrees of freedom in this analysis. To assist the observation of physiological interactions between different sources, we define a generic family of complex rate estimators capturing both the modulations of the instantaneous frequency and amplitude, in a spectral band of interest. The second part B illustrates this methodology on physiological signals from polysomnography databases. The rich specificities of fluctuating rhythms contained in electrocardiograms (ECG), breathing signals and electroencephalograms (EEG) are thoroughly discussed to validate the generic estimation of the time-frequency coherence between pairs of recordings or their rate transformations. We compare the effectiveness of wide-band and narrow-band estimators in retrieving heart rate modulations, relative to a reference extraction method. From coherent cardiac and respiratory modulations, we observe three distinct scales of interaction: a fast one at the fundamental breathing frequency (RSA), a slow and less rhythmic one and an even slower one, regulating cardio-respiratory rates. In the wavelet framework, we propose an original time-dependent representation of the frequency ratios of cardiac and breathing rhythms that turns out very effective for tracking signatures of sleep apnea, rapid eye movement (REM) phases, and deep sleep stages. This approach of the cardio-respiratory coupling also offers a new perspective to detect synchronization episodes of cardio-respiratory coupling and their temporal fluctuations. The neural activity during sleep is introduced from the time-frequency analysis of EEG signals, and their characteristic sequences of multi-band power density and coherence patterns. Finally, we gather cardio-respiratory rates and neural magnitude signals and compare them in pairs in terms of time-frequency coherence. From an extensive analysis of 2650 recordings from a large polysomnography database, we point out the increased amplitude and coherence of slow apneic modulations, systematically emerging as a spectra l peak as compared to a flat baseline without apnea. We also show that apnea is concomitant with a strong coherence reduction of the fast RSA cardio-respiratory interaction and the very slow neuro-respiratory interaction. This study paves the way to new developments, outlined in the end of this thesis, such as the detection of sleep spindles from the phase of the sigma EEG band, and the coherence of their amplitude with slow delta oscillations during deep sleep.
... This unresolved tension means that every cell in vertical line through the body is subject to electrical potentials outside the design specification-and may contribute to electrosensitivity as well as inflammation, and may yet be found to be another cause of chronic degenerative illness. [101][102][103][104][105][106][107] However, whilst earthing in a rural environment with minimal man-made ground current may help the body with a DC flow, in an urban area the unwanted effect of large AC potentials may ensue, as the ambient AC is several V/m, so the effect may be less beneficial (Table 47.3). 100,000 120,000-1,600,000 2,000,000 2,000,000 4,000,000 ...
Chapter
Electrosensitivity exists as a very real problem. There is ample biological evidence to enable an understanding of this widespread phenomenon. Recent studies suggest possible genetic links, confirm positive subjective evidence, and confirm that voltage-gated calcium channels are an established mechanism for EM effects at nonthermal levels. Problems stemming from the conceptual context explain why even well-intentioned investigators may be tempted to deny, defer, obscure, or otherwise divert truth. It is also noted that there are vested interests at stake. As a result a great deal of EM and RF technology has been developed on the mistaken “presumption of no harm.” Unfortunately, ES not only exists but affects many, many people, the great majority of them undiagnosed (because of lack of medical knowledge) and either expensively investigated or mistreated, or worse still ignored, dismissed or ridiculed. Three case studies are noted, including one of the authors, which may of course incur criticism of bias, but perhaps may achieve an acknowledgement of the use of the human as an instrument of experimentation as well as an honest scientifically trained witness to symptoms. The Austrian Medical Association Guidelines provide a useful tool for the Practitioner.
... Earthing or grounding the body, 1222 maximises the transfer of negative ions from the surface of the earth which are replenished by the global electrical circuit, linked with Schumann resonance (see above). 1223 Beneficial effects include the following. ...
Book
Electromagnetic Hypersensitivity is categorised as a multisymptomatic 'el-allergy' in the Nordic classification of 2000 (R.68.8). Its symptoms are 'certainly real' and it can be a 'disabling condition' (W.H.O., 2005). It was first recorded in the mid 20th century as an occupational illness, but it has now spread into the general population through environmental exposure from increasing levels of electromagnetic fields and radiation. This Summary covers current research on this syndrome, covering EM Sensitivity and EM Hypersensitivity. It includes tables of symptoms, EMF sources and exposure guidelines, along with references to scientific studies. This New Edition adds updates, international doctors' protocols, aspects of quantum biology, evidence for sensitivity in animals and plants, case studies, disability issues and human rights.
... There are studies that also point out that walking with bare feet or sitting on the ground has benefits of very common disorders, including sleep disorders, pain and inflammation, chronic stress and cardiovascular diseases (Chevalier, Mori, & Oschman, 2006). Studies such as that of Chevalier, Mori and Oschman (2006) revealed a surprisingly positive and neglected environmental factor in health: direct physical contact with the vast supply of electrons on the Earth's surface. ...
... -намаляване на общия стрес и напрежението (Chevalier, Mori, Oschman, 2006) и др. 67 Няколко изследвания с лица, които са стресирани, показват, че околна среда с преобладаване на зеленина, цветя или вода е значително по-ефективна за намаляване на стреса в сравнение с гледки без природа (стаи, сгради, градове) (Hartig, 1991;Ulrich, 1999). ...
Book
Full-text available
Книгата съдържа информация, която очаквам да бъде интересна и полезна, както за интересуващите се от българската система от гимнастически музикални упражнения, наречена паневритмия, така и за широк кръг специалисти, работещи в областите на здравеопазването и образованието. В първа глава са представени най-нови научни данни за: въздействието на физическата активност върху здравето, характеристиките на здравословната физическа активност и последните оповестени от световни здравни институции долни граници на необходимата за здравето двигателна активност. Направен е актуален научен обзор за влиянието на физическата активност (ФА) върху физическото и психичното здраве и качеството на живота при деца и юноши, зрели лица и при хора в напреднала възраст. Резюмирани са концепциите на П. Дънов за здравето и неговото възстановяване, както и поддържането чрез двигателна активност. Във втора и четвърта глава е представена паневритмията с общо описание, кратък анализ на паневритмичния комплекс упражнения от гледна точка на кинезитерапията, обсъждане на ключовите концепции относно общите теоретични постановки за паневритмията и важните компоненти на нейното въздействие, както и история на паневритмията. В трета глава от съвременна гледна точка са формулирани и са подкрепени с научни факти обяснителните механизми за влиянието на паневритмията върху физическото, психичното и социалното състояние на практикуващите я. Всички тези данни обогатяват както разбирането за паневритмията, така и за човека и неговото здраве. Петата глава съдържа обзор на значимите научни изследвания на паневритмията, публикувани до излизането на настоящата книга. В част от тази монография са представени резултатите от дисертационен труд, в който за първи път с голяма батерия от физически и психологически тестове е изследвано и установено психофизическото влияние на начално обучение по паневритмия при възрастни лица (Червенкова, 2012). Тази основа е надградена с нови големи раздели данни и анализи, както и с резултатите от първо, непубликувано до момента, експериментално изследване на промените в психофизическото състояние в резултат на един сезон (6 месеца) изпълнение на паневритмия при по-отдавна практикуващи. Шеста глава е посветена на методологията на тези две експериментални изследвания, обединени в едно по-голямо изследване. В седма глава са представени резултатите, направен е анализ и са изведени изводи. На базата на наличната до момента научна литература за паневритмията и на представените в този труд собствени резултати, са формулирани перспективни насоки за приложение и изследване на паневритмията за подобряване на психофизическото състояние и съхраняване на здравето при три възрастови групи. С цел по-голяма яснота за незапознатите с упражненията на паневритмията са добавени и снимки, които показват паневритмичните упражнения, като илюстрират крайните позиции на индивидуалните движения, изпълнявани от практикуващите.
Article
The research on grounding or earthing summarized here is providing valuable clues about why chronic and autoimmune diseases are rampant, simple and reliable help for those with these health issues, and promising paths forward. During the period when this research was getting started, approximately 2000 to the present, scientists from around the world were establishing connections between inflammation and virtually all chronic diseases (Table I) using the c-reactive protein assay developed by Ridker and his colleagues at Harvard Medical School. This article reviews Earthing, a safe therapy that optimizes (balances) each person’s unique physiological functions; and that provides relief from the major diseases of the aging population; and that may slow the aging process itself. This statement is made because of the recognition that cumulative damage by reactive oxygen species (ROS), sometimes referred to as free radicals, is one of the most widely studied theories of the cause of aging. Because the continuous semiconducting fabric of the body reaches into every part of the body, including the interiors of all cells and their nuclei, mobile electrons in the grounded or earthed person are thought to be capable of rapidly neutralizing ROS produced by oxidative metabolism taking place in every cell and tissue.
Thesis
Full-text available
Erden beschreibt den Angleich des elektrischen Potentials des menschlichen Körpers an das der Erdoberfläche. Die Erdoberfläche beinhaltet einen unerschöpflichen Pool an freien, negativ geladenen Elektronen, die im geerdeten Zustand in den Organismus übergehen können und sein elektrisches Potential an das der Erde angleichen. Durch die Modernisierung unserer Lebenswelten hat der Mensch in den vergangenen Jahrzehnten zunehmend den direkten Kontakt zur Erde verloren. Laut Wissenschaftlern, die sich mit der Thematik des Erdens beschäftigen, kommt es durch den fehlenden Kontakt zur Erdoberfläche zu einem Elektronendefizit im menschlichen Körper. Dieses Elektronendefizit trage Mitschuld an der Entstehung einer Vielzahl von Zivilisationskrankheiten. Vor allem an jenen, denen chronische Entzündungen zugrunde liegen. Denn die bedeutendste Wirkung der freien, negativ geladenen Elektronen ist jene eines Antioxidans. Ein Antioxidans kann freie Radikale neutralisieren, indem es ein Elektron spendet. Freie Radikale gelten mittlerweile gesichert als Hauptverursacher von akuten und chronischen Entzündungen. Erste Untersuchungen und Pilotstudien bestätigen die positive Wirkung des Erdens auf verschiedene physiologische Parameter. So konnte nachgewiesen werden, dass geerdete Personen besser schlafen und sie seltener an Stress und Schmerzen leiden. Wissenschaftler berichten über die entzündungshemmende Wirkung des Erdens und über eine geringere Gewebsschädigung im Muskel bei geerdeten Personen nach exzentrischer Belastung. Diese und weitere Ergebnisse legen nahe, dass Erden auch im Leistungssport positive Effekte haben und beispielsweise zu einer schnelleren Regeneration beitragen könnte. In dieser Blindstudie im Cross-over-Design wurde untersucht, welche Wirkung Erden als kurzfristige Regenerationsmaßnahme zwischen intensiven Kraftausdauerbelastungen hat. Dazu absolvierten 17 Probanden im Abstand von 30 Minuten jeweils zwei 30-sekündige Wingate Tests. Die Pause zwischen den Wingate Tests diente der Regeneration, in der die Probanden im Liegen über eine Matte geerdet wurden. Die Ergebnisse der Studie zeigen, dass die Leistungsfähigkeit der Probanden nach einer 30-minütigen Regenerationsphase nicht vollständig wiederhergestellt werden kann. Im Vergleich zu den Wingate Tests vor der Regenerationspause ist die Leistung in der Peak Power und Average Power bei jenen nach der Erholung signifikant geringer. Zwischen den Bedingungen geerdet und nicht geerdet kommt es weder in den Ergebnissen der Wingate-Werte, noch in der Herzfrequenz, bei der BORG-Skala oder der Sauerstoffsättigung im Vastus lateralis zu einem Unterschied. Jedoch zeigt der Verlauf der Laktat- und Glukosewerte in der zweiten Regenerationsphase signifikante Unterschiede zwischen den Gruppen.
Article
Dr. Kimura has built upon his extensive experience teaching electromyography (EMG) around the world and has transferred his knowledge to this resource, which is intended for clinicians who perform electrodiagnostic procedures as an extension of their clinical examination. It covers noninvasive electrodiagnostic methods, particularly electromyography (EMG). This resource provides a comprehensive review of most peripheral nerve and muscle diseases, including specific techniques and locations for performing each test.
Article
For a number of years, concern about the possible harmful effects of low-level, low frequency electromagnetic field has not lessened. In 1992, the Health and Safety Committee of the IEE set up a working party to take a look on the developments in the scientific literature on this subject. This article comprises a summary of the working party's assessment of literature retrieved in 1993.
Book
Preface. Acknowledgements. Introduction. Session A: Basics of Electromagnetics and Dosimetry. Chair: Y. Grigoriev. Session B: Dielectric Properties of Biological Tissue. Chair: C. Gabriel. Session C: Theoretical Dosimetry. Chair: O.P. Gandhi. Session D: Experimental Dosimetry. Chair: N. Kuster. Session E: Contact and Induced Currents. Chair: M. Israel. Session F: Response of Man and Animals I. Chair: E.R. Adair. Session G: Responses of Man and Animals II. Chair: J.A. D'Andrea. Session H: Applications of Dosimetry in Biology & Medicine. Chair: D. Miklavcic. Session I: Standards and Applications. Chair: J.M. Osepchuk. Session J: The Dosimetry Handbook. Chair: P.A. Mason. Appendix. Speakers. Participants. Official Photograph. Index.
Book
The electromagnetic spectrum includes everything from cosmic rays to power line fields. Electromagnetic waves are bundles of energy that have no mass, and visible light is the most familiar form of these waves. The most energetic forms of electromagnetic waves have sufficient energy to break chemical bonds; therefore, they are called ionizing radiation. The less energetic forms, nonionizing radiation, are not usually considered harmful to humans. At the lowest end of the electromagnetic spectrum, electric fields are distinguishable from magnetic fields, and both are generated by electricity.This book is about the biological effects of electromagnetic radiation in the nonionizing and lower-frequency range of the spectrum. At issue is the major question of whether there are significant biological effects from these very low-energy fields, and if so, how they interact with biological tissues to produce their effects. Many of the chapters in the two volumes focus on the electric and magnetic fields produced by electricity-a subject of much recent interest and controversy. Other chapters focus on higher-frequency fields such as those used in microwave ovens, radio and television signals, and other communications systems. Clearly, all of us in industrialized societies are constantly exposed to various intensities of such fields, Several chapters are included that summarize research conducted in the former Soviet Union, where views, somewhat different from those common in the West, have long been held regarding biological effects from these fields. The contributions to this volume deal with beneficial uses of electromagnetic fields in medicine and biology as well as with the possible harmful effects. The subject of biological effects of electric and magnetic fields is rapidly changing. In the volumes, the editors have tried to present a balanced review of current views and controversies.
Article
No other book on the market today can match the 30-year success of Halliday, Resnick and Walker's Fundamentals of Physics! In a breezy, easy-to-understand style the book offers a solid understanding of fundamental physics concepts, and helps readers apply this conceptual understanding to quantitative problem solving. This book offers a unique combination of authoritative content and stimulating applications.
Article
Ultralow frequency pulsations of electric field in the surface atmospheric layer were investigated under fair weather conditions. A new method of structural-temporal analysis has been applied to the study of spatiotemporal structures of the electric field described previously by [Anisimov et al., 1994]. The method is based on exploration of the structural function by averaging the remote sensing data over respective temporal spans. This analysis allows quantitative estimations of spatial scales L ≃ 500 - 103 m and temporal scales not less than τ = 10 min for the structural elements of the planetary boundary layer electricity; we call these recently examined elements "aeroelectric structures" (AES). Quasiperiodic sequences and high-amplitude solitary AES have been recognized. Three-dimensional structural-temporal patterns are presented which directly characterize the level of electric energy perturbations connected with AES formation during night-day evolution. A model of AES formation has been developed, taking into account the occurence of convective cells with respective turbulent air and space charge density distributions that are transferred by the wind over the ground and cause the electric field fluctuations at the points of observation. Therefore formation of such submesoscale structures can be explained by the redistribution of space charge within the surface layer, with the structures of the smallest scales coupled to the turbulent mixing of the ions and aerosols. In addition to the advection and turbulent mixing of space charge, we also consider the cooperative electroaerodynamic effects which might occur in a system of bipolar ion and aerosol particles under the influence of a terrestrial electric field. We have proposed an advanced model treating the AES formation as the result of instability arising in such a system, taking into account the dependence of the effective ion-aerosol attachment coefficient on the external electric field strength.
Article
This book presents current knowledge about the effects of electromagnetic fields on living matter. The three-part format covers: dielectric permittivity and electrical conductivity of biological materials; effects of direct current and low frequency fields; and effects of radio frequency (including microwave) fields. The parts are designed to be consulted independently or in sequence, depending upon the needs of the reader. Useful appendixes on measurement units and safety standards are also included.